1
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
DeLay K, Lin EZ, Koelmel JP, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Personal air pollutant exposure monitoring in South African children in the VHEMBE birth cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107524. [PMID: 36260950 PMCID: PMC9982749 DOI: 10.1016/j.envint.2022.107524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.
Collapse
Affiliation(s)
- Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Lu Y, Chen ZF, Chen YJ, Xu YZ, Chen Y, Dai X, Yao L, Qi Z, Cai Z. Distribution and risk assessment of hexachlorobutadiene, pentachloroanisole, and chlorobenzenes in sediment and wild fish from a region affected by industrial and agricultural activities in South China. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126002. [PMID: 33992918 DOI: 10.1016/j.jhazmat.2021.126002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorobutadiene, pentachloroanisole, and chlorobenzenes are regulated to control their release into the environment. There is little information regarding the distribution and risks of these pollutants in Chinese rivers. Therefore, we selected a prosperous agricultural and industrial region in South China as our study area and investigated the contamination profiles and risks of these pollutants in sediment and fish tissue samples. The results showed that, when compared with their levels in sediment, these lipophilic pollutants tended to accumulate in fish tissues in the following order: liver > brain > muscle. Some trichlorobenzene was found to be the result of reductive dechlorination of higher chlorinated benzenes. Hexachlorobutadiene and hexachlorobenzene could pose medium risks at certain sampling sites, but in general, almost no risk was found to the ecosystem. When the estimated daily human intakes of analytes through fish consumption were calculated for different age groups, the results suggested the analytes were unlikely to be a serious health concern for human. Our results could be used to update the existing data on the occurrence of these pollutants in the aquatic environment and to provide information for further pollution control by the local government.
Collapse
Affiliation(s)
- Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying-Zao Xu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaoxin Dai
- Ministry of Agriculture Key Laboratory of Recreational Fisheries Research, Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Aquatic Product (Guangzhou), Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
4
|
Chen YJ, Zhang Y, Chen Y, Lu Y, Li R, Dong C, Qi Z, Liu G, Chen ZF, Cai Z. GC-MS/MS analysis for source identification of emerging POPs in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110368. [PMID: 32114245 DOI: 10.1016/j.ecoenv.2020.110368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Emerging POPs have received increasing attention due to their potential persistence and toxicity, but thus far the report regarding the occurrence and distribution of these POPs in PM2.5 is limited. In this study, an extremely sensitive and reliable method, using ultrasonic solvent extraction and silica gel purification followed by gas chromatography coupled with electron ionization triple quadrupole mass spectrometry, was developed and used for the trace analysis of hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and its analogs chlorobenzenes (CBs) in PM2.5 from Taiyuan within a whole year. The limits of detection and limits of quantitation of analytes were 1.14 × 10-4‒2.74 × 10-4 pg m-3 and 3.80 × 10-4‒9.14 × 10-4 pg m-3. HCBD and PCA were detected at the mean concentrations of 3.69 and 1.84 pg m-3 in PM2.5, which is reported for the first time. Based on the results of statistical analysis, HCBD may come from the unintentional emission of manufacture or incineration of chlorinate-contained products but not coal combustion, while O3-induced photoreaction was the potential source of PCA in PM2.5. The temporal distributions of CBs in PM2.5 were closely related to coal-driven or agricultural activities. Accordingly, our study reveals the contamination profiles of emerging POPs in PM2.5 from Taiyuan.
Collapse
Affiliation(s)
- Yi-Jie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yanyan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yan Lu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Abstract
The important renal tumors that can be induced by exposure of rats to chemical carcinogens are renal tubule tumors (RTTs) derived from tubule epithelium; renal pelvic carcinoma derived from the urothelial lining of the pelvis; renal mesenchymal tumors (RMTs) derived from the interstitial connective tissue; and nephroblastoma derived from the metanephric primordia. However, almost all of our knowledge concerning mechanisms of renal carcinogenesis in the rodent pertains to the adenomas and carcinomas originating from renal tubule epithelium. Currently, nine mechanistic pathways can be identified in either the rat or mouse following chemical exposure. These include direct DNA reactivity, indirect DNA reactivity through free radical formation, multiphase bioactivation involving glutathione conjugation, mitotic disruption, sustained cell proliferation from direct cytotoxicity, sustained cell proliferation by disruption of a physiologic process (alpha 2u-globulin nephropathy), exaggerated pharmacologic response, species-dominant metabolic pathway, and chemical exacerbation of chronic progressive nephropathy. Spontaneous occurrence of RTTs in the rat will be included since one example is a confounder for interpreting kidney tumor results in chemical carcinogenicity studies in rats.
Collapse
|
6
|
Sun J, Pan L, Zhan Y, Zhu L. Spatial distributions of hexachlorobutadiene in agricultural soils from the Yangtze River Delta region of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3378-3385. [PMID: 29151187 DOI: 10.1007/s11356-017-0707-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Hexachlorobutadiene (HCBD) is one of the persistent organic pollutants (POPs) listed by the Stockholm Convention and poses potential risks to human health and ecosystems. To reveal the regional-scale pollution status of HCBD in agricultural soils from fast-developing areas, an extensive investigation was conducted in the core Yangtze River Delta (YRD), China. The detectable concentrations of HCBD in 241 soil samples ranged from 0.07 to 8.47 ng g-1 dry weight, with an average value of 0.32 ng g-1 and a detection rate of 59.3%. Industrial emissions and intensive agricultural activities were the potential source of HCBD. The concentrations of HCBD were highly associated with the soil physicochemical properties such as organic matter contents. Higher concentrations of HCBD were found in paddy fields than other land-use types. The concentrations of HCBD were much lower than those of organochlorine pesticides and polychlorinated biphenyls. Significant positive correlations were found between HCBD and most organochlorine pesticides. HCBD was not found in ten vegetable samples due to its low concentration and detection rate. A positive relationship was observed between the level of HCBD and the biomass of fungi, indicating that the fungi in soils might be influenced by the existence of HCBD. The potential risks of HCBD to ecosystems and health of inhabitants were estimated to be negligible. The finding from this study provides an important basis for soil quality assessment and risk management of HCBD in China.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang, Hangzhou, 310058, China
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Sadeghnia HR, Yousefsani BS, Rashidfar M, Boroushaki MT, Asadpour E, Ghorbani A. Protective effect of rutin on hexachlorobutadiene-induced nephrotoxicity. Ren Fail 2013; 35:1151-5. [DOI: 10.3109/0886022x.2013.815546] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Maguire DP, Turton JA, Scudamore CL, Swain AJ, McClure FJ, Smyth R, Pereira IB, Munday MR, York MJ. Correlation of histopathology, urinary biomarkers, and gene expression responses following hexachloro-1:3-butadiene-induced acute nephrotoxicity in male Hanover Wistar rats: a 28-day time course study. Toxicol Pathol 2012; 41:779-94. [PMID: 23136149 DOI: 10.1177/0192623312464306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hexachloro-1:3-butadiene (HCBD) causes segment-specific injury to the proximal renal tubule. A time course study of traditional and more recently proposed urinary biomarkers was performed in male Hanover Wistar rats receiving a single intraperitoneal (ip) injection of 45 mg/kg HCBD. Animals were killed on days 1, 2, 3, 4, 5, 6, 7, 10, 14, and 28 postdosing and the temporal response of renal biomarkers was characterized using kidney histopathology, urinary and serum biochemistry, and gene expression. Histopathologic evidence of tubular degeneration was seen from day 1 until day 3 postdosing and correlated with increased urinary levels of α-glutathione S-transferase (α-GST), albumin, glucose, and kidney injury molecule-1 (KIM-1), and increased gene expression of KIM-1, NAD(P)H dehydrogenase, quinone 1, and heme oxygenase (decycling) 1. Histopathologic evidence of tubular regeneration was seen from day 2 postdosing and correlated with raised levels of urinary KIM-1 and osteopontin and increased gene expression of KIM-1 and annexin A7. Traditional renal biomarkers generally demonstrated low sensitivity. It is concluded that in rat proximal tubular injury, measurement of a range of renal biomarkers, in conjunction with gene expression analysis, provides an understanding of the extent of degenerative changes induced in the kidney and the process of regeneration.
Collapse
Affiliation(s)
- David P Maguire
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Trevisan A, Chiara F, Mongillo M, Quintieri L, Cristofori P. Sex-related differences in renal toxicodynamics in rodents. Expert Opin Drug Metab Toxicol 2012; 8:1173-88. [PMID: 22769852 DOI: 10.1517/17425255.2012.698262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION An issue yet to be addressed, in the investigation of the xenobiotic toxicity, is a detailed characterization of the sex differences in toxicological responses. The 'sex issue' is particularly significant in nephrotoxicology as the kidney is a relevant target organ for xenobiotics and few studies have approached this subject in the past. There is a strong need to improve our understanding regarding the influence of sex in toxicology, given their increased requirement to establish the limits of exposure to chemicals in the environment and at work. AREAS COVERED In this review, the authors provide the reader with the current knowledge of sex differences in kidney toxicity for rats and mice. To make the review easier to consult, these studies have been organized according to the class of xenobiotic. EXPERT OPINION From the analysis of the present knowledge emerges a dramatic need for information on sex differences in xenobiotics toxicity. Although animals are reasonably good predictors of adverse renal effects in patients, there is need to identify alternative methods (e.g. in vitro/ex vivo) to better study sex differences in organ toxicity.
Collapse
Affiliation(s)
- Andrea Trevisan
- University of Padova, Department of Molecular Medicine, Padova, Italy.
| | | | | | | | | |
Collapse
|
10
|
Swain A, Turton J, Scudamore C, Maguire D, Pereira I, Freitas S, Smyth R, Munday M, Stamp C, Gandhi M, Sondh S, Ashall H, Francis I, Woodfine J, Bowles J, York M. Nephrotoxicity of hexachloro-1:3-butadiene in the male Hanover Wistar rat; correlation of minimal histopathological changes with biomarkers of renal injury. J Appl Toxicol 2011; 32:417-28. [DOI: 10.1002/jat.1727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Aubrey Swain
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - John Turton
- Prostate Cancer Research Centre, Division of Surgery and Interventional Science; University College London; 3rd Floor Research Laboratories, 67 Riding House Street; London; W1W 7EJ; UK
| | - Cheryl Scudamore
- Department of Pathology and Infectious Diseases; Royal Veterinary College; Hawkshead Lane, North Mymms, Hatfield, Hertfordshire; AL9 7TA; UK
| | - David Maguire
- Department of Pathology and Infectious Diseases; Royal Veterinary College; Hawkshead Lane, North Mymms, Hatfield, Hertfordshire; AL9 7TA; UK
| | - Ines Pereira
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy; University of London; 29/39 Brunswick Square; London; WC1N 1AX; UK
| | - Sofia Freitas
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy; University of London; 29/39 Brunswick Square; London; WC1N 1AX; UK
| | - Rosemary Smyth
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy; University of London; 29/39 Brunswick Square; London; WC1N 1AX; UK
| | - Michael Munday
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy; University of London; 29/39 Brunswick Square; London; WC1N 1AX; UK
| | - Clare Stamp
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Mitul Gandhi
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Surjit Sondh
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Holly Ashall
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Ian Francis
- Histotechnology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Jennifer Woodfine
- Histotechnology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - John Bowles
- Histotechnology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| | - Malcolm York
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road, Ware, Hertfordshire; SG12 0DP; UK
| |
Collapse
|
11
|
Bouroshaki MT, Sadeghnia HR, Banihasan M, Yavari S. Protective effect of pomegranate seed oil on hexachlorobutadiene-induced nephrotoxicity in rat kidneys. Ren Fail 2010; 32:612-7. [DOI: 10.3109/08860221003778056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Swain A, Turton J, Scudamore CL, Pereira I, Viswanathan N, Smyth R, Munday M, McClure F, Gandhi M, Sondh S, York M. Urinary biomarkers in hexachloro-1:3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation ofα-glutathioneS-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression. J Appl Toxicol 2010; 31:366-77. [DOI: 10.1002/jat.1624] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aubrey Swain
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| | - John Turton
- Prostate Cancer Research Centre; Division of Surgery and Interventional Science; University College London; 3rd Floor Research Laboratories, 67 Riding House Street London W1W 7EJ UK
| | - Cheryl L. Scudamore
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| | - Ines Pereira
- Department of Pharmaceutical and Biological Chemistry; The School of Pharmacy; University of London; 29/39 Brunswick Square London WC1N 1AX UK
| | - Neeti Viswanathan
- Department of Pharmaceutical and Biological Chemistry; The School of Pharmacy; University of London; 29/39 Brunswick Square London WC1N 1AX UK
| | - Rosemary Smyth
- Department of Pharmaceutical and Biological Chemistry; The School of Pharmacy; University of London; 29/39 Brunswick Square London WC1N 1AX UK
| | - Michael Munday
- Department of Pharmaceutical and Biological Chemistry; The School of Pharmacy; University of London; 29/39 Brunswick Square London WC1N 1AX UK
| | - Fiona McClure
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| | - Mitul Gandhi
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| | - Surjit Sondh
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| | - Malcolm York
- Clinical Pathology; GlaxoSmithKline Research and Development; Park Road Ware Hertfordshire SG12 0DP UK
| |
Collapse
|
13
|
Trevisan A, Nicoletto G, Secondin L, Maso S. Short Communication: Urinary excretion of glutamine transaminase K as an early index of mercuric chloride-induced nephrotoxicity. Biomarkers 2008; 1:63-6. [DOI: 10.3109/13547509609079348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Morel G, Ban M, Bonnet P, Zissu D, Brondeau MT. Effect of beta-naphthoflavone and phenobarbital on the nephrotoxicity of chlorotrifluoroethylene and 1,1-dichloro-2,2-difluoroethylene in the rat. J Appl Toxicol 2005; 25:153-65. [PMID: 15744758 DOI: 10.1002/jat.1048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of cytochrome P450 activity in the nephrotoxicity of chlorotrifluoroethylene (CTFE) and 1,1-dichloro-2,2-difluoroethylene (DCDFE) was investigated in the male rat. Hepatic cytochrome P450 1A1 and principally P450 2B1/2 were induced by beta-naphthoflavone and phenobarbital, respectively. Nephrotoxicity was evaluated by investigating urine biochemical parameters, kidney histochemistry and histopathological modifications. Both CTFE and DCDFE induce severe nephrotoxicity in rats after 4 h of exposure to 200 and 100 ppm, respectively. Compared with controls, activity levels of gamma-glutamyltranspeptidase (gamma GT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and N-acetyl-beta-D-glucosaminidase (NAG) in 24-h urine were increased similarly, but urinary excretion of glucose, proteins and beta2-microglobulin (beta2-m) and serum urea and creatinine levels were increased. Histopathological and histochemical examinations of kidney sections of CTFE- and DCDFE-exposed rats revealed cellular necrosis and tubular lesions 24 h after exposure. Beta-naphthoflavone-pretreated rats were afforded some protection against the nephrotoxicity of CTFE and DCDFE. Phenobarbital did not modify DCDFE nephrotoxicity but afforded some protection against CTFE nephrotoxicity. In conclusion, CTFE and DCDFE are strong nephrotoxins. Cytochrome P450 1A1 is implicated in CTFE and DCDFE metabolism and one or several cytochromes induced by phenobarbital are implicated in CTFE metabolism. The P450 cytochromes involved in CTFE and DCDFE metabolism probably constitute detoxication metabolic pathways. The nephrotoxicity of CTFE and DCDFE is therefore subordinated to the cytochrome P450 activity involved in their metabolism.
Collapse
Affiliation(s)
- Georges Morel
- Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27, 54501 Vandoeuvre, France.
| | | | | | | | | |
Collapse
|
15
|
Lock EA, Hard GC. Chemically induced renal tubule tumors in the laboratory rat and mouse: review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic information. Crit Rev Toxicol 2004; 34:211-99. [PMID: 15239388 DOI: 10.1080/10408440490265210] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The incidence of renal tubule carcinogenesis in male and female rats or mice with 69 chemicals from the 513 bioassays conducted to date by the NCI/NTP has been collated, the chemicals categorized, and the relationship between carcinogenesis and renal tubule hyperplasia and exacerbation of the spontaneous, age-related rodent disease chronic progressive nephropathy (CPN) examined. Where information on mechanism or mode of action exists, the chemicals have been categorized based on their ability to directly or indirectly interact with renal DNA, or on their activity via epigenetic pathways involving either direct or indirect cytotoxicity with regenerative hyperplasia, or exacerbation of CPN. Nine chemicals were identified as directly interacting with DNA, with six of these producing renal tubule tumors at high incidence in rats of both sexes, and in some cases also in mice. Ochratoxin A was the most potent compound in this group, producing a high tumor incidence at very low doses, often with metastasis. Three chemicals were discussed in the context of indirect DNA damage mediated by an oxidative free radical mechanism, one of these being from the NTP database. A third category included four chemicals that had the potential to cause DNA damage following conjugation with glutathione and subsequent enzymatic activation to a reactive species, usually a thiol-containing entity. Two chemicals were allocated into the category involving a direct cytotoxic action on the renal tubule followed by sustained compensatory cell proliferation, while nine were included in a group where the cell loss and sustained increase in renal tubule cell turnover were dependent on lysosomal accumulation of the male rat-specific protein, alpha2mu-globulin. In a sixth category, morphologic evidence on two chemicals indicated that the renal tumors were a consequence of exacerbated CPN. For the remaining chemicals, there were no pertinent data enabling assignment to a mechanistic category. Accordingly, these chemicals, acting through an as yet unknown mechanism, were grouped as either being associated with an enhancement of CPN (category 7, 16 chemicals), or not associated with enhanced CPN (category 8, 4 chemicals). A ninth category dealt with 11 chemicals that were regarded as producing increases in renal tubule tumors that did not reach statistical significance. A 10th category discussed 6 chemicals that induced renal tumors in mice but not in rats, plus 8 chemicals that produced a low incidence of renal tubule tumors in mice that did not reach statistical significance. As more mechanistic data are generated, some chemicals will inevitably be placed in different groups, particularly those from categories 7 and 8. A large number of chemicals in the series exacerbated CPN, but those in category 7 especially may be candidates for inclusion in category 6 when further information is gleaned from the relevant NTP studies. Also, new data on specific chemicals will probably expand category 5 as cytotoxicity and cell regeneration are identified as obligatory steps in renal carcinogenesis in more cases. Additional confirmatory outcomes arising from this review are that metastases from renal tubule tumors, while encountered with chemicals causing DNA damage, are rare with those acting through an epigenetic pathway, with the exception being fumonisin B1; that male rats and mice are generally more susceptible than female rats and mice to chemical induction of renal tubule tumors; and that a background of atypical tubule hyperplasia is a useful indicator reflecting a chemically associated renal tubule tumor response. With respect to renal tubule tumors and human risk assessment, chemicals in categories 1 and 2, and possibly 3, would currently be judged by linear default methods; chemicals in category 4 (and probably some in category 3) as exhibiting a threshold of activity warranting the benchmark approach; and those in categories 5 and 6 as representing mechanisms that have no relevance for extrapolation to humans.
Collapse
Affiliation(s)
- Edward A Lock
- Syngenta Central Toxicology Laboratory, Macclesfield, Cheshire, United Kingdom.
| | | |
Collapse
|
16
|
Boroushaki MT. Development of resistance against hexachlorobutadiene in the proximal tubules of young male rat. Comp Biochem Physiol C Toxicol Pharmacol 2003; 136:367-75. [PMID: 15012908 DOI: 10.1016/j.cca.2003.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2003] [Revised: 10/25/2003] [Accepted: 10/27/2003] [Indexed: 11/29/2022]
Abstract
Hexachlorobutadiene (HCBD) is a potent nephrotoxin in rodents that can cause degeneration, necrosis and regeneration in renal tubular epithelial cells. Its toxicity is due to its conjugation by glutathione (GSH) to form glutathione S-conjugate, by the enzyme glutathione S-transferase and finally to the related cysteine-conjugate. This metabolite is then actively taken up by kidney and cleared in the renal tubular epithelial cells, rich in beta-lyase, to a reactive thiol derivative that covalently binds to the macromolecules. In this study, different groups of 28-day male Wistar albino (W/A) rats were dosed daily with 25 mg/kg HCBD for 2, 3, 4 and 7 days; control group dosed with corn oil. Data showed that in the 2- and 3-day treated groups there was substantial necrosis to the straight portion of the proximal tubules (pars recta or S3 segment), rich in glutamine transaminase K (GTK/beta-lyase). In the 4-day treated group, the renal proximal tubules had regenerated and showed a basophilic appearance. In animals treated for 7 days, it was observed that the kidney appeared to have returned to normal and had become resistant to further doses of HCBD. To define the time for the kidney to regain susceptibility to HCBD, 18- and 25-day studies with both low (25 mg/kg) and high (100 mg/kg) doses of HCBD (following two initial doses of 25 mg/kg) were performed. In the 18-day study, histopathological examination of the kidneys in animals of this group and also animals in the 25-day study, which received two further doses of HCBD, showed that the severity of kidney damage is much less than in the 2-day treated animals, a clear indication that the tubular cells were still resistant to the low dose of HCBD. Concentration of blood urea nitrogen, as a marker of kidney damage, in these two groups also confirmed the results. In animals re-exposed to the high dose of HCBD, data showed that the susceptibility to HCBD was starting to return.
Collapse
Affiliation(s)
- M T Boroushaki
- Department of Pharmacology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Green T, Lee R, Farrar D, Hill J. Assessing the health risks following environmental exposure to hexachlorobutadiene. Toxicol Lett 2003; 138:63-73. [PMID: 12559693 DOI: 10.1016/s0378-4274(02)00372-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hexachloro-1,3-butadiene (HCBD) has been reported to be toxic to the rat kidney in a 2 year study at doses higher than 0.2 mg/kg/day. The toxicity is known to be a consequence of the metabolism of HCBD by glutathione conjugation and the renal beta-lyase pathway. Neither toxicity data, nor data on the metabolism of HCBD, are available in humans. In the current work, the potential of HCBD to cause kidney damage in humans environmentally exposed to this chemical has been assessed quantitatively by comparing the key metabolic steps in rats and humans. To that end, the hepatic conjugation of HCBD with glutathione, the metabolism of the cysteine conjugate by renal beta-lyases and N-acetyltransferases, and the metabolism of the N-acetylcysteine conjugate by renal acylases has been compared in vitro in rat and human tissues. Rates for each metabolic step were lower in humans than in rats; 5-fold for glutathione conjugation, 3-fold for beta-lyase and 3.5-fold for N-acetyltransferase. Acylase activity could not be detected in human kidney cytosol. Use of these data in a physiologically based toxicokinetic model to quantify metabolism by the beta-lyase pathway demonstrated that metabolism in humans was an order of magnitude lower than that in rats. At the no effect level for kidney toxicity in the rat the concentration of beta-lyase metabolites was calculated by the model to be 137.7 mg/l. In humans the same concentration would be achieved following exposure to 1.41 ppm HCBD. This is in contrast to the figure of 0.6 ppb which is obtained when it is assumed that the risk is associated with the internal dose of HCBD itself rather than beta-lyase metabolites.
Collapse
Affiliation(s)
- Trevor Green
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK.
| | | | | | | |
Collapse
|
18
|
Abstract
The fish kidney provides a unique model for investigating renal injury, repair, and development. Like mammalian kidneys, fish kidneys have the remarkable ability to repair injured nephrons, designated renal regeneration. This response is marked by a recovery from acute renal failure by replacing the injured cells with new epithelial cells, restoring tubule integrity. In addition, fish have the ability to respond to renal injury by de novo nephron neogenesis. This response occurs in multiple fish species including goldfish, zebrafish, catfish, trout, tilapia, and the aglomerular toadfish. New nephrons develop in the weeks after the initial injury. This nephrogenic response can be induced in adult fish, providing a more abundant source of developing renal tissue compared with fetal mammalian kidneys. Investigating the roles played by different parts of the nephron during development and repair can be facilitated using fish models with differing renal anatomy, such as aglomerular fish. The fish nephron neogenesis model may also help to identify novel genes involved in nephrogenesis, information that could eventually be used to develop alternative renal replacement therapies.
Collapse
Affiliation(s)
- R Reimschuessel
- Office of Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
19
|
Saw S, Aw TC, Sinniah R. Urine laminin and kallikrein, markers of tubulointerstitial damage in experimental protein overload on pre-existing renal damage. Pathology 2001. [DOI: 10.1080/00313020125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Dekant W, Birner G, Werner M, Parker J. Glutathione conjugation of perchloroethene in subcellular fractions from rodent and human liver and kidney. Chem Biol Interact 1998; 116:31-43. [PMID: 9877199 DOI: 10.1016/s0009-2797(98)00077-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perchloroethene (Per) is a widely used industrial solvent and common environmental contaminant. In rats, long-term inhalation of Per is known to cause a small increase in the incidence of renal tubule cell tumors in males only; renal toxicity is seen in female rats and in both sexes of mice after prolonged Per exposure. The renal toxicity of Per is likely mediated by a glutathione-dependent bioactivation reaction. Glutathione S-transferase mediated formation of S-(1,2,2-trichlorovinyl)glutathione is the first step in a sequence of reactions finally resulting in the formation of reactive intermediates in the kidney. In this study, we compared the enzymatic rates of formation of S-(1,2,2-trichlorovinyl)glutathione in liver and kidney subcellular fractions from rats, mice, and from both sexes of humans (n = 11). In microsomal fractions from the liver and kidney of all three species, enzymatic formation of S-(1,2,2-trichlorovinyl)glutathione from Per could not be observed. S-(1,2,2-Trichlorovinyl)glutathione formation (the structure was confirmed by electrospray mass spectrometry) was observed in liver cytosol from both male and female rats and mice. However, the rates of S-(1,2,2-trichlorovinyl)glutathione formation in liver cytosol from male rats (84.5+/-12 pmol/mg per min) were approximately four times higher than from female rats (19.5+/-8 pmol/mg per min) and from both sexes of mice (27.9+/-6 and 26.0+/-4 pmol/mg per min). Low rates of S-(1,2,2-trichlorovinyl)glutathione formation were also seen in kidney cytosol from mice (12+/-6 pmol/mg per min), but not from rats. In human liver subcellular fractions, enzymatic formation of S-(1,2,2-trichlorovinyl)glutathione could not be detected. The human liver cytosolic fractions, however, exhibited glutathione S-transferase activity (as determined using 1-chloro-2,4-dinitrobenzene and hexachlorobutadiene as marker substrates) in the same order of magnitude as rat and mouse liver cytosol. In contrast to other marker activities for glutathione S-transferases, the ability of all human liver cytosol samples to catalyze the glutathione conjugation of 1,2-dichloro-4-nitrobenzene was three orders of magnitude lower compared to rat and mouse liver cytosol. 1,2-Dichloro-4-nitrobenzene conjugation was also four times higher in liver cytosol from male rats compared to female rats. The results suggest that the ability of the human liver to catalyze the formation of S-(1,2,2-trichlorovinyl)glutathione from Per is at least two orders of magnitude lower than that of rat liver, and that sex-specific differences in the extent of hepatic conjugation of Per with glutathione, which may be relevant for nephrotoxicity, occur in rats.
Collapse
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, Germany.
| | | | | | | |
Collapse
|
21
|
Holmes E, Nicholls AW, Lindon JC, Ramos S, Spraul M, Neidig P, Connor SC, Connelly J, Damment SJ, Haselden J, Nicholson JK. Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR IN BIOMEDICINE 1998; 11:235-244. [PMID: 9719578 DOI: 10.1002/(sici)1099-1492(199806/08)11:4/5<235::aid-nbm507>3.0.co;2-v] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pattern recognition approaches were developed and applied to the classification of 600 MHz 1H NMR spectra of urine from rats dosed with compounds that induced organ-specific damage in either the liver or kidney. Male rats were separated into groups (n = 5) and each treated with one of the following compounds; adriamycin, allyl alcohol, 2-bromoethanamine hydrobromide, hexachlorobutadiene, hydrazine, lead acetate, mercury II chloride, puromycin aminonucleoside, sodium chromate, thioacetamide, 1,1,2-trichloro-3,3,3-trifluoro-1-propene or dose vehicle. Urine samples were collected over a 7 day time-course and analysed using 600 MHz 1H NMR spectroscopy. Each NMR spectrum was data-reduced to provide 256 intensity-related descriptors of the spectra. Data corresponding to the periods 8-24 h, 24-32 h and 32-56 h post-dose were first analysed using principal components analysis (PCA). In addition, samples obtained 120-144 h following the administration of adriamycin and puromycin were included in the analysis in order to compensate for the late onset of glomerular toxicity. Having established that toxin-related clustering behaviour could be detected in the first three principal components (PCs), three-quarters of the data were used to construct a soft independent modelling of class analogy (SIMCA) model. The remainder of the data were used as a test set of the model. Only three out of 61 samples in the test set were misclassified. Finally as a further test of the model, data from the 1H NMR spectra of urine from rats that had been treated with uranyl nitrate were used. Successful prediction of the toxicity type of the compound was achieved based on NMR urinalysis data confirming the robust nature of the derived model.
Collapse
Affiliation(s)
- E Holmes
- Department of Chemistry, Birkbeck College, University of London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakagawa Y, Kitahori Y, Cho M, Konishi N, Tsumatani K, Ozono S, Okajima E, Hirao Y, Hiasa Y. Effect of hexachloro-1,3-butadiene on renal carcinogenesis in male rats pretreated with N-ethyl-N-hydroxyethylnitrosamine. Toxicol Pathol 1998; 26:361-6. [PMID: 9608641 DOI: 10.1177/019262339802600309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hexachloro-1,3-butadiene (HCBD) is a potent nephrotoxicant that selectively damages the straight portion (pars recta) of the proximal tubule in the rat. To determine its effects on carcinogenesis. HCBD was administered for 30 wk at a concentration of 0.1% by weight in basal diet to male Wistar rats previously given 0.1% N-ethyl-N-hydroxyethylnitrosamine (EHEN) in the drinking water for 2 wk. The combined treatment resulted in a significantly higher incidence of renal cell tumors than when EHEN was administered alone. This chronic exposure and a short course of a 0.2% HCBD diet for 3 wk caused marked increase in the numbers of bromodeoxyuridine-incorporating cells or proliferating cell nuclear antigen-positive cells in the outer stripe of the kidney. The ability of HCBD to promote EHEN-initiated renal tumorigenesis in rats thus appears to be associated intimately with linked nephropathy and subsequent cell proliferation.
Collapse
Affiliation(s)
- Y Nakagawa
- Second Department of Pathology, Nara Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ligia Delacruz Mercé Moret Cecilia Guastadisegni And Peter H Bach. Urinary markers of nephrotoxicity following administration of 2 bromoethanamine hydrobromide a comparison with hexachlorobutadiene. Biomarkers 1997; 2:169-74. [PMID: 23899177 DOI: 10.1080/135475097231706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg(-1) bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg(-1) bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.
Collapse
|
24
|
Kirby GM, Bach PH. Enhanced hexachloro-1:3-butadiene nephrotoxicity in rats with a preexisting adriamycin-induced nephrotic syndrome. Toxicol Pathol 1995; 23:303-12. [PMID: 7659954 DOI: 10.1177/019262339502300307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Renal damage was assessed by histopathology and urinalysis in male Wistar rats treated with either hexachloro-1:3-butadiene (HCBD; a single 170-mg/kg ip dose that caused proximal tubule necrosis), adriamycin (ADR; a single 5-mg/kg ip dose that caused minimal glomerular changes up to 35 days), or HCBD given 2 wk after ADR and compared with age-matched control rats for 21 days. Urinalysis values in ADR-treated rats showed minimal renal changes. HCBD significantly elevated urine volume (10-fold), protein (5-fold), glucose (175-fold), and brush border enzymes (10-600-fold), indicating severe proximal tubular damage, but most parameters returned to pretreatment levels 6 days after treatment. In ADR-pretreated rats subsequently given HCBD, both the urinary alkaline phosphatase and the ratio of kidney: body weight were significantly higher for longer periods. Histopathology demonstrated that the HCBD-induced proximal tubular lesion was confined to the outer stripe of the outer medulla. Advanced regeneration and repair was evident 21 days after HCBD treatment. In the ADR-pretreated rats the HCBD-induced lesion was more severe and affected the entire cortex and was characterized by marked tubular epithelial calcification, with little evidence of repair and tubular restitution 21 days after treatment. Enzyme histochemistry showed gamma-glutamyltranspeptidase localized to the proximal tubules. After HCBD treatment the enzyme staining was lost and subsequently returned in parallel with histological recovery up to 21 days. The distribution and intensity of gamma-glutamyltranspeptidase was unchanged in ADR-treated rats. The distribution and intensity of gamma-glutamyltranspeptidase in kidneys of ADR-pretreated rats given HCBD had not returned to normal by day 21. The results of this study indicate that pretreatment with ADR increases HCBD-induced nephrotoxic damage and decreases renal cortical repair capacity.
Collapse
Affiliation(s)
- G M Kirby
- Department of Biomedical Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
25
|
Anthony ML, Beddell CR, Lindon JC, Nicholson JK. Studies on the comparative toxicity of S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2-dichlorovinyl)-L-homocysteine and 1,1,2-trichloro-3,3,3-trifluoro-1-propene in the Fischer 344 rat. Arch Toxicol 1994; 69:99-110. [PMID: 7717868 DOI: 10.1007/s002040050144] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The renal tubular toxicity of various halogenated xenobiotics has been attributed to their enzymatic bioactivation to reactive intermediates by S-conjugation. A combination of high resolution proton nuclear magnetic resonance (1H NMR) spectroscopy of urine, renal histopathology and more routinely used clinical chemistry methods has been used to explore the acute toxic and biochemical effects of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and 1,1,2-trichloro-3,3,3-trifluoro-1-propene (TCTFP) up to 48 h following their administration to male Fischer 344 (F344) rats. In the absence of gross renal pathology, 1H NMR urinalysis revealed increased excretion of the tricarboxylic acid cycle intermediates citrate and succinate following DCVC administration. In contrast, both DCVHC and TCTFP produced functional defects in the S2 and S3 segments of the proximal tubule that were confirmed histologically. In these cases, 1H NMR urinalysis revealed increased excretion of glucose, L-lactate, acetate and 3-D-hydroxybutyrate (HB) as well as selective amino aciduria (alanine, valine, glutamate and glutamine). The significance of the proximal nephropathies induced by DCVHC and TCTFP is discussed in relation to biochemical observations on other xenobiotics that are toxic by similar mechanisms.
Collapse
Affiliation(s)
- M L Anthony
- Department of Chemistry, Birkbeck College, University of London, UK
| | | | | | | |
Collapse
|
26
|
Lock EA. The role of mechanistic studies in understanding target organ toxicity. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1994; 16:151-60. [PMID: 8192576 DOI: 10.1007/978-3-642-78640-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E A Lock
- Research Toxicology Section, Zeneca Central Toxicology Laboratory, Macclesfield, Cheshire, UK
| |
Collapse
|
27
|
|
28
|
Dekant W, Vamvakas S, Anders MW. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate beta-lyase pathway. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 27:115-62. [PMID: 8068551 DOI: 10.1016/s1054-3589(08)61031-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, Germany
| | | | | |
Collapse
|
29
|
Wallin A, Ormstad K, Midtvedt T. Limited role of the intestinal microflora in the nephrotoxicity of hexachloro-1,3-butadiene in rats. Toxicol Pathol 1993; 21:443-8. [PMID: 8115821 DOI: 10.1177/019262339302100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nephrotoxicity of hexachlorobutadiene has been investigated in germ-free rats and compared to conventional rats that have a normal intestinal microflora. Presynthesized mercapturate intermediates of hexachlorobutadiene, the glutathione and the cysteine S-conjugate, were also administered. Germ-free rats appeared to be slightly more susceptible to hexachlorobutadiene by judging the extent of morphological changes compared to conventional ones. A similar response was also observed after treatment with the glutathione and cysteine S-conjugates. However, no significant difference between germ-free and conventional animals was monitored in the extent of elevation of blood urea nitrogen and plasma creatinine after treatment with hexachlorobutadiene or the glutathione and the cysteine S-conjugates. The urinary excretion of marker enzymes was monitored and showed that gamma-glutamyl transferase was significantly more increased in the germ-free rats when treated with the cysteine S-conjugate. In addition, no difference in the rate of glutathione conjugation of hexachlorobutadiene was measured between the two groups. Although a tendency toward a protective effect by the presence of an intestinal microflora was observed, the role of the intestinal microflora in detoxifying hexachlorobutadiene seems to be of limited importance in rats.
Collapse
Affiliation(s)
- A Wallin
- Department of Toxicology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Abstract
In 1916 a relationship was postulated between the occurrence of aplastic anaemia in cattle and the soy bean meal that they had been fed, which had been extracted with trichloroethylene. The toxic compound was later identified as S-(1,2-dichlorovinyl)-L-cysteine (DCV-Cys). In addition to effects on the hemopoietic system it also produced nephrotoxicity in calves. In rats only renal tubular necrosis was found. Further research demonstrated that other halogenated hydrocarbons produced similar nephrotoxicity. The haloalkenyl cysteine-S-conjugates (Cys-S-conjugates) have extensively been studied; this has provided new insight into the biochemical processes that lead to nephrotoxicity. It has been shown that a combination of transport processes and specific metabolic pathways, resulting in reactive intermediates that bind to cellular macromolecules, makes the kidney vulnerable to the noxious effects of the haloalkenyl Cys-S-conjugates. The first part of this review gives a brief overview of the bioactivation of the haloalkenes; in the second part the present knowledge of the underlying mechanisms of cytotoxicity will be outlined.
Collapse
Affiliation(s)
- J F Nagelkerke
- Division of Toxicology, Center for Bio-Pharmaceutical Sciences, Sylvius Laboratory, University of Leiden, The Netherlands
| | | |
Collapse
|
31
|
Lau SS, Jones TW, Highet RJ, Hill BA, Monks TJ. Differences in the localization and extent of the renal proximal tubular necrosis caused by mercapturic acid and glutathione conjugates of 1,4-naphthoquinone and menadione. Toxicol Appl Pharmacol 1990; 104:334-50. [PMID: 2363184 DOI: 10.1016/0041-008x(90)90307-g] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously demonstrated that administration of various benzoquinol-glutathione (GSH) conjugates to rats causes renal proximal tubular necrosis and the initial lesion appears to lie within that portion of the S3 segment within the outer stripe of the outer medulla (OSOM). The toxicity may be a consequence of oxidation of the quinol conjugate to the quinone followed by covalent binding to tissue macromolecules. We have therefore synthesized the GSH and N-acetylcysteine conjugates of 2-methyl-1,4-naphthoquinone (menadione) and 1,4-naphthoquinone. The resulting conjugates have certain similarities to the benzoquinol-GSH conjugates, but the main difference is that reaction with the thiol yields a conjugate which remains in the quinone form. 2-Methyl-3-(N-acetylcystein-S-yl)-1,4-naphthoquinone caused a dose-dependent (50-200 mumol/kg) necrosis of the proximal tubular epithelium. The lesion involved the terminal portion of the S2 segment and the S3 segment within the medullary ray. At the lower doses, that portion of the S3 segment in the outer stripe of the outer medulla displayed no evidence of necrosis. In contrast, 2-methyl-3-(glutathion-S-yl)-1,4-naphthoquinone (200 mumol/kg) caused no apparent histological alterations to the kidney. 2-(Glutathion-S-yl)-1,4-naphthoquinone and 2,3-(diglutathion-S-yl)-1,4-naphthoquinone (200 mumol/kg) were relatively weak proximal tubular toxicants and the lesion involved the S3 segment at the junction of the medullary ray and the OSOM. A possible reason(s) for the striking difference in the toxicity of the N-acetylcysteine conjugate of menadione, as opposed to the lack of toxicity of the GSH conjugate of menadione, is discussed. The basis for the localization of the lesion caused by 2-methyl-3-(N-acetylcystein-S-yl)-1,4-naphthoquinone requires further study.
Collapse
Affiliation(s)
- S S Lau
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin
| | | | | | | | | |
Collapse
|
32
|
Lock EA, Schnellmann RG. The effect of haloalkene cysteine conjugates on rat renal glutathione reductase and lipoyl dehydrogenase activities. Toxicol Appl Pharmacol 1990; 104:180-90. [PMID: 2360207 DOI: 10.1016/0041-008x(90)90293-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An early event in the nephrotoxicity of haloalkene cysteine conjugates is their metabolism by cysteine conjugate beta-lyase to generate a reactive "thiol moiety" which binds to protein. This reactive metabolite(s) has been reported to cause mitochondrial dysfunction. We have examined the effect of three haloalkene cysteine conjugates on the activity of rat renal cortical cytosolic glutathione reductase and mitochondrial lipoyl dehydrogenase, two enzymes which have been reported to be inhibited by S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in the liver. N-Acetyl-S-(1,2,3,4,4-pentachloro-1,3-butadienyl)-L- cysteine (N-acetyl PCBC) produced a time- and concentration-dependent inhibition of glutathione reductase and kinetic studies showed that the inhibition was noncompetitive with a Ki of 215 microM. The enzyme activity from male rat kidney was more sensitive to N-acetyl PCBC than that from female rat kidney. Aminooxyacetic acid, an inhibitor of cysteine conjugate beta-lyase, and bis-p-nitrophenyl phosphate, an amidase inhibitor, blocked the effect of N-acetyl PCBC on glutathione reductase, indicating that metabolism by the cytosol is required to produce enzyme inhibition. S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC) and DCVC are also noncompetitive inhibitors of glutathione reductase but are less active than N-acetyl PCBC with Ki's of 2.6 and 6.2 mM for DCVC and TFEC, respectively, DCVC produced a time- and concentration-dependent inhibition of lipoyl dehydrogenase and kinetic studies showed that the inhibition was noncompetitive with a Ki of 762 microM. TFEC and PCBC also inhibit lipoyl dehydrogenase. Aminooxyacetic acid blocked the effect of DCVC, TFEC, and PCBC on lipoyl dehydrogenase, indicating that metabolism by the mitochondrial fraction is required to produce enzyme inhibition. Glutathione reductase activity in the renal cortex of male rats treated with 200 mg/kg hexachloro-1,3-butadiene (HCBD) was inhibited as early as 1 hour after dosing, before signs of marked morphological damage. The activity of lipoyl dehydrogenase was also reduced but was only statistically significant 8 hr after dosing when there was marked renal dysfunction. These findings indicate that the reactive thiol moiety formed by cysteine conjugate beta-lyase cleavage of PCBC can inhibit both glutathione reductase and lipoyl dehydrogenase activities in vivo following HCBD administration. We suggest that such inhibition is a general phenomenon, occurring with diverse and as yet unidentified renal proteins. The critical nature of mitochondrial function and the generation of reactive metabolites within this compartment make this organelle a prime target.
Collapse
Affiliation(s)
- E A Lock
- Biochemical Toxicology Section, ICI Central Toxicology Laboratory, Cheshire, United Kingdom
| | | |
Collapse
|
33
|
Abstract
Glutathione (GSH) conjugation reactions in the metabolism of hexachlorobutadiene (HCBD), in rats and mice, initiate a series of metabolic events resulting in the formation of reactive intermediates in the proximal tubular cells of the kidney. The GSH S-conjugate 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobutadiene (GPCB), which is formed by conjugation of HCBD with GSH in the liver, is not reactive and is eliminated from the liver in the bile or plasma, or both. GPCB may be translocated intact to the kidney and processed there by gamma-glutamyl transpeptidase and dipeptidases to the corresponding cysteine S-conjugate. Alternatively, gamma-glutamyl transpeptidase and dipeptidases present in epithelial cells of the bile duct and small intestine may catalyse the conversion of GPCB to cysteine S-conjugates. The kidney concentrates both GSH and cysteine S-conjugates and processes GSH conjugates to cysteine S-conjugates. A substantial fraction of HCBD cysteine S-conjugate thus concentrated in the kidney is metabolized by renal cysteine conjugate beta-lyase to reactive intermediates. The selective formation of reactive intermediates in the kidney most likely accounts for the organ-specific effects of HCBD. Alternatively, cysteine S-conjugates may be acetylated to yield excretable mercapturic acids.
Collapse
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, FRG
| | | | | |
Collapse
|
34
|
Finney JS, Bach PH, Bushell MC, Gregg NM, Taylor DG. The application of proton nuclear magnetic resonance imaging for the in vivo characterisation of chemically induced renal lesions in rats over a prolonged time study. Magn Reson Imaging 1990; 8:713-21. [PMID: 2266797 DOI: 10.1016/0730-725x(90)90006-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal cortical and medullary spin-lattice (T1) relaxation times were measured at various time points over a period of 56 days following the administration of a single i.p. injection of 100 mg/kg 2-bromoethanamine hydrobromide (BEA), 200 mg/kg hexachloro-1,3-butadiene (HCBD) or 100 mg/kg puromycin aminonucleoside (PAN) to male Wistar rats. Administration of a single injection of HCBD caused a dramatic, immediate rise in the cortical T1 values above control values, and these levels remained elevated until, by Day 28 postinjection the levels were back to control values. Administration of BEA also caused an elevation in cortical T1 values, but in this case these values remained above control values for the rest of the study. The administration of PAN did not produce any significant increases in cortical T1 values until 14 days postinjection. The elevated T1 values remained above control values for the rest of the study. These increases observed in cortical T1 values appeared to be mirrored by decreases in medullary T1 values. Increases in cortical T1 values were accompanied by visual changes in the NMR images and enlargement of the kidneys. The histological findings were consistent with the NMR data, confirming that morphologically the tissues did show a full recovery by Day 28 in the HCBD-treated animals. This was not the case following injection of both BEA and PAN, where necrosis was not reversible and there was no recovery of the tissues.
Collapse
Affiliation(s)
- J S Finney
- Department of Physics, University of Surrey, Guildford, UK
| | | | | | | | | |
Collapse
|
35
|
Vamvakas S, Kremling E, Dekant W. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation. Biochem Pharmacol 1989; 38:2297-304. [PMID: 2751695 DOI: 10.1016/0006-2952(89)90469-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1,1,2-Trichloro-3,3,3-trifluoro-1-propene (TCTFP) is structurally closely related to the stable and non-toxic tetrachloroethylene. However, in TCTFP, the trifluoromethyl group enhances chemical reactivity with nucleophiles. This fact suggested that TCTFP may be metabolized intensively by glutathione (GSH) conjugation and therefore, like hexachlorobutadiene, would be expected to be nephrotoxic. We have investigated the nephrotoxicity and metabolism of TCTFP. Administration of 20 and 40 mg/kg to male rats resulted in a large, dose-dependent increase in urinary excretion of gamma-glutamyl transpeptidase (GGT) indicative of proximal tubular damage. No increase in plasma transaminase concentrations indicative of liver damage was found. In rats, N-acetyl-S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine was a major urinary metabolite of TCTFP. TCTFP was transformed by microsomal and cytosolic GSH S-transferases from rat liver to S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) (identified by NMR and mass spectrometry). DCTFPG was toxic to rat renal cortex cells. Inhibition of GGT and cysteine conjugate beta-lyase blocked DCTFPG cytotoxicity. These results suggest the following TCTFP bioactivation: conjugation with GSH in the liver, catabolism of the GSH S-conjugate to the cysteine S-conjugate and cleavage of the cysteine S-conjugate by beta-lyase with formation of reactive intermediates in the kidney.
Collapse
Affiliation(s)
- S Vamvakas
- Institut für Toxikologie, Universität Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
36
|
Saillenfait AM, Bonnet P, Guenier JP, de Ceaurriz J. Inhalation teratology study on hexachloro-1,3-butadiene in rats. Toxicol Lett 1989; 47:235-40. [PMID: 2749768 DOI: 10.1016/0378-4274(89)90141-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pregnant rats were exposed to 0, 2, 5, 10 or 15 ppm hexachloro-1,3-butadiene (HCBD) 6 h/d during days 6-20 of gestation. Maternal reproduction and fetal parameters were evaluated on gestational day 21. A significant reduction in maternal weight gain and in fetal body weight occurred at 15 ppm. The incidences of external, visceral and skeletal alterations were not significantly increased in any of the HCBD-exposed groups. It is concluded that exposure of pregnant rats to HCBD by inhalation of concentrations high enough to cause maternal and slight fetal toxicity is neither embryotoxic nor teratogenic.
Collapse
Affiliation(s)
- A M Saillenfait
- Institut National de Recherche et de Sécurité, Vandoeuvre, France
| | | | | | | |
Collapse
|
37
|
MacFarlane M, Foster JR, Gibson GG, King LJ, Lock EA. Cysteine conjugate beta-lyase of rat kidney cytosol: characterization, immunocytochemical localization, and correlation with hexachlorobutadiene nephrotoxicity. Toxicol Appl Pharmacol 1989; 98:185-97. [PMID: 2711386 DOI: 10.1016/0041-008x(89)90224-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cysteine conjugate beta-lyase (beta-lyase) was purified to electrophoretic homogeneity from the kidney cytosol of male Wistar rats. The highly purified enzyme exhibited a monomeric molecular weight of 50,000 Da and was active in the alpha-beta elimination of cysteine conjugates including S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC), and S-(2-benzothiazolyl)-L-cysteine, particularly toward DCVC and TFEC. The purified enzyme also exhibited glutamine transaminase K activity with phenylalanine and alpha-keto-gamma-methiolbutyrate as substrates. An antibody was raised to the purified rat protein in sheep and the crude immune serum affinity purified, yielding a specific antibody that recognized only the beta-lyase protein in whole kidney homogenates. Immunocytochemical studies on rat kidney sections stained with the purified antibody revealed that the cytosolic beta-lyase enzyme was mainly localized in the pars recta of the proximal tubule in untreated rats. This localization is coincident with the site-specific kidney necrosis produced by hexachloro-1,3-butadiene (HCBD). These results indicate that the tissue localization of beta-lyase in the proximal tubule plays an important role in determining the specific nephrotoxicity produced by halogenated alkenes such as HCBD.
Collapse
Affiliation(s)
- M MacFarlane
- University of Surrey, Biochemistry Department, Guildford, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Abstract
A number of organohalogenated chemicals cause nephrotoxicity in experimental animals and man. Studies in animals have shown that metabolic activation of the chemical is required to produce toxicity. Currently, two major pathways of metabolism, mediated either via cytochrome P-450 or glutathione conjugation, have been implicated. Chloroform is discussed as an example of cytochrome P-450-mediated activation and dihaloethanes and hexachloro-1,3-butadiene as examples of glutathione conjugation followed by activation. Acute human exposure to certain organohalogenated compounds can sometimes result in proximal tubular injury. These intoxications usually occur after either accidental or deliberate ingestion and are rarely occupational. Chronic low-level exposure can occur in the work place, and several biological tests have been developed to detect chronic nephrotoxicity. A few studies have been undertaken of workers exposed to organohalogenated chemicals; these have provided no indication that exposure to these chemicals causes chronic renal damage.
Collapse
Affiliation(s)
- E A Lock
- Imperial Chemical Industries PLC, Central Toxicology Laboratory, Alderley Park, Nr Macclesfield, Cheshire, U.K
| |
Collapse
|
39
|
Oesch F, Wolf CR. Properties of the microsomal and cytosolic glutathione transferases involved in hexachloro-1:3-butadiene conjugation. Biochem Pharmacol 1989; 38:353-9. [PMID: 2914021 DOI: 10.1016/0006-2952(89)90049-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hexachloro-1,3-butadiene (HCBD) is a substrate for the hepatic microsomal glutathione transferases and is metabolised at higher rates by these enzymes than their cytosolic counterparts. Conjugation reactions catalysed by the microsomal and cytosolic transferases have been studied and characterized using this substrate and 1-chloro-2,4-dinitrobenzene (CDNB). In rat liver microsomes the Km values for HCBD and CDNB were 0.91 and 0.012 mM and in cytosol 0.51 and 0.10 mM respectively. Vmax values for HCBD were 1.39 and 0.35 nmol conjugate formed/min/mg protein for microsomes and cytosol respectively. In microsomal systems HCBD was a potent competitive inhibitor of the metabolism of CDNB with a Ki value of approximately 10 microM. However, CDNB did not inhibit HCBD metabolism significantly. These data suggest that more than one microsomal enzyme is involved in HCBD metabolism. The microsomal membrane could be solubilized without significant inhibition of HCBD activity; however, some detergents did inhibit the conjugation reaction. Activity was also lost on treatment of microsomal membranes with trypsin indicating the enzyme is localized on the cytoplasmic surface of the endoplasmic reticulum. Pretreatment of the rats with Aroclor 1254, 3-methylcholanthrene or phenobarbital did not change the microsomal conjugation of HCBD or CDNB with glutathione. Of seven species investigated, a human liver sample showed the highest ratio of microsomal to cytosolic glutathione transferase activity for HCBD (in microsomes 40-fold higher specific activity than in cytosol). Glutathione conjugation appears to play a critical role in the toxicity and carcinogenicity of some halogenated hydrocarbons. These data substantiate the potentially important role for the microsomal glutathione transferase in catalysing these reactions.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, Federal Republic of Germany
| | | |
Collapse
|
40
|
Rikans LE. Influence of aging on chemically induced hepatotoxicity: role of age-related changes in metabolism. Drug Metab Rev 1989; 20:87-110. [PMID: 2653764 DOI: 10.3109/03602538908994145] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects on hepatotoxicity of age-associated changes in drug metabolism are not always straightforward. In the case of allyl alcohol hepatotoxicity in male rats, there is a good relationship between increased metabolic activation by liver alcohol dehydrogenase and enhanced hepatotoxicity in old age. With regard to two other hepatotoxicants, some tentative conclusions about the role of metabolism can be drawn, but they must be tempered with caution due to gaps in the available information. Acetaminophen-induced hepatotoxicity is reduced in old age, and decreased formation of the toxic intermediate may be the reason. There is a prominent effect of aging on acetaminophen conjugation, a shift from sulfation to glucuronidation, but this change does not affect total clearance. The situation with carbon tetrachloride is difficult to interpret because the final outcome is unaltered hepatotoxicity in old age. Nevertheless, the available data suggest that an age-associated decrease in activation of carbon tetrachloride is counterbalanced by a loss in resistance to lipid peroxidation. These conclusions are summarized in Table 5. Again, it must be emphasized that all of these age-dependent changes in toxicity could be related to effects on other systems that are not necessarily involved in the metabolism of hepatotoxicants. Future research is needed to identify pathways of metabolic activation and detoxification in which age-dependent changes occur that result in significant changes in hepatotoxicity. The entire sequence of events from changes at the molecular level to their sequelae at the level of the cell, tissue and intact animal should be investigated, and the results should be confirmed in more than one mammalian model of aging. The aim would be to identify basic mechanisms that result in increased hazard for the aged liver from exposure to toxic compounds.
Collapse
Affiliation(s)
- L E Rikans
- Department of Pharmacology, University of Oklahoma College of Medicine, Oklahoma City 73190
| |
Collapse
|
41
|
Wolfgang G, Gandolfi A, Brendel K. Evaluation of organic nephrotoxins in rabbit renal cortical slices. Toxicol In Vitro 1989; 3:341-50. [DOI: 10.1016/0887-2333(89)90043-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1988] [Indexed: 10/27/2022]
|
42
|
Dekant W, Vamvakas S, Anders MW. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate beta-lyase. Drug Metab Rev 1989; 20:43-83. [PMID: 2653763 DOI: 10.3109/03602538908994144] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, F.R.G
| | | | | |
Collapse
|
43
|
Abstract
The role of gamma-glutamyl transpeptidase (gamma-GTP) in the nephrotoxicity of hexachloro-1,3-butadiene (HCBD) was studied using male Sprague-Dawley rats pretreated with AT-125 (Acivicin; L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). Inhibition of gamma-GTP by more than 95% did not affect urine output, glomerular filtration rate, or tubular reabsorption of filtrate, sodium, or glucose. Nephrotoxicity observed during the first 24 hr after HCBD was not decreased by inhibition of gamma-GTP and beyond 24 hr nephrotoxicity was increased, rather than decreased, in the AT-125-pretreated group. HCBD impairs glucose reabsorption and this was greatly increased in the AT-125-pretreated group, indicating that function of the initial segment of the nephron is impaired by HCBD. Since inhibition of gamma-GTP did not protect against HCBD nephrotoxicity, it is concluded that gamma-GTP inhibition does not limit the formation of metabolites(s) which cause HCBD nephrotoxicity. Therefore, distribution of gamma-glutamyltranspeptidase does not account for the selective nephrotoxicity of hexachloro-1,3-butadiene.
Collapse
Affiliation(s)
- M E Davis
- Department of Pharmacology and Toxicology, West Virginia University, Morgantown 26506
| |
Collapse
|
44
|
Dekant W, Schrenk D, Vamvakas S, Henschler D. Metabolism of hexachloro-1,3-butadiene in mice: in vivo and in vitro evidence for activation by glutathione conjugation. Xenobiotica 1988; 18:803-16. [PMID: 3176519 DOI: 10.3109/00498258809041719] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. The metabolism of 14C-hexachloro-1,3-butadiene (HCBD) was studied in mice and in subcellular fractions from mouse liver and kidney. 2. In the presence of glutathione (GSH), liver microsomes and cytosol transformed HCBD to S-(pentachlorobutadienyl)glutathione (PCBG). PCBG formation in subcellular fractions from mouse kidney was very limited. Oxidative metabolism of HCBD by cytochrome P-450 could not be demonstrated. 3. Cysteine conjugate beta-lyase was present in mitochondria and cytosol from mouse liver and kidney. 4. After an oral dose of 30 mg/kg 14C-HCBD, mice eliminated 67.5-76.7% of dose in faeces; urinary elimination accounted for 6.6-7.6%. 5. Metabolites of HCBD identified are: S-(pentachlorobutadienyl)glutathione in faeces; S-(pentachlorobutadienyl)-L-cysteine, N-acetyl-S-(pentachlorobutadienyl)-L-cysteine and 1,1,2,3-tetrachlorobutenoic acid in urine. 6. The results suggest that conjugation of HCBD with GSH in liver, followed by renal processing of the glutathione S-conjugates and beta-lyase-catalysed formation of reactive intermediates, accounts for the organ specific toxicity of HCBD in mice.
Collapse
Affiliation(s)
- W Dekant
- Institut für Toxikologie, Universität Würzburg, FR Germany
| | | | | | | |
Collapse
|
45
|
Blagbrough IS, Bycroft BW, Evans DC, Shaw PN. Inhibition of rat renal C-S lyase: assessment using kidney slice methodology. DRUG METABOLISM AND DRUG INTERACTIONS 1988; 6:303-16. [PMID: 3271643 DOI: 10.1515/dmdi.1988.6.3-4.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Renal C-S lyase enzymes are implicated in the biotransformation of xenobiotics into potentially toxic metabolites by a deviation from the normal pathways of glutathione conjugate processing. C-S lyase enzymes occur in gastro-intestinal bacteria, and in liver as well as in mammalian and avian kidney. The renal enzyme cleaves the carbon-sulphur bond in cysteine conjugates derived from halogenated olefins (e.g. tetrafluoroethene, trichloroethene, and hexachlorobutadiene). Substituted S-nitrophenyl conjugates, which are analogues of a substrate for the hepatic C-S lyase enzyme (S-2,4-dinitrophenyl-L-cysteine), are demonstrated to display significant inhibition of rat renal C-S lyase using kidney slice methodology. They are also shown to disrupt the tubular uptake of organic cations and anions.
Collapse
Affiliation(s)
- I S Blagbrough
- Department of Pharmaceutical Sciences, University of Nottingham, School of Pharmacy, University Park
| | | | | | | |
Collapse
|
46
|
Wallin A, Gerdes RG, Morgenstern R, Jones TW, Ormstad K. Features of microsomal and cytosolic glutathione conjugation of hexachlorobutadiene in rat liver. Chem Biol Interact 1988; 68:1-11. [PMID: 3203401 DOI: 10.1016/0009-2797(88)90002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatic GSH conjugation is the initial step in the mammalian biotransformation of hexachloro-1,3-butadiene (HCBD) and analogous haloalkenes. The present paper reports an in vitro investigation of the glutathione-dependent conversion of HCBD to water-soluble products, i.e. the enzyme-catalyzed conjugation of HCBD with GSH. The method employed avoids artifacts due to the volatility, low solubility and hydrophobic nature of the chloro-carbon substrate. In order to assess the relative importance of membrane-bound and cytosolic glutathione S-transferase in the conjugation process, microsomal and cytosolic fractions from adult rat liver were tested separately for their ability to promote water solubilisation of the substrate. In addition, microsomal purified and liposomally reconstituted glutathione S-transferase, were tested. The reaction exhibited Michaelis-Menten kinetics, and conjugation rates were linear for at least 20 min. The hepatic microsomal fraction metabolized HCBD 116 times faster than the cytosolic fraction when substrate saturated. Both mono- and bis-substituted conjugates were formed by microsomal as well as by the cytosolic fraction. Treatment of animals with inducers and the use of specific inhibitors indicated absence of cytochrome P-450 involvement in the formation of water soluble HCBD metabolites and supported the view that microsomal glutathione S-transferase is more important in catalyzing GSH conjugation of this haloalkene than the cytosolic forms of transferases.
Collapse
Affiliation(s)
- A Wallin
- Department of Forensic Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Schrenk D, Dekant W, Wünsch P, Henschler D. Role of metabolic activation in the toxicity of S-(pentachlorobutadienyl)glutathione and in the isolated perfused rat kidney. Toxicol In Vitro 1988; 2:283-90. [DOI: 10.1016/0887-2333(88)90047-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1987] [Indexed: 10/27/2022]
|
48
|
Lock EA. Studies on the mechanism of nephrotoxicity and nephrocarcinogenicity of halogenated alkenes. Crit Rev Toxicol 1988; 19:23-42. [PMID: 3056657 DOI: 10.3109/10408448809040816] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is now a considerable weight of evidence from studies in a number of different laboratories with different haloalkenes to suggest that these compounds undergo conjugation with glutathione followed by degradation of the S-conjugate (Figure 1) to produce cytotoxic, and in some cases mutagenic, metabolites. These effects are dependent upon the sequential metabolism by gamma-glutamyl transferase and dipeptidases to produce the cysteine conjugates, and the presence of renal transport systems which concentrate the chemical in renal cells. These conjugates then appear to undergo further metabolism to a reactive thiol by the renal enzyme cysteine-conjugate beta-lyase, a process which can be blocked by inhibiting the enzyme with AOAA. Renal beta-lyase is present in both the cytosol and mitochondrial fractions, but toxicity studies in isolated cells and mitochondria indicate that the primary mode of action of these compounds is the inhibition of mitochondrial respiration, suggesting that the mitochondrial beta-lyase may be more important than the cytosolic enzyme in cysteine S-conjugate bioactivation. In addition to the renal cell injury caused by the presumed reactive thiol metabolite, reaction with DNA also occurs as the chlorinated, but not fluorinated, analogs are mutagenic, and in the case of HCBD, carcinogenic. Thus the target organ, cellular and subcellular specificity of haloalkene-S-conjugates, is due to the presence of bioactivating enzymes and the susceptibility of certain biochemical processes. The precise relationship between (1) the mitochondrial effects and cytotoxicity and (2) the interaction of the chemical with DNA and its mutagenicity require more precise understanding in order to elucidate the mechanism of S-conjugate-induced cell death and carcinogenicity. The routes and rates of metabolism of some of these compounds, with respect to glutathione conjugation vs. oxidative metabolism, in both experimental animals and man are required to help assess the risk associated with this class of chemicals.
Collapse
Affiliation(s)
- E A Lock
- Department of Biochemical Toxicology, Imperial Chemical Industries PLC, Macclesfield, Cheshire, United Kingdom
| |
Collapse
|
49
|
Wallin A, Jones TW, Vercesi AE, Cotgreave I, Ormstad K, Orrenius S. Toxicity of S-pentachlorobutadienyl-L-cysteine studied with isolated rat renal cortical mitochondria. Arch Biochem Biophys 1987; 258:365-72. [PMID: 3674880 DOI: 10.1016/0003-9861(87)90357-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The subcellular mechanism of alkenyl halide S-conjugate-induced nephrotoxicity was studied in mitochondria isolated from rat kidney cortex in vitro using the cysteine conjugate of hexachloro-1,3-butadiene, i.e., S-pentachlorobutadienyl-L-cysteine (PCBC) as a model substrate. Respiring mitochondria exposed to various concentrations of PCBC exhibited a dose-dependent loss of ability to retain calcium. This phenomenon was associated with a sudden collapse of the mitochondrial membrane potential. PCBC caused a slow nonenzymatic depletion of mitochondrial glutathione. This was not due to oxidation or formation of mixed disulfides, and was efficiently counteracted by preincubation with aminooxyacetic acid, an inhibitor of cysteine-conjugate beta-lyase activity. PCBC inhibited state 3 respiration in the presence of succinate as substrate, which indicates that the activity of succinate dehydrogenase was affected. Thus, the present data confirm that impairment of mitochondrial function is a feature of nephrotoxicity mediated by alkenyl halide S-conjugates. We suggest a pathway involving interaction of beta-lyase-dependent reactive metabolite with the mitochondrial inner membrane, loss of membrane potential, disturbance of Ca2+ homeostasis, and subsequent respiratory insufficiency as a mechanism for renal tubular cytotoxicity.
Collapse
Affiliation(s)
- A Wallin
- Department of Forensic Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Schnellmann RG, Lock EA, Mandel LJ. A mechanism of S-(1,2,3,4,4-pentachloro-1,3-butadienyl)-L-cysteine toxicity to rabbit renal proximal tubules. Toxicol Appl Pharmacol 1987; 90:513-21. [PMID: 3660416 DOI: 10.1016/0041-008x(87)90143-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
S-(1,2,3,4,4-Pentachloro-1,3-butadienyl)-L-cysteine (PCBC) has been identified as the penultimate compound responsible for hexachlorobutadiene-induced nephrotoxicity. The primary goal of these studies was to determine the mechanism of PCBC-induced toxicity in rabbit renal proximal tubules by examining the early changes in tubular physiology. PCBC (20-500 microM) induced a specific sequence of toxic events. Following 15 min of exposure, 200 microM PCBC increased basal (25%) and ouabain-insensitive (78%) respiration. This was followed by a decrease in basal (46%), nystatin-stimulated (54%), and ouabain-insensitive (21%) respiration and a decrease in glutathione content (79%). Finally, there was a decrease in cell viability as measured by a decrease in LDH retention at 60 min. Direct probing of mitochondrial function revealed that the initial increase in respiration resulted from the uncoupling of oxidative phosphorylation, while the late changes in respiration appeared to result from gross mitochondrial damage characterized by inhibited state 3 respiration, inhibited cytochrome c-cytochrome oxidase, and inhibited electron transport. Studies utilizing tubules with decreased glutathione content revealed that glutathione plays little if any role in the early events of PCBC-induced toxicity. These results suggest that PCBC-induced mitochondrial dysfunction may initiate the renal proximal tubule injury.
Collapse
Affiliation(s)
- R G Schnellmann
- Department of Pharmacology, College of Veterinary Medicine, University of Georgia, Athens 30602
| | | | | |
Collapse
|