1
|
Stuttaford SA, Dyson M, Nazarpour K, Dupan SSG. Reducing Motor Variability Enhances Myoelectric Control Robustness Across Untrained Limb Positions. IEEE Trans Neural Syst Rehabil Eng 2024; 32:23-32. [PMID: 38100346 DOI: 10.1109/tnsre.2023.3343621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The limb position effect is a multi-faceted problem, associated with decreased upper-limb prosthesis control acuity following a change in arm position. Factors contributing to this problem can arise from distinct environmental or physiological sources. Despite their differences in origin, the effect of each factor manifests similarly as increased input data variability. This variability can cause incorrect decoding of user intent. Previous research has attempted to address this by better capturing input data variability with data abundance. In this paper, we take an alternative approach and investigate the effect of reducing trial-to-trial variability by improving the consistency of muscle activity through user training. Ten participants underwent 4 days of myoelectric training with either concurrent or delayed feedback in a single arm position. At the end of training participants experienced a zero-feedback retention test in multiple limb positions. In doing so, we tested how well the skill learned in a single limb position generalized to untrained positions. We found that delayed feedback training led to more consistent muscle activity across both the trained and untrained limb positions. Analysis of patterns of activations in the delayed feedback group suggest a structured change in muscle activity occurs across arm positions. Our results demonstrate that myoelectric user-training can lead to the retention of motor skills that bring about more robust decoding across untrained limb positions. This work highlights the importance of reducing motor variability with practice, prior to examining the underlying structure of muscle changes associated with limb position.
Collapse
|
2
|
Parker SM, Ricks B, Zuniga J, Knarr BA. Comparison of virtual reality to physical box and blocks on cortical an neuromuscualar activations in young adults. Sci Rep 2023; 13:16567. [PMID: 37783719 PMCID: PMC10545674 DOI: 10.1038/s41598-023-43073-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
The purpose of this study was to assess the changes in neural activations when performing the box and block test (BBT) in virtual reality (VR) compared to the physical BBT. Young healthy participants performed three trials of the BBT with their left and right hands in both the VR BBT, using VR hand controllers, and physical BBT conditions. Electromyography sensors were placed on the upper extremity of both arms and functional near-infrared spectroscopy was used to measure motor cortex activations throughout each condition. While a reduction in BBT score and increased wrist extensor neuromuscular activity is exhibited during the VR condition, there is no statistical difference in motor cortex activation between the two BBT conditions. This work provides a basis for exploring cortical and neuromuscular responses to VR in patient populations.
Collapse
Affiliation(s)
- Sheridan M Parker
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S., Omaha, NE, 68182, USA.
| | - Brian Ricks
- Department of Computer Science, University of Nebraska at Omaha, 1110 South 67th Street, Omaha, NE, 68182, USA
| | - Jorge Zuniga
- Department of Computer Science, University of Nebraska at Omaha, 1110 South 67th Street, Omaha, NE, 68182, USA
| | - Brian A Knarr
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S., Omaha, NE, 68182, USA
| |
Collapse
|
3
|
Romare M, Elcadi GH, Johansson E, Tsaklis P. Relative Neuroadaptive Effect of Resistance Training along the Descending Neuroaxis in Older Adults. Brain Sci 2023; 13:brainsci13040679. [PMID: 37190644 DOI: 10.3390/brainsci13040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/01/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Age-related decline in voluntary force production represents one of the main contributors to the onset of physical disability in older adults and is argued to stem from adverse musculoskeletal alterations and changes along the descending neuroaxis. The neural contribution of the above is possibly indicated by disproportionate losses in voluntary activation (VA) compared to muscle mass. For young adults, resistance training (RT) induces muscular and neural adaptations over several levels of the central nervous system, contributing to increased physical performance. However, less is known about the relative neuroadaptive contribution of RT in older adults. The aim of this review was to outline the current state of the literature regarding where and to what extent neural adaptations occur along the descending neuroaxis in response to RT in older adults. We performed a literature search in PubMed, Google Scholar and Scopus. A total of 63 articles met the primary inclusion criteria and following quality analysis (PEDro) 23 articles were included. Overall, neuroadaptations in older adults seemingly favor top-down adaptations, where the preceding changes of neural drive from superior levels affect the neural output of lower levels, following RT. Moreover, older adults appear more predisposed to neural rather than morphological adaptations compared to young adults, a potentially important implication for the improved maintenance of neuromuscular function during aging.
Collapse
Affiliation(s)
- Mattias Romare
- ErgoMech-Lab, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Guilherme H Elcadi
- ErgoMech-Lab, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 14157 Huddinge, Sweden
| | - Elin Johansson
- Pain in Motion Research Group, Departments of Human Physiology and Rehabilitation Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, PC 1050 Brussel, Belgium
| | - Panagiotis Tsaklis
- ErgoMech-Lab, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
- Centre of Orthopaedics and Regenerative Medicine, C.O.R.E.-C.I.R.I., Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden
| |
Collapse
|
4
|
Hota S, Tewari VK, Chandel AK. Workload Assessment of Tractor Operations with Ergonomic Transducers and Machine Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:1408. [PMID: 36772448 PMCID: PMC9920319 DOI: 10.3390/s23031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Dynamic muscular workload assessments of tractor operators are rarely studied or documented, which is critical to improving their performance efficiency and safety. A study was conducted to assess and model dynamic load on muscles, physiological variations, and discomfort of the tractor operators arriving from the repeated clutch and brake operations using wearable non-invasive ergonomic transducers and data-run techniques. Nineteen licensed tractor operators operated three different tractor types of varying power ranges at three operating speeds (4-5 km/h), and on two common operating surfaces (tarmacadam and farm roads). During these operations, ergonomic transducers were utilized to capture the load on foot muscles (gastrocnemius right [GR] and soleus right [SR] for brake operation and gastrocnemius left [GL], and soleus left [SL] for clutch operation) using electromyography (EMG). Forces exerted by the feet during brake and clutch operations were measured using a custom-developed foot transducer. During the process, heart rate (HR) and oxygen consumption rates (OCR) were also measured using HR monitor and K4b2 systems, and energy expenditure rate (EER) was determined using empirical equation. Post-tractor operation cycle, an overall discomfort rating (ODR) for that operation was manually recorded on a 10-point psychophysical scale. EMG-based maximum volumetric contraction (%MVC) measurements revealed higher strain on GR (%MVC = 43%), GL (%MVC = 38%), and SR (%MVC = 41%) muscles which in normal conditions should be below 30%. The clutch and brake actuation forces were recorded in the ranges of 90-312 N and 105-332 N, respectively and were significantly affected by the operating speed, tractor type, and operating surface (p < 0.05). EERs of the operators were measured in the moderate-heavy to heavy ranges (9-24 kJ/min) during the course of trials, suggesting the need to refine existing clutch and brake system designs. Average operator ODR responses indicated 7.8% operations in light, 48.5% in light-moderate, 25.2% in moderate, 10.7% in moderate-high, and 4.9% operations in high discomfort categories. When evaluated for the possibility of minimizing the number of transducers for physical workload assessment, EER showed moderate-high correlations with the EMG signals (rGR = 0.78, rGL = 0.75, rSR = 0.68, rSL = 0.66). Similarly, actuation forces had higher correlations with EMG signals for all the selected muscles (r = 0.70-0.87), suggesting the use of simpler transducers for effective operator workload assessment. As a means to minimize subjectivity in ODR responses, machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC), and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and EMG at high accuracies of 87-97%, with RFC being the most accurate. Such high-throughput and data-run ergonomic evaluations can be instrumental in reconsidering workplace designs and better fits for end-users in terms of agricultural tractors and machinery systems.
Collapse
Affiliation(s)
- Smrutilipi Hota
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - V. K. Tewari
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Abhilash K. Chandel
- Department of Biological Systems Engineering, Virginia Tech Tidewater AREC, Suffolk, VA 23437, USA
- Center for Advanced Innovation in Agriculture (CAIA), Virginia Tech, Blacksburg, VA 23437, USA
| |
Collapse
|
5
|
A New Approach to Noninvasive-Prolonged Fatigue Identification Based on Surface EMG Time-Frequency and Wavelet Features. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:1951165. [PMID: 36756137 PMCID: PMC9902121 DOI: 10.1155/2023/1951165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes the body to prolonged fatigue (PF) or also known as overtraining. This paper presents PF identification and classification based on surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of surface EMG during the inception of PF. PF symptoms were induced in accord with a five-day Bruce Protocol treadmill test on four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). The results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also indicate that the progression of PF can be observed based on changes in frequency features (ΔF med and ΔF mean) and time features (ΔRMS and ΔMAV) of surface EMG. This study also demonstrates the ability of wavelet index features in PF identification. Using a naïve Bayes (NB) classifier exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on RF, 94% on BF, 9% on VL, and 97% on VM. Thus, this study has positively indicated that surface EMG can be used in identifying the inception of PF. The implication of the findings is significant in sports to prevent a greater risk of PF.
Collapse
|
6
|
Hering GO, Bertschinger R, Stepan J. A quadriceps femoris motor pattern for efficient cycling. PLoS One 2023; 18:e0282391. [PMID: 36928839 PMCID: PMC10019633 DOI: 10.1371/journal.pone.0282391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
In cycling, propulsion is generated by the muscles of the lower limbs and hips. After the first reports of pedal/crank force measurements in the late 1960s, it has been assumed that highly trained athletes have better power transfer to the pedals than recreational cyclists. However, motor patterns indicating higher levels of performance are unknown. To compare leg muscle activation between trained (3.5-4.2 W/kgbw) and highly trained (4.3-5.1 W/kgbw) athletes we applied electromyography, lactate, and bi-pedal/crank force measurements during a maximal power test, an individual lactate threshold test and a constant power test. We show that specific activation patterns of the rectus femoris (RF) and vastus lateralis (VL) impact on individual performance during high-intensity cycling. In highly trained cyclists, we found a strong activation of the RF during hip flexion. This results in reduced negative force in the fourth quadrant of the pedal cycle. Furthermore, we discovered that pre-activation of the RF during hip flexion reduces force loss at the top dead center (TDC) and can improve force development during subsequent leg extension. Finally, we found that a higher performance level is associated with earlier and more intense coactivation of the RF and VL. This quadriceps femoris recruitment pattern improves force transmission and maintains propulsion at the TDC of the pedal cycle. Our results demonstrate neuromuscular adaptations in cycling that can be utilized to optimize training interventions in sports and rehabilitation.
Collapse
Affiliation(s)
- Gernot O. Hering
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
- * E-mail:
| | - Raphael Bertschinger
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
| | - Jens Stepan
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
- Department of Obstetrics and Gynecology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Proppe C, Rivera P, Beltran E, Hill E. Neuromuscular and mean force changes during a fatiguing bout of exercise with and without blood flow restriction. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Surface electromyography (EMG) and mean force can be used to identify motor unit excitation and fatigue. Low-load resistance training with blood flow restriction (LL+BFR) may result in earlier fatigue and maximal muscle fibre recruitment compared to low-load resistance training (LL). The purpose of this investigation was to examine EMG and force responses during LL versus LL+BFR. Thirteen males (mean ± standard deviation = 24±4 years) completed a bout (1×30) of leg extension muscle actions at 30% of their 1 repetition maximum LL and LL+BFR while force, EMG amplitude, and EMG mean power frequency (EMG MPF) were recorded. EMG amplitude increased (74.2%) and EMG MPF decreased (22.6%) similarly during both conditions. There was no significant difference in mean force during the first 3 repetitions between LL+BFR (477.3±132.3 N) and LL (524.3±235.1 N) conditions, but mean force was lower during the last 3 repetitions for LL+BFR (459.7±179.3 N) compared to LL (605.4±276.4 N). The results of the present study indicated that a fatiguing bout of leg extension muscle actions performed LL and LL+BFR elicited similar neuromuscular responses. There was a significant difference in mean force during the last 3 repetitions (LL>LL+BFR) that may have been due to differences in the time spent near peak force.
Collapse
Affiliation(s)
- C. Proppe
- University of Central Florida, 12494 University Boulevard 320L, Orlando, FL 32816, USA
| | - P. Rivera
- University of Central Florida, 12494 University Boulevard 320L, Orlando, FL 32816, USA
| | - E. Beltran
- University of Central Florida, 12494 University Boulevard 320L, Orlando, FL 32816, USA
- Florida Space Institute, Research Pkwy, Orlando, FL 32826, USA
| | - E. Hill
- University of Central Florida, 12494 University Boulevard 320L, Orlando, FL 32816, USA
- Florida Space Institute, Research Pkwy, Orlando, FL 32826, USA
| |
Collapse
|
8
|
Ritzmann R, Strütt S, Torreno I, Riesterer J, Centner C, Suarez-Arrones L. Neuromuscular characteristics of agonists and antagonists during maximal eccentric knee flexion in soccer players with a history of hamstring muscle injuries. PLoS One 2022; 17:e0277949. [PMID: 36455059 PMCID: PMC9714924 DOI: 10.1371/journal.pone.0277949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Muscle strain injuries (MSIs) in the hamstrings are among the most prevalent injuries in elite soccer. We aimed to examine the relation between biomechanical maladaptation in eccentric strength and neuromuscular factors separated by their time and frequency domains. METHODS 20 elite soccer players with a previous history of unilateral MSI in the M. biceps femoris (BF) long head and 20 without MSI participated. Knee flexion torques, rate of torque development (RTD) and electromyographic signals (EMG) of the BF, the M. semitendinosus (SMT) and knee extensors were obtained during unilateral maximal eccentric knee flexions performed at slow (30°/s) and fast (120°/s) angular speeds. Root mean squares and mean power frequency (MF) was calculated. RESULTS In the group with a history of MSI, reduced maximal eccentric flexion torque (slow eccentrics -8±11, p<0.05; fast eccentrics -18±13 N*m, p<0.05) and RTD (-33±28 N*m/s, p<0.05; -95±47 N*m/s, p<0.05) concomitantly occurred with diminished agonistic myoelectrical activities (-4±5% of MVC, p<0.05; -10±7% of MVC, p<0.05) and MFs (-24±13 Hz, p<0.05; -24±18 Hz, p<0.05) in the BF. Simultaneously, antagonistic myoelectric activity was elevated (+4±3% of MVC, p<0.05; +3±3% of MVC, p<0.05) in MSI affected legs as compared to unaffected legs for both eccentric contractions. Deficits in myoelectrical activity (r2 = 0.715, p<0.05; r2 = 0.601, p<0.05) and MF (r2 = 0.484, p<0.05; r2 = 0.622, p<0.05) correlated with deficits in maximal torque in the affected leg in the MSI group. Analysis of SMT demonstrated no significant differences. CONCLUSION Positive relationships between neuromuscular deficits and the reduced eccentric strength profile underpin neuronal inhibition after MSI. This persistent involvement of dysfunctional synergist and antagonist neural hamstring function in strength weakness is of clinical relevance in sports medicine for prevention and rehabilitation.
Collapse
Affiliation(s)
- Ramona Ritzmann
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Sarah Strütt
- Praxisklinik Rennbahn AG, Muttenz, Switzerland
- FC Basel, Basel, Switzerland
| | | | | | | | - Luis Suarez-Arrones
- FC Lugano, Lugano, Switzerland
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Cavalcanti JD, Fregonezi GAF, Sarmento AJ, Bezerra T, Gualdi LP, Pennati F, Aliverti A, Resqueti VR. Electrical activity and fatigue of respiratory and locomotor muscles in obstructive respiratory diseases during field walking test. PLoS One 2022; 17:e0266365. [PMID: 35363800 PMCID: PMC8975118 DOI: 10.1371/journal.pone.0266365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction In subjects with obstructive respiratory diseases the increased work of breathing during exercise can trigger greater recruitment and fatigue of respiratory muscles. Associated with these changes, lower limb muscle dysfunctions, further contribute to exercise limitations. We aimed to assess electrical activity and fatigue of two respiratory and one locomotor muscle during Incremental Shuttle Walking Test (ISWT) in individuals with obstructive respiratory diseases and compare with healthy. Methods This is a case-control study. Seventeen individuals with asthma (asthma group) and fifteen with chronic obstructive pulmonary disease (COPD group) were matched with healthy individuals (asthma and COPD control groups). Surface electromyographic (sEMG) activity of sternocleidomastoid (SCM), scalene (ESC), and rectus femoris (RF) were recorded during ISWT. sEMG activity was analyzed in time and frequency domains at baseline and during the test (33%, 66%, and 100% of ISWT total time) to obtain, respectively, signal amplitude and power spectrum density (EMG median frequency [MF], high- and low-frequency bands, and high/low [H/L] ratio). Results Asthma group walked a shorter distance than controls (p = 0.0007). sEMG amplitudes of SCM, ESC, and RF of asthma and COPD groups were higher at 33% and 66% of ISWT compared with controls groups (all p<0.05). SCM and ESC of COPD group remained higher until 100% of the test. MF of ESC and RF decreased in asthma group (p = 0.016 and p < 0.0001, respectively) versus controls, whereas MF of SCM (p < 0.0001) decreased in COPD group compared with controls. H/L ratio of RF decreased (p = 0.002) in COPD group versus controls. Conclusion Reduced performance is accompanied by increased electromyographic activity of SCM and ESC and activation of RF in individuals with obstructive respiratory diseases during ISWT. These are susceptible to be more pronounced respiratory and peripheral muscle fatigue than healthy subjects during exercise.
Collapse
Affiliation(s)
- Jéssica D. Cavalcanti
- Departamento de Fisioterapia, Laboratório PneumoCardioVascular—Hospital Universitário Onofre Lopes / Empresa Brasileira de Serviços Hospitalares & Laboratório de Inovação Tecnológica em Reabilitação, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
| | - Guilherme Augusto F. Fregonezi
- Departamento de Fisioterapia, Laboratório PneumoCardioVascular—Hospital Universitário Onofre Lopes / Empresa Brasileira de Serviços Hospitalares & Laboratório de Inovação Tecnológica em Reabilitação, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
| | - Antonio J. Sarmento
- Departamento de Fisioterapia, Laboratório PneumoCardioVascular—Hospital Universitário Onofre Lopes / Empresa Brasileira de Serviços Hospitalares & Laboratório de Inovação Tecnológica em Reabilitação, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
| | - Thiago Bezerra
- Departamento de Fisioterapia, Laboratório PneumoCardioVascular—Hospital Universitário Onofre Lopes / Empresa Brasileira de Serviços Hospitalares & Laboratório de Inovação Tecnológica em Reabilitação, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
| | - Lucien P. Gualdi
- Faculdade de Ciências da Saúde do Trairí, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte, Brasil
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Vanessa R. Resqueti
- Departamento de Fisioterapia, Laboratório PneumoCardioVascular—Hospital Universitário Onofre Lopes / Empresa Brasileira de Serviços Hospitalares & Laboratório de Inovação Tecnológica em Reabilitação, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil
- * E-mail:
| |
Collapse
|
10
|
Moritani T. Electrical muscle stimulation: Application and potential role in aging society. J Electromyogr Kinesiol 2021; 61:102598. [PMID: 34560440 DOI: 10.1016/j.jelekin.2021.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Neurodegenerative diseases and sarcopenia become more prevalent as individuals age and, therefore, represent a serious issue for the healthcare system. Several studies have reported the relationship between physical activity and reduced incidence of dementia or cognitive deterioration. Thus, exercise and strength training are most recommended treatments, but it is proving difficult to engage individuals to initiate exercise and strength training. Electrical muscle stimulation (EMS) may provide an alternative and more efficient solution. Although EMS has undergone a decline in use, mainly because of stimulation discomfort, new technologies allow painless application of strong contractions. Such activation can be applied in higher exercise dosages and more efficiently than people are likely to achieve with exercise. Unlike orderly recruitment of motor units (MUs) during low intensity voluntary exercise, EMS activates large fast-twitch MUs with glycolytic fibers preferentially and this could have benefit for prevention and treatment of diabetes and chronic diseases associated with muscle atrophy that ultimately lead to bed-ridden conditions. Recent evidence highlights the potential for EMS to make a major impact on these and other lifestyle related diseases and its role as a useful modality for orthopedic and cardiac rehabilitation. This paper will discuss the potential for EMS to break new ground in effective interventions in these frontiers of medical science.
Collapse
Affiliation(s)
- Toshio Moritani
- Professor Emeritus, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto and Visiting Professor, Graduate School of Sports Science, Chukyo University, Toyota, Japan.
| |
Collapse
|
11
|
Teruya PY, Farfán FD, Pizá ÁG, Soletta JH, Lucianna FA, Albarracín AL. Quantifying muscle alterations in a Parkinson's disease animal model using electromyographic biomarkers. Med Biol Eng Comput 2021; 59:1735-1749. [PMID: 34297299 DOI: 10.1007/s11517-021-02400-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease currently diagnosed based on characteristic motor dysfunctions. The most common Parkinson's disease animal model induces massive nigrostriatal degeneration by intracerebral infusion of 6-hydroxydopamine (6-OHDA). Motor deficits in rat models of Parkinson's disease were previously addressed in other works. However, an accurate quantification of muscle function in freely moving PD-lesioned rats over time has not been described until now. In this work, we address the muscular activity characterization of a 6-OHDA-lesion model of PD along 6 weeks post-lesion based on spectral and morphological analysis of the signals. Using chronic implanted EMG electrodes in a hindlimb muscle of freely moving rats, we have evaluated the effect of the PD neurotoxic model in the muscular activity during locomotion. EMG signals obtained from animals with different time post-injury were analyzed. Power spectral densities were characterized by the mean and median frequency, and the EMG burst stationarity was previously verified for all animals. Our results show that as the time post-lesion increases both frequency parameters decrease. Probability distribution function analysis was also performed. The results suggest that contractile dynamics of the biceps femoris muscle change with time post-lesion. We have also demonstrated here the usefulness of frequency parameters as biomarkers for monitoring the muscular function changes that could be used for early detection of motor dysfunction.
Collapse
Affiliation(s)
- Pablo Y Teruya
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina
| | - Fernando D Farfán
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Álvaro G Pizá
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Jorge H Soletta
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Facundo A Lucianna
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Ana L Albarracín
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina. .,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
12
|
Oliveira MP, Menzel HJK, Cochrane DJ, Drummond MDM, Demicheli C, Lage G, Couto BP. Individual Responses to Different Vibration Frequencies Identified by Electromyography and Dynamometry in Different Types of Vibration Application. J Strength Cond Res 2021; 35:1748-1759. [PMID: 30844986 DOI: 10.1519/jsc.0000000000002985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Oliveira, MP, Menzel, H-JK, Cochrane, DJ, Drummond, MD, Demicheli, C, Lage, G, and Couto, BP. Individual responses to different vibration frequencies identified by electromyography and dynamometry in different types of vibration application. J Strength Cond Res 35(6): 1748-1759, 2021-The application of mechanical vibration is a common neuromuscular training technique used in sports training programs to generate acute increases in muscle strength. The principal aim of the study was to compare the individual optimal vibration frequency (IOVF) identified by electromyography (EMG) activity and force production in strength training. Twenty well-trained male volunteers (age: 23.8 ± 3.3 years) performed a familiarization and 2 interventions sessions, which included 5 maximal voluntary contractions (MVCs) of the elbow flexors with a duration of 10 seconds and 5-minute intervals between each MVC. The first MVC was performed without vibration followed by 4 randomized MVCs with application of vibration in the direction of the resultant muscle forces' vector (VDF) or whole-body vibration (WBV) at frequencies of 10, 20, 30, or 40 Hz. The mechanical vibration stimulus was superimposed during the MVC. Individual optimal vibration frequency, as identified by EMG, did not coincide with IOVF identified by force production; low agreement was observed between the vibration frequencies in generating the higher EMG activity, maximal force, and root mean square of force. These findings suggest that the magnitude of the vibratory stimulus response is individualized. Therefore, if the aim is to use acute vibration in conjunction with strength training, a preliminary vibration exposure should be conducted to determine the individualized vibratory stimulus of the subject, so that training effects can be optimized.
Collapse
Affiliation(s)
- Mariana P Oliveira
- Laboratory of Load Evaluation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hans-Joachim K Menzel
- Laboratory of Biomechanics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marcos D M Drummond
- Laboratory of Load Evaluation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlo Demicheli
- School of Mathematics, Federal University of Minas Gerais, Belo Horizonte, Brazil; and
| | - Guilherme Lage
- Laboratory of Movements Analyses, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno P Couto
- Laboratory of Load Evaluation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Schlink BR, Nordin AD, Ferris DP. Human myoelectric spatial patterns differ among lower limb muscles and locomotion speeds. Physiol Rep 2020; 8:e14652. [PMID: 33278064 PMCID: PMC7718836 DOI: 10.14814/phy2.14652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The spatial distribution of myoelectric activity within lower limb muscles is often nonuniform and can change during different stationary tasks. Recent studies using high-density electromyography (EMG) have suggested that spatial muscle activity may also differ among muscles during locomotion, but contrasting electrode array sizes and experimental designs have limited cross-study comparisons. Here, we sought to determine if spatial EMG patterns differ among lower limb muscles and locomotion speeds. We recorded high-density EMG from the vastus medialis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius muscles of 11 healthy subjects while they walked (1.2 and 1.6 m/s) and ran (2.0, 3.0, 4.0, and 5.0 m/s) on a treadmill. To overcome the detrimental effects of cable, electrode, and soft tissue movements on high-density EMG signal quality during locomotion, we applied multivariate signal cleaning methods. From these data, we computed the spatial entropy and center of gravity from the total myoelectric activity within each recording array during the stance or swing phases of the gait cycle. We found heterogeneous spatial EMG patterns evidenced by contrasting spatial entropy among lower limb muscles. As locomotion speed increased, mean entropy values decreased in four of the five recorded muscles, indicating that EMG signal amplitudes were more spatially heterogeneous, or localized, at faster speeds. The EMG center of gravity location also shifted in multiple muscles as locomotion speed increased. Contrasting myoelectric spatial distributions among muscles likely reflect differences in muscle architecture, but increasingly localized activity and spatial shifts in the center of gravity location at faster locomotion speeds could be influenced by preferential recruitment of faster motor units under greater loads.
Collapse
Affiliation(s)
- Bryan R. Schlink
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Andrew D. Nordin
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
14
|
Suplino LO, de Melo GC, Umemura GS, Forner-Cordero A. Elbow movement estimation based on EMG with NARX Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3767-3770. [PMID: 33018821 DOI: 10.1109/embc44109.2020.9176129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of the electrical activity from the muscles may provide a natural way to control exoskeletons or other robotic devices seamlessly. The major challenges to achieve this goal are human motor redundancy and surface electromyography (sEMG) variability. The goal of this work is to find a feature extraction and classification procedures to estimate accurately elbow angular trajectory by means of a NARX Neural Network. The processing time-step should be small enough to make it feasible its further use for online control of an exoskeleton. In order to do so we analysed the Biceps and Triceps Brachii data from an elbow flexo-extension Coincident Timing task performed in the horizontal plane. The sEMG data was pre-processed and its energy was divided in five frequency intervals that were fed to a Nonlinear Auto Regressive with Exogenous inputs (NARX) Neural Network. The estimated angular trajectory was compared with the measured one showing a high correlation between them and a RMSE error maximum of 7 degrees. The procedure presented here shows a reasonably good estimation that, after training, allows real-time implementation. In addition, the results are encouraging to include more complex tasks including the shoulder joint.
Collapse
|
15
|
Zhang N, Wei N, Li K. Dynamic Analysis of Muscle Coordination at Different Force Levels during Grip and Pinch with Multiplex Recurrence Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3788-3791. [PMID: 33018826 DOI: 10.1109/embc44109.2020.9175993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle synergistic contraction to produce force has been recognized as an important neurophysiological mechanism in neuromuscular system. Despite a range of approaches, such as nonnegative matrix factorization or principal component analysis that have been widely used, limitations still exist in analysis of dynamic coordination of multiple muscles. In addition, it is still less studied about the potential difference of muscle dynamic coordination at different force levels during grip and pinch within the same framework. With this aim, this study analyzed the dynamic coordination of multiple upper-limb muscles at low, medium and high force levels during pinch and grip with multiplex recurrence network (MRN). Twenty-four healthy subjects participated in the experiment. Subjects were instructed to grip an apparatus to match the target force as stably as they could for 10 s. Surface electromyographic (sEMG) signals were recorded from 8 upper-limb muscles and analyzed by the MRN. The interlayer mutual information (I) and the average edge overlap (ω) of MRNs were calculated to quantify muscle correlation and muscle synchronization, respectively. Results showed that I and ω values of extrinsic muscles' MRNs during grip were significantly higher than that during grip at medium and high force. Furthermore, the I and ω values of extrinsic muscle networks during grip increased with augmented force levels. No significant changes were found for the intrinsic muscles with force output levels. These findings indicate that the muscles coordination patterns between grip and pinch were different and higher co-contraction of extrinsic muscles is favorable to synergistic force production. With the force output increased, muscles' coordination was augmented in extrinsic muscles, but no change in intrinsic muscles because of independent and complicated control of fingers. This study provides an analytical tool for dynamic muscles coordination and provides insights into the mechanisms of synergistic control of muscle contractions for force production.Clinical Relevance-This study provides a novel analytical tool for muscle coordination during force production, which may facilitate the evaluation of neuromuscular function or serve as indicators for neuromuscular disorders.
Collapse
|
16
|
Zhou Y, Bi Z, Ji M, Chen S, Wang W, Wang K, Hu B, Lu X, Wang Z. A Data-Driven Volitional EMG Extraction Algorithm During Functional Electrical Stimulation With Time Variant Parameters. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1069-1080. [DOI: 10.1109/tnsre.2020.2980294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Geng Y, Deng H, Samuel OW, Cheung V, Xu L, Li G. Modulation of muscle synergies for multiple forearm movements under variant force and arm position constraints. J Neural Eng 2020; 17:026015. [PMID: 32126534 DOI: 10.1088/1741-2552/ab7c1a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To promote clinical applications of muscle-synergy-based neurorehabilitation techniques, this study aims to clarify any potential modulations of both the muscular compositions and temporal activations of forearm muscle synergies for multiple movements under variant force levels and arm positions. APPROACH Two groups of healthy subjects participated in this study. Electromyography (EMG) signals were collected when they performed four hand and wrist movements under variant constraints-three different force levels for one group and five arm positions for the other. Muscle synergies were extracted from the EMGs, and their robustness across variant force levels and arm positions was separately assessed by evaluating their across-condition structure similarity, cross-validation, and cluster analysis. The synergies' activation coefficients across the variant constraints were also compared, and the coefficients were used to discriminate the different force levels and the arm positions, respectively. MAIN RESULTS Overall, the muscle synergies were relatively fixed across variant constraints, but they were more robust to variant forces than to changing arm positions. The activations of muscle synergies depended largely on the level of contraction force and could discriminate the force levels very well, but the coefficients corresponding to different arm positions discriminated the positions with lower accuracy. Similar results were found for all types of forearm movement analyzed. SIGNIFICANCE With our experiment and subject-specific analysis, only slight modulation of the muscular compositions of forearm muscle synergies was found under variant force and arm position constraints. Our results may shed valuable insights to future design of both muscle-synergy-based assistive robots and motor-function assessments.
Collapse
Affiliation(s)
- Yanjuan Geng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China. Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen 518055, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Campbell E, Phinyomark A, Scheme E. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1613. [PMID: 32183215 PMCID: PMC7146367 DOI: 10.3390/s20061613] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
This manuscript presents a hybrid study of a comprehensive review and a systematic(research) analysis. Myoelectric control is the cornerstone ofmany assistive technologies used in clinicalpractice, such as prosthetics and orthoses, and human-computer interaction, such as virtual reality control.Although the classification accuracy of such devices exceeds 90% in a controlled laboratory setting,myoelectric devices still face challenges in robustness to variability of daily living conditions.The intrinsic physiological mechanisms limiting practical implementations of myoelectric deviceswere explored: the limb position effect and the contraction intensity effect. The degradationof electromyography (EMG) pattern recognition in the presence of these factors was demonstratedon six datasets, where classification performance was 13% and 20% lower than the controlledsetting for the limb position and contraction intensity effect, respectively. The experimental designsof limb position and contraction intensity literature were surveyed. Current state-of-the-art trainingstrategies and robust algorithms for both effects were compiled and presented. Recommendationsfor future limb position effect studies include: the collection protocol providing exemplars of at least 6positions (four limb positions and three forearm orientations), three-dimensional space experimentaldesigns, transfer learning approaches, and multi-modal sensor configurations. Recommendationsfor future contraction intensity effect studies include: the collection of dynamic contractions, nonlinearcomplexity features, and proportional control.
Collapse
Affiliation(s)
- Evan Campbell
- Department of Electrical and Computer Engineering, University of New Brunswick, Canada
- Institute of Biomedical Engineering, University of New Brunswick, Canada
| | - Angkoon Phinyomark
- Institute of Biomedical Engineering, University of New Brunswick, Canada
| | - Erik Scheme
- Department of Electrical and Computer Engineering, University of New Brunswick, Canada
- Institute of Biomedical Engineering, University of New Brunswick, Canada
| |
Collapse
|
19
|
Borzelli D, Gazzoni M, Botter A, Gastaldi L, d'Avella A, Vieira TM. Contraction level, but not force direction or wrist position, affects the spatial distribution of motor unit recruitment in the biceps brachii muscle. Eur J Appl Physiol 2020; 120:853-860. [PMID: 32076830 DOI: 10.1007/s00421-020-04324-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions. METHODS The MUs' firing instants were extracted by decomposing high-density surface electromyograms (EMG), detected from the BB muscle of 12 subjects with a grid of electrodes (4 rows along the BB longitudinal axis, 16 columns medio-laterally). The firing instants were then used to trigger and average single-differential EMGs. The average rectified value was computed separately for each signal and the maximal value along each column in the grid was retained. The center of mass, defined as the weighted mean of the maximal, average rectified value across columns, was then consdiered to assess the medio-lateral changes in the MU surface representation between conditions. RESULTS Contraction level, but neither wrist position nor force direction (flexion vs. supination), affected the spatial distribution of BB MUs. In particular, higher forces were associated with the recruitment of BB MUs whose action potentials were represented more medially. CONCLUSION Although the action potentials of BB MUs were represented locally across the muscle medio-lateral region, dicrimination between elbow flexion or supination seems unlikely from the surface representation of MUs action potentials.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy. .,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Laura Gastaldi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Andrea d'Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Università di Messina, Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronic and Telecommunications, Politecnico di Torino, Turin, Italy.,PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| |
Collapse
|
20
|
Wernbom M, Aagaard P. Muscle fibre activation and fatigue with low-load blood flow restricted resistance exercise-An integrative physiology review. Acta Physiol (Oxf) 2020; 228:e13302. [PMID: 31108025 DOI: 10.1111/apha.13302] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Blood flow-restricted resistance exercise (BFRRE) has been shown to induce increases in muscle size and strength, and continues to generate interest from both clinical and basic research points of view. The low loads employed, typically 20%-50% of the one repetition maximum, make BFRRE an attractive training modality for individuals who may not tolerate high musculoskeletal forces (eg, selected clinical patient groups such as frail old adults and patients recovering from sports injury) and/or for highly trained athletes who have reached a plateau in muscle mass and strength. It has been proposed that achieving a high degree of muscle fibre recruitment is important for inducing muscle hypertrophy with BFRRE, and the available evidence suggest that fatiguing low-load exercise during ischemic conditions can recruit both slow (type I) and fast (type II) muscle fibres. Nevertheless, closer scrutiny reveals that type II fibre activation in BFRRE has to date largely been inferred using indirect methods such as electromyography and magnetic resonance spectroscopy, while only rarely addressed using more direct methods such as measurements of glycogen stores and phosphocreatine levels in muscle fibres. Hence, considerable uncertainity exists about the specific pattern of muscle fibre activation during BFRRE. Therefore, the purpose of this narrative review was (1) to summarize the evidence on muscle fibre recruitment during BFRRE as revealed by various methods employed for determining muscle fibre usage during exercise, and (2) to discuss reported findings in light of the specific advantages and limitations associated with these methods.
Collapse
Affiliation(s)
- Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science University of Gothenburg Gothenburg Sweden
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Per Aagaard
- Department of Sports Sciences and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC) University of Southern Denmark Odense M Denmark
| |
Collapse
|
21
|
Jadczak Ł, Wieczorek A, Grześkowiak M, Wieczorek J, Łochyński D. Jumping Height Does Not Increase in Well Trained Volleyball Players After Transcutaneous Spinal Direct Current Stimulation. Front Physiol 2019; 10:1479. [PMID: 31866875 PMCID: PMC6904281 DOI: 10.3389/fphys.2019.01479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Transcutaneous spinal direct current stimulation (tsDCS) increases corticospinal and spinal reflex excitability, and may be a new tool for increasing muscle explosive performance in sports training. The aim of the study was to evaluate whether tsDCS can enhance jumping ability in trained humans practicing volleyball. Twenty eight participants completed the study, including 21 men and 7 women. We investigated the effects of a single 15-minute session of sham, anodal, and cathodal tsDCS over spine and shoulder on repeated counter movement jump (CMJ) and squat jump (SJ) performance at 0, 30 and 60 min post-stimulation. The order of SJs and CMJs sets in each session was randomized. Each SJ and CMJ set consisted of 3 jumps. The break between each attempt was 1 min and the interval between the sets was 3 min. Two-way repeated measures ANOVA did not show effect of time, nor stimulation method, nor stimulation method × time interactions on SJ (time: F(1.8,142.1) = 1.054; p = 0.346, stimulation: F(2,78) = 0.019; p = 0.981, stimulation × time: F(3.6,142.1) = 0.725; p = 0.564) or CMJ (time: F(1.8,140.9) = 2.092; p = 0.132, stimulation: F(2,78) = 0.005; p = 0.995, stimulation × time: F(3.6,140.9) = 0.517; p = 0.705) performance. Single session of tsDCS over spine and shoulder does not increase jumping height in well-trained volleyball players. This is an important finding for coaches and strength conditioning professionals for understanding the practical utility of tsDCS for enhancing muscular explosiveness.
Collapse
Affiliation(s)
- Łukasz Jadczak
- Department of Theory and Methodology of Team Sport Games, Poznań University of Physical Education, Poznań, Poland
| | - Andrzej Wieczorek
- Department of Theory and Methodology of Team Sport Games, Poznań University of Physical Education, Poznań, Poland
| | - Marcin Grześkowiak
- Department of Pulmonological and Rheumatological Rehabilitation, Poznań University of Physical Education, Poznań, Poland
| | - Jacek Wieczorek
- Department of Sport for Disabilities, Poznań University of Physical Education, Poznań, Poland
| | - Dawid Łochyński
- Department of Musculoskeletal Rehabilitation, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
22
|
Fuentes del Toro S, Wei Y, Olmeda E, Ren L, Guowu W, Díaz V. Validation of a Low-Cost Electromyography (EMG) System via a Commercial and Accurate EMG Device: Pilot Study. SENSORS 2019; 19:s19235214. [PMID: 31795083 PMCID: PMC6928739 DOI: 10.3390/s19235214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022]
Abstract
Electromyography (EMG) devices are well-suited for measuring the behaviour of muscles during an exercise or a task, and are widely used in many different research areas. Their disadvantage is that commercial systems are expensive. We designed a low-cost EMG system with enough accuracy and reliability to be used in a wide range of possible ways. The present article focuses on the validation of the low-cost system we designed, which is compared with a commercially available, accurate device. The evaluation was done by means of a set of experiments, in which volunteers performed isometric and dynamic exercises while EMG signals from the rectus femoris muscle were registered by both the proposed low-cost system and a commercial system simultaneously. Analysis and assessment of three indicators to estimate the similarity between both signals were developed. These indicated a very good result, with spearman’s correlation averaging above 0.60, the energy ratio close to the 80% and the linear correlation coefficient approximating 100%. The agreement between both systems (custom and commercial) is excellent, although there are also some limitations, such as the delay of the signal (<1 s) and noise due to the hardware and assembly in the proposed system.
Collapse
Affiliation(s)
- Sergio Fuentes del Toro
- Mechanical Engineering Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain; (E.O.); (V.D.)
- Institute for Automotive Vehicle Safety (ISVA), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
- Correspondence: ; Tel.: +34-916-624-9912
| | - Yuyang Wei
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (Y.W.); (L.R.)
| | - Ester Olmeda
- Mechanical Engineering Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain; (E.O.); (V.D.)
- Institute for Automotive Vehicle Safety (ISVA), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
| | - Lei Ren
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (Y.W.); (L.R.)
| | - Wei Guowu
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK;
| | - Vicente Díaz
- Mechanical Engineering Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain; (E.O.); (V.D.)
- Institute for Automotive Vehicle Safety (ISVA), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
| |
Collapse
|
23
|
Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019; 11:nu11092120. [PMID: 31492050 PMCID: PMC6769736 DOI: 10.3390/nu11092120] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND this study examined the effects of caffeine supplementation on anaerobic performance, neuromuscular efficiency and upper and lower extremities fatigue in Olympic-level boxers. METHODS Eight male athletes, members of the Spanish National Olympic Team, were enrolled in the study. In a randomized double-blind, placebo-controlled, counterbalanced, crossover design, the athletes completed 2 test sessions after the intake of caffeine (6 mg·kg-1) or placebo. Sessions involved initial measures of lactate, handgrip and countermovement jump (CMJ) performance, followed by a 30-seconds Wingate test, and then final measures of the previous variables. During the sessions, electromiography (EMG) data were recorded on the gluteus maximus, biceps femoris, vastus lateralis, gastrocnemius lateral head and tibialis anterior. RESULTS caffeine enhanced peak power (6.27%, p < 0.01; Effect Size (ES) = 1.26), mean power (5.21%; p < 0.01; ES = 1.29) and reduced the time needed to reach peak power (-9.91%, p < 0.01; ES = 0.58) in the Wingate test, improved jump height in the CMJ (+2.4 cm, p < 0.01), and improved neuromuscular efficiency at peak power in the vastus lateralis (ES = 1.01) and gluteus maximus (ES = 0.89), and mean power in the vastus lateralis (ES = 0.95) and tibialis anterior (ES = 0.83). CONCLUSIONS in these Olympic-level boxers, caffeine supplementation improved anaerobic performance without affecting EMG activity and fatigue levels in the lower limbs. Further benefits observed were enhanced neuromuscular efficiency in some muscles and improved reaction speed.
Collapse
|
24
|
Tirosh O, Rutz E. Quantifying the velocity-dependent muscle response during gait of children with Cerebral Palsy. J Electromyogr Kinesiol 2019; 48:76-83. [PMID: 31252283 DOI: 10.1016/j.jelekin.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/04/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022] Open
Abstract
A new method is introduced quantifying the velocity-dependent muscle response during gait in spastic muscles of children with Cerebral Palsy. The velocity-dependent muscle activation Index is calculated during a 3-dimensional gait analysis using segment angular velocity and the Instantaneous Mean Frequency calculated from surface electromyography. Typical developed children (n = 11) and children with hemiplegia (n = 11) aging from 8 to 19 years participated in the study. The rectus femoris and the medial gastrocnemius were assessed by calculating the velocity dependent muscle activation Index and the modified Ashworth Scale. Greater velocity-dependent muscle activation Index values for both medial gastrocnemius and rectus femoris muscles were associated with greater Ashworth Scale. Post hoc analysis revealed significant lower velocity-dependent muscle activation Index means in the Typical developed group compared with Ashworth Scale scores of 1, 2, 3, and 5. In addition, velocity-dependent muscle activation Index for Ashworth Scale 0, 1, and 2 were significantly lower than for Ashworth Scale 3 and 5. The velocity dependent muscle activation Index showed negative low correlation with walking speed and cadence. Findings show that spastic muscles can be quantified during dynamic functional task such as walking. Future studies should investigate the reliability of the velocity-dependent muscle activation Index that may be used for the assessment of spasticity management such as Botulinum toxin A interventions.
Collapse
Affiliation(s)
- Oren Tirosh
- Department of Health and Medical Science, Swinburne University of Technology, Melbourne, Australia.
| | - Erich Rutz
- Department of Orthopedic Surgery, University Children's Hospital Basel, Spitalstrasse 33, 4056 Basel, Switzerland; Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
25
|
Maudrich T, Kenville R, Nikulin VV, Maudrich D, Villringer A, Ragert P. Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. Neuroscience 2019; 406:300-313. [DOI: 10.1016/j.neuroscience.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
26
|
Atri R, Marquez JS, Leung C, Siddiquee MR, Murphy DP, Gorgey AS, Lovegreen WT, Fei DY, Bai O. Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography. SENSORS 2018; 18:s18082705. [PMID: 30126112 PMCID: PMC6111278 DOI: 10.3390/s18082705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder⁻Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder⁻Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder⁻Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence.
Collapse
Affiliation(s)
- Roozbeh Atri
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA.
| | - J Sebastian Marquez
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA.
| | - Connie Leung
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA.
| | - Masudur R Siddiquee
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA.
| | - Douglas P Murphy
- Department of Veterans Affairs, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA.
| | - Ashraf S Gorgey
- Department of Veterans Affairs, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA.
| | - William T Lovegreen
- Department of Veterans Affairs, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA.
| | - Ding-Yu Fei
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA.
| | - Ou Bai
- Human Cyber-Physical Systems Laboratory, Florida International University, Miami, FL 33174, USA.
| |
Collapse
|
27
|
The placebo effect in the motor domain is differently modulated by the external and internal focus of attention. Sci Rep 2018; 8:12296. [PMID: 30115945 PMCID: PMC6095847 DOI: 10.1038/s41598-018-30228-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Among the cognitive strategies that can facilitate motor performance in sport and physical practice, a prominent role is played by the direction of the focus of attention and the placebo effect. Consistent evidence converges in indicating that these two cognitive functions can influence the motor outcome, although no study up-to-now tried to study them together in the motor domain. In this explorative study, we combine for the first time these approaches, by applying a placebo procedure to increase force and by manipulating the focus of attention with explicit verbal instructions. Sixty healthy volunteers were asked to perform abduction movements with the index finger as strongly as possible against a piston and attention could be directed either toward the movements of the finger (internal focus, IF) or toward the movements of the piston (external focus, EF). Participants were randomized in 4 groups: two groups underwent a placebo procedure (Placebo-IF and Placebo-EF), in which an inert treatment was applied on the finger with verbal information on its positive effects on force; two groups underwent a control procedure (Control-IF and Control-EF), in which the same treatment was applied with overt information about its inefficacy. The placebo groups were conditioned about the effects of the treatment with a surreptitious amplification of a visual feedback signalling the level of force. During the whole procedure, we recorded actual force, subjective variables and electromyography from the hand muscles. The Placebo-IF group had higher force levels after the procedure than before, whereas the Placebo-EF group had a decrease of force. Electromyography showed that the Placebo-IF group increased the muscle units recruitment without changing the firing rate. These findings show for the first time that the placebo effect in motor performance can be influenced by the subject’s attentional focus, being enhanced with the internal focus of attention.
Collapse
|
28
|
Acute whole-body vibration increases reciprocal inhibition. Hum Mov Sci 2018; 60:191-201. [DOI: 10.1016/j.humov.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
|
29
|
Coletta NA, Mallette MM, Gabriel DA, Tyler CJ, Cheung SS. Core and skin temperature influences on the surface electromyographic responses to an isometric force and position task. PLoS One 2018; 13:e0195219. [PMID: 29596491 PMCID: PMC5875857 DOI: 10.1371/journal.pone.0195219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/19/2018] [Indexed: 11/25/2022] Open
Abstract
The large body of work demonstrating hyperthermic impairment of neuromuscular function has utilized maximal isometric contractions, but extrapolating these findings to whole-body exercise and submaximal, dynamic contractions may be problematic. We isolated and compared core and skin temperature influences on an isometric force task versus a position task requiring dynamic maintenance of joint angle. Surface electromyography (sEMG) was measured on the flexor carpi radialis at 60% of baseline maximal voluntary contraction while either pushing against a rigid restraint (force task) or while maintaining a constant wrist angle and supporting an equivalent inertial load (position task). Twenty participants performed each task at 0.5°C rectal temperature (Tre) intervals while being passively heated from 37.1±0.3°C to ≥1.5°C Tre and then cooled to 37.8±0.3°C, permitting separate analyses of core versus skin temperature influences. During a 3-s contraction, trend analysis revealed a quadratic trend that peaked during hyperthermia for root-mean-square (RMS) amplitude during the force task. In contrast, RMS amplitude during the position task remained stable with passive heating, then rapidly increased with the initial decrease in skin temperature at the onset of passive cooling (p = 0.010). Combined hot core and hot skin elicited shifts toward higher frequencies in the sEMG signal during the force task (p = 0.003), whereas inconsistent changes in the frequency spectra occurred for the position task. Based on the patterns of RMS amplitude in response to thermal stress, we conclude that core temperature was the primary thermal afferent influencing neuromuscular response during a submaximal force task, with minimal input from skin temperature. However, skin temperature was the primary thermal afferent during a position task with minimal core temperature influence. Therefore, temperature has a task-dependent impact on neuromuscular responses.
Collapse
Affiliation(s)
- Nico A. Coletta
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Matthew M. Mallette
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - David A. Gabriel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | | | - Stephen S. Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Angelova S, Ribagin S, Raikova R, Veneva I. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion – A comparison between healthy subjects and stroke survivors. J Electromyogr Kinesiol 2018; 38:7-16. [DOI: 10.1016/j.jelekin.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022] Open
|
31
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Jaafar H, Lajili H. Separate and combined effects of time of day and verbal instruction on knee extensor neuromuscular adjustments. Appl Physiol Nutr Metab 2018; 43:54-62. [DOI: 10.1139/apnm-2017-0343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We examined the effects of time of day and verbal instruction, separately and combined, on knee extensor neuromuscular adjustments, with special reference to rapid muscle force production capacity. Ten healthy male participants performed 4 experimental trials in counterbalanced order: morning “hard-and-fast” instruction, evening hard-and-fast instruction, morning “fast” instruction, and evening fast instruction. During each experimental trial, neuromuscular performance was assessed from the completion of 6 maximal isometric voluntary contractions (rest = 2 min) of the knee extensors with concomitant quadriceps surface electromyography recordings. For each contraction, we determined maximal voluntary force (Fmax), maximal rate of force development (RFDmax) and associated maximal electromechanical delay (EMDmax), and maximal rate of muscle activation (RMAmax). Globally, oral temperature (+2.2%), Fmax (+4.9%) and accompanying median frequency (+6.6%)/mean power frequency (+6.0%) as well as RFDmax (+13.5%) and RMAmax (+15.5%) were significantly higher in the evening than morning (p < 0.05). Conversely, evening in reference to morning values were lower for EMDmax (–4.3%, p < 0.05). Compared with a hard-and-fast instruction, RFDmax (+30.6%) and corresponding root mean square activity (+18.6%) were globally higher using a fast instruction (p < 0.05), irrespectively of the time of day. There was no significant interaction effect of time of day and verbal instruction on any parameter, except for EMDmax (p = 0.028). Despite diurnal variation in maximal or explosive force production of knee extensors and associated neuromuscular parameters, these adjustments occurred essentially independently of the verbal instruction provided.
Collapse
Affiliation(s)
- Hamdi Jaafar
- Institut du savoir Montfort – Recherche, Ottawa, 713 Chemin Montréal, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine, Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Hanene Lajili
- Centre de Rééducation et de Réadaptation Fonctionnelle La Châtaigneraie, Menucourt, France
| |
Collapse
|
33
|
Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:153-173. [PMID: 30454588 DOI: 10.1016/b978-0-444-63912-7.00010-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans have inherited complex neural circuits which drive behavioral, somatic, and autonomic thermoregulatory responses to defend their body temperature. While they are well adapted to dissipate heat in warm climates, they have a reduced capacity to preserve it in cold environments. Consequently, heat production is critical to defending their core temperature. As in other large mammals, skeletal muscles are the primary source of heat production recruited in cold-exposed humans. This is achieved voluntarily in the form of contractions from exercising muscles or involuntarily in the form of contractions from shivering muscles and the recruitment of nonshivering mechanisms. This review describes our current understanding of shivering and nonshivering thermogenesis in skeletal muscles, from the neural circuitry driving their recruitment to the metabolic substrates that fuel them. The presence of these heat-producing mechanisms can be measured in vivo by combining indirect respiratory calorimetry with electromyography or biomedical imaging modalities. Indeed, much of what is known regarding shivering in humans and other animal models stems from studies performed using these methods combined with in situ and in vivo neurologic techniques. More recent investigations have focused on understanding the metabolic processes that produce the heat from both contracting and noncontracting mechanisms. With the growing interest in the potential therapeutic benefits of shivering and nonshivering skeletal muscle to counter the effects of neuromuscular, cardiovascular, and metabolic diseases, we expect this field to continue its growth in the coming years.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada.
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Fuxjager MJ, Fusani L, Goller F, Trost L, Maat AT, Gahr M, Chiver I, Ligon RM, Chew J, Schlinger BA. Neuromuscular mechanisms of an elaborate wing display in the golden-collared manakin ( Manacus vitellinus). ACTA ACUST UNITED AC 2017; 220:4681-4688. [PMID: 29061685 DOI: 10.1242/jeb.167270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/18/2017] [Indexed: 01/26/2023]
Abstract
Many species perform elaborate physical displays to court mates and compete with rivals, but the biomechanical mechanisms underlying such behavior are poorly understood. We address this issue by studying the neuromuscular origins of display behavior in a small tropical passerine bird, the golden-collared manakin (Manacus vitellinus). Males of this species court females by dancing around the forest floor and rapidly snapping their wings together above their back. Using radio-telemetry, we collected electromyographic (EMG) recordings from the three main muscles that control avian forelimb movement, and found how these different muscles are activated to generate various aspects of display behavior. The muscle that raises the wing (supracoracoideus, SC) and the primary muscle that retracts the wing (scapulohumeralis caudalis, SH) were activated during the wing-snap, whereas the pectoralis (PEC), the main wing depressor, was not. SC activation began before wing elevation commenced, with further activation occurring gradually. By contrast, SH activation was swift, starting soon after wing elevation and peaking shortly after the snap. The intensity of this SH activation was comparable to that which occurs during flapping, whereas the SC activation was much lower. Thus, light activation of the SC likely helps position the wings above the back, so that quick, robust SH activation can drive these appendages together to generate the firecracker-like snap sonation. This is one of the first looks at the neuromuscular mechanisms that underlie the actuation of a dynamic courtship display, and it demonstrates that even complex, whole-body display movements can be studied with transmitter-aided EMG techniques.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.,Department of Cognitive Biology, University of Vienna, 1160 Vienna, Austria
| | - Franz Goller
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa Trost
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Andries Ter Maat
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Ioana Chiver
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - R Miller Ligon
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jennifer Chew
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolution, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
35
|
Khoshdel V, Akbarzadeh A, Naghavi N, Sharifnezhad A, Souzanchi-Kashani M. sEMG-based impedance control for lower-limb rehabilitation robot. INTEL SERV ROBOT 2017. [DOI: 10.1007/s11370-017-0239-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Naik GR, Al-Ani A, Gobbo M, Nguyen HT. Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective. Front Physiol 2017; 8:626. [PMID: 28894422 PMCID: PMC5581500 DOI: 10.3389/fphys.2017.00626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/11/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether electromyography (EMG) muscle activities around the knee differ during sit-to-stand (STS) and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2) participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM) and vastus lateralis (VL) that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG) data were acquired during STS and stand-to-sit-returning (STSR) tasks. The data was filtered using a fourth order Butterworth (band pass) filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF) and root mean square (RMS) features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values) indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS) in women.
Collapse
Affiliation(s)
- Ganesh R Naik
- Centre for Health Technologies, Faculty of Engineering and IT, University of Technology SydneySydney, NSW, Australia.,Biomedical Engineering and Neuroscience Research Group, The MARCS Institute for Brain, Behaviour and Development, Western Sydney UniversityKingswood, NSW, Australia
| | - Ahmed Al-Ani
- Centre for Health Technologies, Faculty of Engineering and IT, University of Technology SydneySydney, NSW, Australia
| | - Massimiliano Gobbo
- Department of Clinical and Experimental Sciences, University of BresciaBrescia, Italy
| | - Hung T Nguyen
- Centre for Health Technologies, Faculty of Engineering and IT, University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
37
|
Abstract
This study aimed to compare the muscle activity of lower limbs across typical table tennis strokes. Fourteen high-level players participated in this study in which five typical strokes (backhand top, forehand top, forehand spin, forehand smash, flick) were analysed. Surface electromyography activity (EMG) of eight muscles was recorded (gluteus maximus, biceps femoris, vastus medialis, vastus lateralis, rectus femoris, gastrocnemius medialis, gastrocnemius lateralis, soleus) and normalised to the maximal activity measured during squat jump or isometric maximal voluntary contractions. The forehand spin, the forehand top and the forehand smash exhibited significant higher EMG amplitude when compared with other strokes. Both biceps femoris and gluteus maximus were strongly activated during the smash, forehand spin and forehand top (from 62.8 to 91.7% of maximal EMG activity). Both vastii and rectus femoris were moderately to strongly activated during the forehand spin (from 50.4 to 62.2% of maximal EMG activity) whereas gastrocnemii and soleus exhibited the highest level of activity during the smash (from 67.1 to 92.1% of maximal EMG activity). Our study demonstrates that offensive strokes, such as smash or forehand top, exhibit higher levels of activity than other strokes.
Collapse
Affiliation(s)
- Yann Le Mansec
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - Sylvain Dorel
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - François Hug
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| | - Marc Jubeau
- a Laboratory Movement, Interactions, Performance, Faculty of Sport Sciences , University of Nantes , Nantes , France
| |
Collapse
|
38
|
Del Vecchio A, Negro F, Felici F, Farina D. Associations between motor unit action potential parameters and surface EMG features. J Appl Physiol (1985) 2017; 123:835-843. [PMID: 28751374 DOI: 10.1152/japplphysiol.00482.2017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDFMU), and amplitude (RMSMU) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT (R2 = 0.64 ± 0.14), whereas MDFMU and RMSMU showed a weaker relation with RT (R2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV (R2 = 0.71), with a strong association to ankle dorsiflexion force (R2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies.NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles.
Collapse
Affiliation(s)
- Alessandro Del Vecchio
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; and
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Kurobe K, Kousaka A, Ogita F, Matsumoto N. Metabolic responses to exercise on land and in water following glucose ingestion. Clin Physiol Funct Imaging 2016; 38:227-232. [PMID: 28025868 DOI: 10.1111/cpf.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Although aerobic exercise after a meal decreases postprandial blood glucose, the differences in glucose response between land and aquatic exercise are unclear. Thus, we examined the effect of different modes of exercise with same energy expenditure following glucose ingestion on carbohydrate metabolism. Ten healthy sedentary men (age, 22 ± 1 years) participated in this study. All subjects performed each of three exercise modes (cycling, walking and aquatic exercise) for 30 min after ingestion of a 75-g glucose solution with 1-2 weeks between trials. The exercise intensity was set at 40% of the maximum oxygen uptake that occurred during cycling. The velocity during walking and the target heart rate during aquatic exercise were predetermined in a pretest. The plasma glucose concentration at 30 min after exercise was significantly lower with aquatic exercise compared to that with cycling and walking (P<0·05). However, there were no significant differences among the three exercise modes in respiratory exchange ratio. On the other hand, serum free fatty acid concentration with aquatic exercise was significantly higher at 120 min after exercise compared with that after walking (P<0·05). These results suggest that aquatic exercise reduces postprandial blood glucose compared with both cycling and walking with the same energy expenditure. Aquatic exercise shows potential as an exercise prescription to prevent postprandial hyperglycaemia.
Collapse
Affiliation(s)
- Kazumichi Kurobe
- Faculty of Business, Sports Management Course, Hannan University, Matsubara, Japan
| | - Ayaka Kousaka
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Futoshi Ogita
- Department of Sport and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Naoyuki Matsumoto
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| |
Collapse
|
40
|
Teles FS, Pereira MC, Rocha-Júnior VDA, Carmo JCD, Andrade MMD. Parâmetros eletromiográficos em exercícios fatigantes realizados com diferentes tipos de resistência. FISIOTERAPIA E PESQUISA 2016. [DOI: 10.1590/1809-2950/15008423032016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Buscou-se investigar os parâmetros eletromiográficos da fadiga muscular durante exercício dinâmico realizado com resistência variável (elástica) e resistência fixa (polia). Dez homens treinados participaram voluntariamente do estudo. Foram realizadas duas contrações voluntárias isométricas máximas (CVIM) de flexão do cotovelo com 5 segundos de duração cada e 2 minutos de intervalo entre as mesmas. Em seguida, os voluntários realizaram a flexão unilateral do cotovelo até a exaustão, utilizando resistência fixa e elástica com ritmo pré-estabelecido de 2 segundos para cada fase do movimento. A resistência constante foi realizada na polia a 30% da CVIM. Para a resistência elástica, o controle de carga era baseado na percepção subjetiva de esforço do participante. A ordem do exercício foi randomizada, e o sinal de eletromiografia do músculo bíceps braquial foi registrado durante as contrações. A partir do sinal eletromiográfico referente a cada execução de movimento, foram traçadas retas de regressão linear para as variáveis RMS e frequência de potência mediana (FPM). As inclinações das retas normalizadas pelo coeficiente linear das equações de regressão foram comparadas por meio do teste t pareado. Não foram observadas diferenças significativas entre os tipos de resistência (elástica e polia). Os parâmetros eletromiográficos de fadiga não foram diferentes durante o exercício de flexão do cotovelo realizado com resistência elástica e polia. A percepção de esforço durante o exercício com implemento elástico não influencia no padrão do sinal eletromiográfico (RMS e FPM).
Collapse
|
41
|
Anan M, Shinkoda K, Suzuki K, Yagi M, Kito N. Dynamic Frequency Analyses of Lower Extremity Muscles during Sit-To-Stand Motion for the Patients with Knee Osteoarthritis. PLoS One 2016; 11:e0147496. [PMID: 26807578 PMCID: PMC4726819 DOI: 10.1371/journal.pone.0147496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022] Open
Abstract
Objective Muscle activities during the sit-to-stand motion (STS) are characterized by coordinated movements between hip extensors and knee extensors. However, previous reports regarding the STS and lower extremity muscle activities have focused on some quantitative assessment, but little qualitative research. This study aimed to examine the muscle activities of the lower extremity both quantitatively and qualitatively. Methods Study participants included 13 patients with knee osteoarthritis (knee OA) and 11 age-matched asymptomatic controls. The task was STS from a chair with a height-adjustable seat. EMG activities were acquired using surface electromyogram. The root mean square signals normalized as a percentage of maximum voluntary isometric contraction values (RMS%MVC) and the mean power frequency (MPF) were calculated. Results During STS, knee OA patients had increased RMS%MVC of the vastus medialis and raised MPF of the rectus femoris before buttocks-off. Conclusion These findings suggest that STS of knee OA patients not only increased relative muscle activity of the vastus medialis, but also enlisted the rectus femoris in knee extension to improve muscle contraction force by activating more type II fibers to accomplish buttocks-off.
Collapse
Affiliation(s)
- Masaya Anan
- Department of Biomechanics, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
- Center for Advanced Practice and Research of Rehabilitation, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
- * E-mail:
| | - Koichi Shinkoda
- Department of Biomechanics, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
- Center for Advanced Practice and Research of Rehabilitation, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
| | | | - Masahide Yagi
- Midorii Orthopaedics Joint Reconstruction & Arthroscopy, Hiroshima-shi, Hiroshima, Japan
| | - Nobuhiro Kito
- Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
42
|
Yao B, Zhang X, Li S, Li X, Chen X, Klein CS, Zhou P. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles. Front Hum Neurosci 2015; 9:569. [PMID: 26557068 PMCID: PMC4615822 DOI: 10.3389/fnhum.2015.00569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.
Collapse
Affiliation(s)
- Bo Yao
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China ; Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xu Zhang
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xiaoyan Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA
| | - Xiang Chen
- Biomedical Engineering Program, University of Science and Technology of China Hefei, China
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center Guangzhou, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, and TIRR Memorial Hermann Research Center, Houston TX, USA ; Guangdong Work Injury Rehabilitation Center Guangzhou, China
| |
Collapse
|
43
|
Luger T, Bosch T, Hoozemans M, de Looze M, Veeger D. Task variation during simulated, repetitive, low-intensity work--influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures. ERGONOMICS 2015; 58:1851-1867. [PMID: 26046391 DOI: 10.1080/00140139.2015.1043356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulder muscle fatigue and discomfort; second, noticeable postural shoulder changes over time; third, if the association between task variation and EMG might be biased by postural changes. Outcome parameters were recorded using multichannel EMG, Optotrak and the Borg scale. Fourteen participants performed a one-hour repetitive Pegboard task in one continuous and two interrupted conditions with rest and a pick-and-place task, respectively. Manifestations of shoulder muscle fatigue and discomfort feelings were observed throughout the conditions but these were not significantly influenced by task variation. After correction for joint angles, the relation between task variation and EMG was significantly biased but significant effects of task variation remained absent. PRACTITIONER SUMMARY Comparing a one-hour continuous, repetitive Pegboard task with two interrupted conditions revealed no significant influences of task variation. We did observe that the relation between task variation and EMG was biased by posture and therefore advise taking account for posture when investigating manifestations of muscle fatigue in assembly tasks.
Collapse
Affiliation(s)
- Tessy Luger
- a MOVE Research Institute , Faculty of Human Movement Sciences, VU University Amsterdam , Amsterdam , The Netherlands
- b TNO , Leiden , The Netherlands
- c Body@Work, Research Centre of Physical Activity, Work and Health , TNO-VU/VUmc , Amsterdam , The Netherlands
| | - Tim Bosch
- b TNO , Leiden , The Netherlands
- c Body@Work, Research Centre of Physical Activity, Work and Health , TNO-VU/VUmc , Amsterdam , The Netherlands
| | - Marco Hoozemans
- a MOVE Research Institute , Faculty of Human Movement Sciences, VU University Amsterdam , Amsterdam , The Netherlands
| | - Michiel de Looze
- a MOVE Research Institute , Faculty of Human Movement Sciences, VU University Amsterdam , Amsterdam , The Netherlands
- b TNO , Leiden , The Netherlands
- c Body@Work, Research Centre of Physical Activity, Work and Health , TNO-VU/VUmc , Amsterdam , The Netherlands
| | - Dirkjan Veeger
- a MOVE Research Institute , Faculty of Human Movement Sciences, VU University Amsterdam , Amsterdam , The Netherlands
- d Laboratory for Biomechatronics and Biorobotics, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Delft , The Netherlands
| |
Collapse
|
44
|
Herda TJ, Zuniga JM, Ryan ED, Camic CL, Bergstrom HC, Smith DB, Weir JP, Cramer JT, Housh TJ. The influence of electromyographic recording methods and the innervation zone on the mean power frequency-torque relationships. J Electromyogr Kinesiol 2015; 25:423-30. [PMID: 25851079 DOI: 10.1016/j.jelekin.2015.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
This study examined the effects of electromyographic (EMG) recording methods and innervation zone (IZ) on the mean power frequency (MPF)-torque relationships. Nine subjects performed isometric ramp muscle actions of the leg extensors from 5% to 100% of maximal voluntary contraction with an eight channel linear electrode array over the IZ of the vastus lateralis. The slopes were calculated from the log-transformed monopolar and bipolar EMG MPF-torque relationships for each channel and subject and 95% confidence intervals (CI) were constructed around the slopes for each relationship and the composite of the slopes. Twenty-two to 55% of the subjects exhibited 95% CIs that did not include a slope of zero for the monopolar EMG MPF-torque relationships while 25-75% of the subjects exhibited 95% CIs that did not include a slope of zero for the bipolar EMG MPF-torque relationships. The composite of the slopes from the EMG MPF-torque relationships were not significantly different from zero for any method or channel, however, the method and IZ location slightly influenced the number of significant slopes on a subject-by-subject basis. The log-transform model indicated that EMG MPF-torque patterns were nonlinear regardless of recording method or distance from the IZ.
Collapse
Affiliation(s)
- Trent J Herda
- Department of Health, Sport, and Exercise Sciences, Neuromechanics Laboratory, University of Kansas, Lawrence, KS, USA.
| | - Jorge M Zuniga
- Exercise Science Department, Creighton University, Omaha, NE, USA
| | - Eric D Ryan
- Department of Exercise and Sport Science, Neuromuscular Research Laboratory, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Clayton L Camic
- Exercise and Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Doug B Smith
- Department of Health and Human Performance, Oklahoma State University, Stillwater, OK, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Sciences, Neuromechanics Laboratory, University of Kansas, Lawrence, KS, USA
| | - Joel T Cramer
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
45
|
Rodriguez-Falces J, Place N. Power spectral changes of the superimposed M wave during isometric voluntary contractions of increasing strength. Muscle Nerve 2015; 51:580-91. [PMID: 25111456 DOI: 10.1002/mus.24418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We examined the power spectral changes of the compound muscle action potential (M wave) evoked during isometric contractions of increasing strength. METHODS Surface electromyography (sEMG) of the vastus lateralis and medialis was recorded from 20 volunteers who performed 4-s step-wise isometric contractions of different intensities. A maximal M wave was elicited by a single stimulus to the femoral nerve and superimposed on the voluntary contractions. The spectral characteristics (Fmean and Fmedian) of sEMG and M-wave signals were calculated. RESULTS M-wave spectral indicators increased systematically with contraction intensity up to 60% MVC and then leveled off at higher forces. Over the 10-60% MVC range, the increase in spectral indicators was 3 times higher for M waves (36%) than for sEMG (12%). CONCLUSIONS The consistent increase in M-wave spectral characteristics with force is due to the fact that the number of motor units recruited by the superimposed supramaximal stimulus is approximately stable.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Universidad Pública de Navarra D.I.E.E., Department of Electrical and Electronical Engineering, Campus de Arrosadía s/n., 31006, Pamplona, Spain
| | | |
Collapse
|
46
|
Kohn TA, Noakes TD, Rae DE, Rubio JC, Santalla A, Nogales-Gadea G, Pinós T, Martín MA, Arenas J, Lucia A. McArdle disease does not affect skeletal muscle fibre type profiles in humans. Biol Open 2014; 3:1224-7. [PMID: 25432515 PMCID: PMC4265760 DOI: 10.1242/bio.20149548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients suffering from glycogen storage disease V (McArdle disease) were shown to have higher surface electrical activity in their skeletal muscles when exercising at the same intensity as their healthy counterparts, indicating more muscle fibre recruitment. To explain this phenomenon, this study investigated whether muscle fibre type is shifted towards a predominance in type I fibres as a consequence of the disease. Muscle biopsies from the Biceps brachii (BB) (n = 9) or Vastus lateralis (VL) (n = 8) were collected over a 13-year period from male and female patients diagnosed with McArdle disease, analysed for myosin heavy chain (MHC) isoform content using SDS-PAGE, and compared to healthy controls (BB: n = 3; VL: n = 10). All three isoforms were expressed and no difference in isoform expression in VL was found between the McArdle patients and healthy controls (MHC I: 33±19% vs. 43±7%; MHC IIa: 52±9% vs. 40±7%; MHC IIx: 15±18% vs. 17±9%). Similarly, the BB isoform content was also not different between the two groups (MHC I: 33±14% vs. 30±11%; MHC IIa: 46±17% vs. 39±5%; MHC IIx: 21±13% vs. 31±14%). In conclusion, fibre type distribution does not seem to explain the higher surface EMG in McArdle patients. Future studies need to investigate muscle fibre size and contractility of McArdle patients.
Collapse
Affiliation(s)
- Tertius Abraham Kohn
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, PO Box 115, Newlands 7725, South Africa
| | - Timothy David Noakes
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, PO Box 115, Newlands 7725, South Africa
| | - Dale Elizabeth Rae
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, PO Box 115, Newlands 7725, South Africa
| | - Juan Carlos Rubio
- Mitochondrial and Neuromuscular Diseases Laboratory, i+12 Research Institute, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Alfredo Santalla
- Department of Sport Science, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular Diseases Unit, Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Tomas Pinós
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, i+12 Research Institute, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Joaquin Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, i+12 Research Institute, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Diseases Laboratory, i+12 Research Institute, Hospital 12 de Octubre, 28041 Madrid, Spain European University of Madrid, 28670 Madrid, Spain
| |
Collapse
|
47
|
Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force. Eur J Appl Physiol 2014; 115:627-38. [DOI: 10.1007/s00421-014-3041-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
48
|
Electromyogram features during linear torque decrement and their changes with fatigue. Eur J Appl Physiol 2014; 114:2105-17. [DOI: 10.1007/s00421-014-2928-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
49
|
Li X, Shin H, Zhou P, Niu X, Liu J, Rymer WZ. Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors. Clin Neurophysiol 2014; 125:988-94. [PMID: 24268816 DOI: 10.1016/j.clinph.2013.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
|
50
|
Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise. J Sci Med Sport 2014; 17:306-11. [DOI: 10.1016/j.jsams.2013.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 11/20/2022]
|