1
|
Datta R, Sivanand S, Lau AN, Florek LV, Barbeau AM, Wyckoff J, Skala MC, Vander Heiden MG. Interactions with stromal cells promote a more oxidized cancer cell redox state in pancreatic tumors. SCIENCE ADVANCES 2022; 8:eabg6383. [PMID: 35061540 PMCID: PMC8782446 DOI: 10.1126/sciadv.abg6383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/29/2021] [Indexed: 05/27/2023]
Abstract
Access to electron acceptors supports oxidized biomass synthesis and can be limiting for cancer cell proliferation, but how cancer cells overcome this limitation in tumors is incompletely understood. Nontransformed cells in tumors can help cancer cells overcome metabolic limitations, particularly in pancreatic cancer, where pancreatic stellate cells (PSCs) promote cancer cell proliferation and tumor growth. However, whether PSCs affect the redox state of cancer cells is not known. By taking advantage of the endogenous fluorescence properties of reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide cofactors we use optical imaging to assess the redox state of pancreatic cancer cells and PSCs and find that direct interactions between PSCs and cancer cells promote a more oxidized state in cancer cells. This suggests that metabolic interaction between cancer cells and PSCs is a mechanism to overcome the redox limitations of cell proliferation in pancreatic cancer.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Sharanya Sivanand
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allison N. Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Anna M. Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey Wyckoff
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53715, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
2
|
Characterization of Transplasma Membrane Electron Transport Chain in Wild and Drug-Resistant Leishmania donovani Promastigote and Amastigote. Acta Parasitol 2019; 64:710-719. [PMID: 30941668 DOI: 10.2478/s11686-019-00050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Leishmania donovani (L. donovani) is one of the parasites that cause leishmaniasis. The mechanisms by which L. donovani fights against adverse environment and becomes resistant to drugs are not well understood yet. OBJECTIVE The present study was designed to evaluate the effects of different regulators on the modulation of Transplasma Membrane Electron Transport (transPMET) systems of susceptible and resistant L. donovani cells. MATERIALS AND METHODS Effects of UV, different buffers, and electron transport inhibitors and stimulators on the reduction of α-lipoic acid (ALA), 1,2-naphthoquinone-4-sulphonic acid (NQSA) and ferricyanide were determined. RESULTS AND DISCUSSION ALA reductions were inhibited in susceptible, sodium antimony gluconate (SAG)-resistant and paromomycin (PMM)-resistant AG83 amastigote cells, and stimulated in susceptible and SAG-resistant AG83 promastigote cells upon UV exposure. The results indicate that UV irradiation almost oppositely affect ALA reductions in amastigotes and promastigotes. ALA reductions were stimulated in sensitive and inhibited in resistant GE1 amastigotes upon UV exposure. Susceptible amastigotes and promastigotes inhibited, and resistant amastigotes and promastigotes stimulated NQSA reduction under UV irradiation. Thus, susceptible and drug-resistant amastigotes and promastigotes are different in the reduction of ALA. Susceptible and resistant AG83 amastigotes and promastigotes inhibited the ferricyanide reductions upon UV exposure, which indicates, there is no such difference in ferricyanide reductions among susceptible as well as resistant AG83 amastigotes and promastigotes. The reductions of extracellular electron excerptors in susceptible promastigotes requires the availability of Na+ and Cl- ions for maximal activity but susceptible amastigotes are mostly not dependent on the availability of Na+ and Cl- ions. Both in promastigotes and amastigotes, reductions of electron acceptors were strongly inhibited by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. Furthermore, antimycin A, rotenone and capsaicin markedly inhibited the reductions of electron acceptors in promastigotes, but not in amastigotes. CONCLUSION Results of this study suggest that the transPMET system is functionally different in wild and resistant strains of L. donovani.
Collapse
|
3
|
Sherman HG, Jovanovic C, Stolnik S, Rawson FJ. Electrochemical System for the Study of Trans-Plasma Membrane Electron Transport in Whole Eukaryotic Cells. Anal Chem 2018; 90:2780-2786. [DOI: 10.1021/acs.analchem.7b04853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harry G. Sherman
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Snow Stolnik
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Frankie J. Rawson
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Gray JP, Eisen T, Cline GW, Smith PJS, Heart E. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am J Physiol Endocrinol Metab 2011; 301:E113-21. [PMID: 21505151 PMCID: PMC3129843 DOI: 10.1152/ajpendo.00673.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.
Collapse
Affiliation(s)
- Joshua P Gray
- United States Coast Guard Academy, New London, Connecticut, USA
| | | | | | | | | |
Collapse
|
5
|
Zhang AS, Canonne-Hergaux F, Gruenheid S, Gros P, Ponka P. Use of Nramp2-transfected Chinese hamster ovary cells and reticulocytes from mk/mk mice to study iron transport mechanisms. Exp Hematol 2008; 36:1227-35. [PMID: 18722041 PMCID: PMC2655630 DOI: 10.1016/j.exphem.2008.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We investigated mechanisms involved in iron (Fe) transport by DMT1 (endosomal Fe(II) exporter, encoded by the Nramp2 gene) using wild-type Chinese hamster ovary (CHO) cells and Nramp2-transfected CHO cells, as well as reticulocytes from normal and mk/mk mice that have a defect in DMT1. MATERIALS AND METHODS CHO cells and reticulocytes were incubated with 59Fe bound to various ligands. The radioiron was present in its Fe(II) or Fe(III) forms or bound to transferrin (Tf), and the internalized 59Fe measured under varying experimental conditions. Additionally, 125I-Tf interaction with reticulocytes was investigated and 59Fe incorporation into their heme was determined. RESULTS Hyperexpression of DMT1 in CHO cells greatly increases their capacity to acquire ferrous iron. Although CHO-Nramp2 cells showed an increase in Fe(III) uptake as compared to CHO cells, they transported Fe(III) with much lower efficacy than Fe(II). In addition to their defect in Fe uptake, mk/mk reticulocytes also showed a decrease in Tf receptor levels. CONCLUSIONS Given that CHO cells acquire iron from Fe(II)-ascorbate with much higher rates than from Fe(III)-Tf, Tf-receptor levels represent the rate-limiting step in their iron uptake. As Fe(III) transport by CHO-Nramp2 cells can be inhibited by the impermeable oxidant K3Fe(CN)6, a membrane ferric reductase is probably needed for reduction of Fe(III) to Fe(II), which is then transported by DMT1. DMT1 is not a limiting factor in Fe acquisition by normal reticulocytes and their heme synthesis.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
6
|
Bera T, Lakshman K, Ghanteswari D, Pal S, Sudhahar D, Islam MN, Bhuyan NR, Das P. Characterization of the redox components of transplasma membrane electron transport system from Leishmania donovani promastigotes. Biochim Biophys Acta Gen Subj 2005; 1725:314-26. [PMID: 16023297 DOI: 10.1016/j.bbagen.2005.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/21/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
An investigation has been made of the points of coupling of four nonpermeable electron acceptors e.g., alpha-lipoic acid (ALA), 5,5'-dithiobis (2-nitroaniline-N-sulphonic acid) (DTNS), 1,2-naphthoquinone-4-sulphonic acid (NQSA) and ferricyanide which are mainly reduced via an interaction with the redox sites present in the plasma membrane of Leishmania donovani promastigotes. ALA, DTNS, NQSA and ferricyanide reduction and part of O2 reduction is shown to take place on the exoplasmic face of the cell, for it is affected by external pH and agents that react with the external surface. Redox enzymes of the transplasma membrane electron transport system orderly transfer electron from one redox carrier to the next with the molecular oxygen as the final electron acceptor. The redox carriers mediate the transfer of electrons from metabolically generated reductant to nonpermeable electron acceptors and oxygen. At a pH of 6.4, respiration of Leishmania cells on glucose substrate shut down almost completely upon addition of an uncoupler FCCP and K+-ionophore valinomycin. The most pronounced effects on O2 uptake were obtained by treatment with antimycin A, 2-heptadecyl-4-hydroxyquinone-N-oxide, paracholoromercuribenzene sulphonic acid and trifluoperazine. Relatively smaller effects were obtained by treatment with potassium cyanide. Inhibition observed with respect to the reduction of the electron acceptors ALA, DTNS, NQSA and ferricyanide was not similar in most cases. The redox chain appears to be branched at several points and it is suggested that this redox chain incorporate iron-sulphur center, b-cytochromes, cyanide insensitive oxygen redox site, Na+ and K+ channel, capsaicin inhibited energy coupling site and trifluoperazine inhibited energy linked P-type ATPase. We analyzed the influence of ionic composition of the medium on reduction of electron acceptors in Leishmania donovani promastigotes. Our data suggest that K+ have some role for ALA reduction and Na+ for ferricyanide reduction. No significant effects were found with DTNS and NQSA reduction when Na+ or K+ was omitted from the medium. Stimulation of ALA, DTNS, NQSA and ferricyanide reduction was obtained by omitting Cl- from the medium. We propose that this redox system may be an energy source for control of membrane function in Leishmania cells.
Collapse
Affiliation(s)
- Tanmoy Bera
- Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee RB, Urban JPG. Functional replacement of oxygen by other oxidants in articular cartilage. ARTHRITIS AND RHEUMATISM 2002; 46:3190-200. [PMID: 12483723 DOI: 10.1002/art.10686] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Articular cartilage chondrocytes consume remarkably little O(2) in comparison with most other animal cells; glycolysis forms the principal source of ATP in this cartilage. Although not lethal for many days, imposition of anoxia immediately lowers intracellular ATP, inhibits rates of glycolysis, and prevents articular chondrocytes from producing extracellular matrix macromolecules. This study was undertaken to investigate the role of O(2) in articular chondrocyte metabolism. METHODS We examined the effects of oxygen and of several other classes of exogenous oxidants, i.e., 1) the dyes methylene blue and 2,6-dichlorophenol-indophenol, 2) the iron (III) complex ferricyanide, and 3) the keto-acids oxaloacetate and pyruvate (and phosphoenolpyruvate, a metabolic precursor of pyruvate), on rates of glycolysis and of sulfate incorporation by bovine articular cartilage in vitro. RESULTS Lactate production was lowest under conditions of anoxia and was stimulated severalfold by addition of O(2) (air-saturated medium). Under strict anoxia, other oxidants restored lactate production to rates at least comparable with those seen in aerobic controls; under aerobic conditions, they had little effect. Oxygen and all of the other oxidants examined stimulated sulfate incorporation more strongly than lactate production. The compounds that promoted glycolysis and hence sulfate incorporation in cartilage under anoxia were themselves reduced; that is, they functioned as oxidants in lieu of O(2). CONCLUSION For normal function, articular cartilage appears to require exogenous oxidants to stimulate glycolysis and produce ATP and extracellular matrix. Under physiologic conditions, oxygen acts as this oxidant, but its role can be adequately assumed by other agents.
Collapse
|
8
|
Abstract
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.
Collapse
Affiliation(s)
- Gautam Datta
- Department of Pharmaceutical Technology, Jadavpur University, Calcutta, India
| | | |
Collapse
|
9
|
de Grey AD. A proposed mechanism for the lowering of mitochondrial electron leak by caloric restriction. Mitochondrion 2001; 1:129-39. [PMID: 16120273 DOI: 10.1016/s1567-7249(01)00008-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Revised: 03/12/2001] [Accepted: 03/12/2001] [Indexed: 11/30/2022]
Abstract
Caloric restriction (CR) of laboratory rodents, which extends their maximum lifespan, only transiently reduces the specific metabolic rate of highly oxidative tissues. However, superoxide production by mitochondria of those tissues is greatly reduced by CR. This is probably a major contributor to the slowed aging seen in CR, but its mechanism is unknown. Here it is proposed that the major metabolic shift enabling reduced superoxide production is a diversion of much of the electron flux generated by glycolysis and the TCA cycle away from its usual destination, Complex I, and to the plasma membrane redox system. The cell's ATP synthesis capacity is thereby diminished, but so is its ATP demand, due to reduced turnover of the Na+/K+-ATPase. Direct tests of this hypothesis are proposed.
Collapse
Affiliation(s)
- A D de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
10
|
Datta G, Bera T. Evidence for the extracellular reduction of alpha-lipoic acid by Leishmania donovani promastigotes: a transplasma membrane redox system. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:149-57. [PMID: 11406092 DOI: 10.1016/s0005-2736(01)00306-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leishmania donovani cells, capable of reducing certain electron acceptors with redox potentials at pH 7.0 down to -290 mV, outside the plasma membrane, can reduce the oxidised form of alpha-lipoic acid. alpha-Lipoic acid has been used as natural electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane alpha-lipoic acid reduction by Leishmania was not inhibited by mitochondrial inhibitors as azide, cyanide, rotenone or antimycin A, but responded to hemin, modifiers of sulphhydryl groups and inhibitor of glycolysis. The protonophores carbonyl cyanide chlorophenylhydrazone and 2,4-dinitrophenol showed inhibition of alpha-lipoic acid reduction. This transmembrane redox system differs from that of mammalian cells in respect to its sensitivity of UV irradiation and stimulation by diphenylamine. Thus a naphthoquinone coenzyme appears to be involved in alpha-lipoic acid reduction by Leishmania cells.
Collapse
Affiliation(s)
- G Datta
- Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, 700 032, Calcutta, India
| | | |
Collapse
|
11
|
May JM, Qu Z, Morrow JD, Cobb CE. Ascorbate-dependent protection of human erythrocytes against oxidant stress generated by extracellular diazobenzene sulfonate. Biochem Pharmacol 2000; 60:47-53. [PMID: 10807944 DOI: 10.1016/s0006-2952(00)00312-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diazobenzene sulfonic acid (DABS) has been used to label thiols and amino groups on cell-surface proteins. However, we found that in addition to inhibiting an ascorbate-dependent trans-plasma membrane oxidoreductase in human erythrocytes, it also depleted alpha-tocopherol severely in the cell membrane. When erythrocytes were loaded with ascorbate, DABS-dependent loss of alpha-tocopherol was decreased, despite little change in intracellular ascorbate content. Sparing of alpha-tocopherol also was seen in erythrocyte ghosts resealed to contain ascorbate, although this was accompanied by loss of intravesicular ascorbate, probably due to the inability of ghosts to recycle ascorbate. A transmembrane transfer of electrons from ascorbate was confirmed by electron paramagnetic resonance spectroscopy, in which extracellular DABS was found to generate the ascorbate free radical within cells. When the membrane content of alpha-tocopherol was decreased to 20% of the initial value by DABS treatment, lipid peroxidation ensued, manifest by generation of F(2)-isoprostanes in the cell membranes. Intracellular ascorbate also strongly protected against F(2)-isoprostane formation. These results show that DABS causes an oxidant stress at the membrane surface that is transmitted within the cell, in part by an alpha-tocopherol-dependent mechanism, and that ascorbate recycling of alpha-tocopherol can protect against loss of alpha-tocopherol and the ensuing lipid peroxidation.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | | | | | |
Collapse
|
12
|
Karu TI, Pyatibrat LV, Ryabykh TP. Nonmonotonic behavior of the dose dependence of the radiation effect on cells in vitro exposed to pulsed laser radiation at lambda = 820 nm. Lasers Surg Med Suppl 2000; 21:485-92. [PMID: 9365960 DOI: 10.1002/(sici)1096-9101(1997)21:5<485::aid-lsm11>3.0.co;2-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE In recent years, clinical low-intensity laser therapy practice has used pulsed radiation, mainly from semiconductor lasers. Experimental works devoted to the study of relationships between biological and clinical effects and parameters of pulsed radiation are practically absent. STUDY DESIGN/MATERIALS AND METHODS The radiation source was a laser diode emitting at 820 nm (292 and 700 Hz, duty factor 80%; doses from 7 J/m2 to 5 x 10(5) J/m2; intensities 4, 12, 51, 152, 633, and 1,900 W/m2; irradiation time from 1 to 30 s). Four biological models were used: nucleated cells of murine spleen (splenocytes) and bone marrow (karyocytes), murine blood, and HeLa cells cultivated in vitro. The intensity of luminol-amplified chemiluminescence (in case of murine models) and the adhesion of HeLa cell membranes were measured as a function of the irradiation dose. RESULTS Within the wide exposure dose range used we obtained seven maxima in the dose vs. biological effect curves: at fluences near 20, 1 x 10(2), 3 x 10(2), 8 x 10(2), 3 x 10(3), 1 x 10(4), and 3 x 10(4) J/m2. The peaks coincided for all four models. CONCLUSION The dose curves obtained with different cellular systems are of the same type and are characterized by seven peaks in the dose interval studied (7 J/m2 to 5 x 10(5) J/m2).
Collapse
Affiliation(s)
- T I Karu
- Laser Technology Research Center, Russian Academy of Sciences, Troitsk, Moscow Region, Russia.
| | | | | |
Collapse
|
13
|
Lee PL, Halloran C, Cross AR, Beutler E. NADH-ferric reductase activity associated with dihydropteridine reductase. Biochem Biophys Res Commun 2000; 271:788-95. [PMID: 10814540 DOI: 10.1006/bbrc.2000.2708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals dietary ferric iron is reduced to ferrous iron for more efficient absorption by the intestine. Analysis of a pig duodenal membrane fraction revealed two NADH-dependent ferric reductase activities, one associated with a b-type cytochrome and the other not. Purification and characterization of the non-cytochrome ferric reductase identified a 31 kDa protein. MALDI-MS analysis and amino acid sequencing identified the ferric reductase as being related to the 26 kDa liver NADH-dependent quinoid dihydropteridine reductase (DHPR). The NADH-dependent DHPR ferric reductase activity was found to be pteridine-independent since exhaustive dialysis did not reduce activity and heat-inactivation destroyed activity. In intestinal Caco-2 cells, DHPR mRNA levels were found to be regulated by iron. Thus, DHPR appears to be a dual function enzyme, a NADH-dependent dihydopteridine reductase and an iron-regulated, NADH-dependent, pteridine-independent ferric reductase.
Collapse
Affiliation(s)
- P L Lee
- Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
The plasma membrane of animal cells contains an electron transport system based on coenzyme Q (CoQ) reductases. Cytochrome b5 reductase is NADH-specific and reduces CoQ through a one-electron reaction mechanism. DT-diaphorase also reduces CoQ, although through a two-electron reaction mechanism using both NADH and NADPH, which may be particularly important under oxidative stress conditions. Because reduced CoQ protects membranes against peroxidations, and also maintains the reduced forms of exogenous antioxidants such as alpha-tocopherol and ascorbate, this molecule can be considered a central component of the plasma membrane antioxidant system. Stress-induced apoptosis is mediated by the activation of plasma membrane-bound neutral sphingomyelinase, which releases ceramide to the cytosol. Ceramide-dependent caspase activation is part of the apoptosis pathway. The reduced components of the plasma membrane antioxidant system, mainly CoQ, prevent both lipid peroxidation and sphingomyelinase activation. This results in the prevention of ceramide accumulation and caspase 3 activation and, as consequence, apoptosis is inhibited. We propose the hypothesis that antioxidant protective function of the plasma membrane redox system can be enough to protect cells against the externally induced mild oxidative stress. If this system is overwhelmed, intracellular mechanisms of protection are required to avoid activation of the apoptosis pathway.
Collapse
Affiliation(s)
- J M Villalba
- Departamento de Biologia Celular, Fisiología e Inmunologia, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | |
Collapse
|
15
|
Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2000; 2:197-212. [PMID: 11229526 DOI: 10.1089/ars.2000.2.2-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The observation in the early 1970s that ferricyanide can replace transferrin as a growth factor highlighted the major role plasma membrane proteins can play within a mammalian cell. Ferricyanide, being impermeant to the cell, was assumed to act at the level of the plasma membrane. Since that time, several enzymes isolated from the plasma membrane have been described, which, using NADH as the intracellular electron donor, are capable of reducing ferricyanide. However, their exact modes of action, and their physiological substrates and functions have not been solved to date. Numerous hypotheses have been proposed for the role of such redox enzymes within the plasma membrane. Examples include the regulation of cell signaling, cell growth, apoptosis, proton pumping, and ion channels. All of these roles may be a result of the function of these enzymes as cellular redox sensors. The emergence of many diverse roles for ferricyanide utilizing redox enzymes present in the plasma membrane might also, in part, be due to the numerous redox enzymes present within the membrane; the poor molecular characterization of the enzymes may be the reason for some of the diverging results reported in the literature as various researchers may be working on different enzymes. Here we review the diverse proposals given for structure and function to the plasma membrane NADH-oxidoreductase system(s) with a specific focus on those enzyme activities which can couple ferricyanide and NADH. Although they are still ill-defined enzymes, evidence is rising that they are of utmost significance for cellular regulation.
Collapse
Affiliation(s)
- M A Baker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
16
|
May JM, Qu ZC. Ascorbate-dependent electron transfer across the human erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:19-31. [PMID: 10561468 DOI: 10.1016/s0005-2736(99)00107-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reduction of extracellular ferricyanide by intact cells reflects the activity of an as yet unidentified trans-plasma membrane oxidoreductase. In human erythrocytes, this activity was found to be limited by the ability of the cells to recycle intracellular ascorbic acid, its primary trans-membrane electron donor. Ascorbate-dependent ferricyanide reduction by erythrocytes was partially inhibited by reaction of one or more cell-surface sulfhydryls with p-chloromercuribenzene sulfonic acid, an effect that persisted in resealed ghosts prepared from such treated cells. However, treatment of intact cells with the sulfhydryl reagent had no effect on NADH-dependent ferricyanide or ferricytochrome c reductase activities of open ghosts prepared from treated cells. When cytosol-free ghosts were resealed to contain trypsin or pronase, ascorbate-dependent reduction of extravesicular ferricyanide was doubled, whereas NADH-dependent ferricyanide and ferricytochrome c reduction were decreased by proteolytic digestion. The trans-membrane ascorbate-dependent activity was also found to be inhibited by reaction of sulfhydryls on its cytoplasmic face. These results show that the trans-membrane ferricyanide oxidoreductase is limited by the ability of erythrocytes to recycle intracellular ascorbate, that it does not involve the endofacial NADH-dependent cytochrome b(5) reductase system, and that it is a trans-membrane protein that contains sensitive sulfhydryl groups on both membrane faces.
Collapse
Affiliation(s)
- J M May
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | |
Collapse
|
17
|
Abstract
In macrophages, NF-kappaB can be activated by H2O2 generated by the respiratory burst or added exogenously. The mechanism of H2O2 signaling may involve changes in the cellular redox state or a redox reaction at the plasma membrane; however, the site of H2O2 action cannot be readily ascertained because of its membrane permeability. Ferricyanide, a nonpermeable redox active anion, activated NF-kappaB in the macrophage cell line, J774A.1. In contrast with exogenous H2O2, activation by ferricyanide did not correlate with net oxidation of NAD(P)H or glutathione, suggesting that a transplasma membrane redox reaction itself was the first signaling process in NF-kappaB activation.
Collapse
Affiliation(s)
- N Kaul
- Department of Molecular Pharmacology & Toxicology, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
18
|
Garner B, van Reyk D, Dean RT, Jessup W. Direct copper reduction by macrophages. Its role in low density lipoprotein oxidation. J Biol Chem 1997; 272:6927-35. [PMID: 9054380 DOI: 10.1074/jbc.272.11.6927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxidation of low density lipoprotein (LDL) results in changes to the lipoprotein that are potentially atherogenic. Numerous studies have shown that macrophages cultured in vitro can promote LDL oxidation via a transition metal-dependent process, yet the exact mechanisms that are responsible for macrophage-mediated LDL oxidation are not understood. One contributing mechanism may be the ability of macrophages to reduce transition metals. Reduced metals (such as Fe(II) or Cu(I)) rapidly react with lipid hydroperoxides, leading to the formation of reactive lipid radicals and conversion of the reduced metal to its oxidized form. We demonstrate here the ability of macrophages to reduce extracellular iron and copper and identify a contributing mechanism. Evidence is provided that a proportion of cell-mediated metal reduction is due to direct trans-plasma membrane electron transport. Glucagon suppressed both macrophage-mediated metal reduction and LDL oxidation. Although metal reduction was augmented when cells were provided with a substrate for thiol production, thiol export was not a strict requirement for cell-mediated metal reduction. Similarly, while the metal-dependent acceleration of LDL oxidation by macrophages was augmented by thiol production, macrophages could still promote LDL oxidation when thiol export was minimized (by substrate limitation). This study identifies a novel mechanism that may contribute to macrophage-mediated LDL oxidation and may also reveal potential new strategies for the inhibition of this process.
Collapse
Affiliation(s)
- B Garner
- Cell Biology Unit, Heart Research Institute, Sydney, New South Wales 2050, Australia
| | | | | | | |
Collapse
|
19
|
Vaillant F, Larm JA, McMullen GL, Wolvetang EJ, Lawen A. Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators. J Bioenerg Biomembr 1996; 28:531-40. [PMID: 8953385 DOI: 10.1007/bf02110443] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the presence of effectors variations in the two recognized activities of the plasma membrane NADH-oxidoreductase system were studied in separate, specific in vitro assays. We report here that ubiquinone analogues that contain a short, less hydrophobic side chain than coenzyme Q-10 dramatically stimulate the NADH-oxidase activity of isolated rat liver plasma membranes whereas they show no effect on the reductase activity of isolated membranes. If measured in assays of the NADH:ferricyanide reductase of living cultured cells these compounds have only a limited effect; the oxidase activity of whole cells is not measurable in our hands. We have furthermore identified selective inhibitors of both enzyme activities. In particular, the NADH-oxidase activity can be significantly inhibited by structural analogues of ubiquinone, such as capsaicin and resiniferatoxin. The NADH:ferricyanide reductase, on the other hand, is particularly sensitive to pCMBS, indicating the presence of a sulfhydryl group of groups at its active site. The identification of these specific effectors of the different enzyme activities of the PMOR yields further insights into the function of this system.
Collapse
Affiliation(s)
- F Vaillant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
20
|
Globa AG, Vishnevskii VA, Demidova VS, Abakumova OY, Karelin AA. Accumulation of ATP by plasma membranes of human and rat hepatocytes induced by some growth factors and phosphatidylcholine. Bull Exp Biol Med 1996. [DOI: 10.1007/bf02446760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Stahl JD, Aust SD. Properties of a transplasma membrane redox system of Phanerochaete chrysosporium. Arch Biochem Biophys 1995; 320:369-74. [PMID: 7625845 DOI: 10.1016/0003-9861(95)90021-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A transplasma membrane redox system of Phanerochaete chrysosporium was studied using ferricyanide, a membrane-impermeable electron acceptor. Rates of reduction were dependent upon initial ferricyanide concentration and mycelial mass. Specific activities of 12 +/- 2 nmol/min/mg mycelia (dry wt) were consistently obtained using nutrient-sufficient mycelia at pH 8.0 and 10 mM ferricyanide. Upon nutrient limitation (either carbon or nitrogen), activity decreased. Reduction was inhibited by carbonyl cyanide m-chloromethoxyphenyl hydrazone, 2,4-dinitrophenol, and sodium azide but not by potassium cyanide at 100 nmol/mg mycelia. Ferricyanide reduction and proton export rates increased with pH above the physiological pH for the fungus. The stimulation in proton exported by the addition of ferricyanide was equal to the rate of ferricyanide reduced at pH 8.0 when Hepes buffer was used. The relevance of these findings with regard to the physiological pH optimum of the fungus and the metabolism of pollutants by this fungus is discussed.
Collapse
Affiliation(s)
- J D Stahl
- Biotechnology Center, Utah State University, Logan 84322-4705, USA
| | | |
Collapse
|
22
|
Larm J, Vaillant F, Linnane A, Lawen A. Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa rho 0 cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43779-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Floridi A, Pulselli R, Gentile FP, Barbieri R, Benassi M. Rhein enhances the effect of adriamycin on mitochondrial respiration by increasing antibiotic-membrane interaction. Biochem Pharmacol 1994; 47:1781-8. [PMID: 8204095 DOI: 10.1016/0006-2952(94)90306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of the combination of Adriamycin (ADM) with rhein (RH), an anti-inflammatory drug, on the electron flow through site III and IV of the respiratory chain of rat liver mitochondria was investigated. RH, even at high concentrations, does not inhibit either duroquinol (DHQ) oxidation or cytochrome oxidase activity both of which are decreased by ADM in a dose-dependent manner. The analysis of interaction, performed with the isobolar method, shows a strong synergistic effect that cannot be ascribed to increased permeability of the mitochondrial membranes brought about by RH. The mechanism by which RH potentiates the effect of ADM on DHQ oxidation and cytochrome oxidase activity is most likely to be changes induced in the physical status of the inner mitochondrial membrane such as to permit low ADM concentrations to bind and segregate enough cardiolipin to inhibit electron transport through complex III and IV.
Collapse
Affiliation(s)
- A Floridi
- Laboratory of Cell Metabolism and Pharmacokinetics, Regina Elena Institute for Cancer Research, Rome, Italy
| | | | | | | | | |
Collapse
|
24
|
Sun IL, Crane FL, Löw H. Bombesin stimulates transplasma-membrane electron transport by Swiss 3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1221:206-10. [PMID: 8148400 DOI: 10.1016/0167-4889(94)90015-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bombesin, a mitogenic neuropeptide, stimulates transplasmalemma reduction of diferric transferrin or ferricyanide by Swiss 3T3 cells. The stimulation of diferric transferrin reduction occurs in the range of bombesin concentrations that stimulate proliferation of Swiss 3T3 cells. Diferric transferrin reduction by the 3T3 cells is accompanied by increased proton release from the cells and bombesin increases the differic transferrin-stimulated proton release twofold. Insulin increases the diferric transferrin reductase response and increases growth stimulation with bombesin. The effect of bombesin on the transmembrane electron transport is a new aspect of its effect on the plasma membrane in addition to increase in phosphatidylinositol turnover and protein kinase c activation. The electron transport can provide an independent mechanism of activation of the Na+/H+ exchange or it can change the redox state of pyridine nucleotide in the cytoplasm.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392
| | | | | |
Collapse
|
25
|
Zurbriggen R, Dreyer JL. An NADH-diaphorase is located at the cell plasma membrane in a mouse neuroblastoma cell line NB41A3. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1183:513-20. [PMID: 8286400 DOI: 10.1016/0005-2728(94)90079-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasma membranes from most mammalian cells display significant transplasma membrane oxidoreductase (PMO) activity. The enzymes use an extracellular, impermeant electron acceptor as substrate and intracellular reduced pyridine nucleotide as electron donor. The plasma membrane from a neuroblastoma cell line, NB41A3, has been biotinylated and purified by immunoprecipitation with avidin and antiavidin-antibodies. The protein recovery of an immunopurified membrane preparation was < 0.15% of the protein content in the cell extract. The preparation displays an increase in the specific activity of PMO's of 15- to 20-fold compared to the activity in whole cells. With this approach the presence of a NADH-diaphorase within the cell plasma membrane can be demonstrated. This activity accounts for about one third of the total cellular diaphorase activity. The PMO activity cannot be attributed to an increased permeabilization of the plasma membrane induced upon biotinylation nor to intracellular activity from lysed cells. Activation of basal metabolism (glycolysis) stimulates PMO activity up to approx. 54%, presumably through a raise of the intracellular NADH store. PMO also promotes cell growth at low substrate concentrations (0.1-1 microM). Native gel electrophoresis of iminobiotinylated and affinity purified plasma membrane extracts displays two diaphorase-positive bands, indicating that a homogeneous cell population may express several PMO activities at the plasma membrane.
Collapse
Affiliation(s)
- R Zurbriggen
- Department of Biochemistry, University of Fribourg, Switzerland
| | | |
Collapse
|
26
|
Sun IL, Sun EE, Crane FL, Morré DJ, Lindgren A, Löw H. Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci U S A 1992; 89:11126-30. [PMID: 1454789 PMCID: PMC50502 DOI: 10.1073/pnas.89.23.11126] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with alpha-tocopherylquinone, but not with vitamin K1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | |
Collapse
|
27
|
Richardson D, Baker E. Two mechanisms of iron uptake from transferrin by melanoma cells. The effect of desferrioxamine and ferric ammonium citrate. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49665-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Watkins JA, Altazan JD, Elder P, Li CY, Nunez MT, Cui XX, Glass J. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry 1992; 31:5820-30. [PMID: 1535218 DOI: 10.1021/bi00140a018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reductant dependence of iron mobilization from isolated rabbit reticulocyte endosomes containing diferric transferrin is reported. The kinetic effects of acidification by a H(+)-ATPase are eliminated by incubating the endosomes at pH 6.0 in the presence of 15 microM FCCP to acidify the intravesicular milieu and to dissociate 59Fe(III) from transferrin. In the absence of reductants, iron is not released from the vesicles, and iron leakage is negligible. The second-order dependence of rate constants and amounts of 59Fe mobilized from endosomes using ascorbate, ferrocyanide, or NADH are consistent with reversible mechanisms. The estimated apparent first-order rate constant for mobilization by ascorbate is (2.7 +/- 0.4) x 10(-3) s-1 in contrast to (3.2 +/- 0.1) x 10(-4) s-1 for NADH and (3.5 +/- 0.6) x 10(-4) s-1 for ferrocyanide. These results support models where multiple reactions are involved in complex processes leading to iron transfer and membrane translocation. A type II NADH dehydrogenase (diaphorase) is present on the endosome outer membrane. The kinetics of extravesicular ferricyanide reduction indicate a bimolecular-bimolecular steady-state mechanism with substrate inhibition. Ferricyanide inhibition of 59Fe mobilization is not detected. Significant differences between mobilization and ferricyanide reduction kinetics indicate that the diaphorase is not involved in 59Fe(III) reduction. Sequential additions of NADH followed by ascorbate or vice versa indicate a minimum of two sites of 59Fe(III) residence; one site available to reducing equivalents from ascorbate and a different site available to NADH. Sequential additions using ferrocyanide and the other reductants suggest interactions among sites available for reduction. Inhibition of ascorbate-mediated mobilization by DCCD and enhancement of ferrocyanide and NADH-mediated mobilization suggest a role for a moiety with characteristics of a proton pore similar to that of the H(+)-ATPase. These data provide significant constraints on models of iron reduction, translocation, and mobilization by endocytic vesicles.
Collapse
Affiliation(s)
- J A Watkins
- Department of Medicine, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | | | |
Collapse
|
29
|
Sun IL, Sun EE, Crane FL, Morré DJ, Faulk WP. Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:84-8. [PMID: 1567898 DOI: 10.1016/0005-2736(92)90165-i] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transplasma membrane electron transport from HeLa cells, measured by reduction of ferricyanide or diferric transferrin in the presence of bathophenanthroline disulfonate, is inhibited by low concentrations of adriamycin and adriamycin conjugated to diferric transferrin. Inhibition with the conjugate is observed at one-tenth the concentration required for adriamycin inhibition. The inhibitory action of the conjugate appears to be at the plasma membrane since (a) the conjugate does not transfer adriamycin to the nucleus, (b) the inhibition is observed within three minutes of addition to cells, and (c) the inhibition is observed with NADH dehydrogenase and oxidase activities of isolated plasma membranes. Cytostatic effects of the compounds on HeLa cells show the same concentration dependence as for enzyme inhibition. The adriamycin-ferric transferrin conjugate provides a more effective tool for inhibition of the plasma membrane electron transport than is given by the free drug.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
30
|
Löw H, Crane FL, Grebing C, Isaksson M, Lindgren A, Sun IL. Modification of transplasma membrane oxidoreduction by SV40 transformation of 3T3 cells. J Bioenerg Biomembr 1991; 23:903-17. [PMID: 1663950 DOI: 10.1007/bf00786008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of 3T3 cells by SV40 virus changes the properties of the transplasma membrane electron transport activity which can be assayed by reduction of external ferric salts. After 42 h of culture and before the growth rate is maximum, the transformed cells have a much slower rate of ferric reduction. The change in activity is expressed both by change in Km and Vmax for ferricyanide reduction. The change in activity is not based on surface charge effect or on tight coupling to proton release or on intracellular NADH concentration. With transformation by SV40 virus infection the expression of transferrin receptors increases, which correlates with greater diferric transferrin stimulation of the rate of ferric ammonium citrate reduction in transformed SV40-3T3 cells than in 3T3 cells.
Collapse
Affiliation(s)
- H Löw
- Department of Endocrinology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Crane FL, Sun IL, Barr R, Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 1991; 23:773-803. [PMID: 1721049 DOI: 10.1007/bf00786001] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplasm membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes contain b cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
32
|
Yamashoji S, Ikeda T, Yamashoji K. Extracellular generation of active oxygen species catalyzed by exogenous menadione in yeast cell suspension. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1059:99-105. [PMID: 1873300 DOI: 10.1016/s0005-2728(05)80191-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Luminol chemiluminescence was observed by addition of menadione to yeast cell suspension and was amplified 1000-fold by further addition of Fe-complex. Catalase, superoxide dismutase and ceruloplasmin had inhibitory effects on luminol chemiluminescence, indicating the extracellular generation of active oxygens (H2O2 and O2-) and reduction of Fe-complex. The generation of H2O2 and reduction of Fe-complex were mainly dependent on the activity of NADH: menadione oxidoreductase in the plasma membrane and cytosol fractions. Both luminol chemiluminescence and H2O2 production were sensitive to the inhibitory effects of proton conductor, ionophorous antibiotics and ATPase inhibitor rather than the inhibitors of the mitochondria electron transport system. The incubation of glucose with yeast cells caused a parallel increase in luminol chemiluminescence, H2O2 production and intracellular NADH concentration. These facts suggest that menadione-catalyzed H2O2 production and chemiluminescence are used as the indicators of cell activity to keep the NADH concentration and NADH: menadione oxidoreductase activity which may be sensitive to the change in pH and ion concentrations.
Collapse
|
33
|
Barr R, Branstetter BA, Rajnicek A, Crane FL, Löw H. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:261-8. [PMID: 1904770 DOI: 10.1016/s0005-2728(05)80246-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.
Collapse
Affiliation(s)
- R Barr
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
34
|
Abstract
The presence of transplasma membrane electron transport in a variety of plant cells and tissues is reported. It is now agreed that this property of eukaryotic cells is of ubiquitous nature. Studies with highly purified plasma membranes have established the presence of electron transport enzymes. Two types of activities have been identified. One, termed "Standard" reductase, is of general occurrence. The other, inducible under iron deficiency and relatively more active, is "Turbo" reductase. However, the true nature of components participating in electron transport and their organization in the plasma membrane is not known. The electron transport is associated with proton release and uses intracellular NAD(P)H as substrate. The electron flow leads to changes in intracellular redox status, pH, and metabolic energy. The responsiveness of this system to growth hormones is also observed. These findings suggest a role for electron flow across the plasma membrane in cell growth and regulation of ion transport. Involvement of this system in many other cellular functions is also argued.
Collapse
Affiliation(s)
- P C Misra
- Department of Biochemistry, Lucknow University, India
| |
Collapse
|
35
|
Toole-Simms W, Sun IL, Faulk WP, Löw H, Lindgren A, Crane FL, Morré DJ. Inhibition of transplasma membrane electron transport by monoclonal antibodies to the transferrin receptor. Biochem Biophys Res Commun 1991; 176:1437-42. [PMID: 2039523 DOI: 10.1016/0006-291x(91)90447-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduction of iron in diferric transferrin is inhibited by monoclonal antibodies to the transferrin receptor which bind at sites other than the high affinity transferrin binding site. These antibodies include B3/25, GB16 and GB22. Two antibodies which bind at the high affinity site for transferrin, 42/6 and GB18, do not inhibit iron reduction by transplasma membrane electron transport. The results are consistent with the proposal that differric transferrin reduction or stimulation of transmembrane NADH oxidase activity involves a site different from the high affinity diferric transferrin binding site. A synergistic action of antibodies with epitopes at the tight binding site involved in iron uptake and the antibodies which inhibit electron transport, B3/25 and GB16, can explain the increased inhibition of growth observed when both 42/6 and B3/25 are added to proliferating cells.
Collapse
Affiliation(s)
- W Toole-Simms
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
36
|
Sun IL, Crane FL, Morré DJ, Löw H, Faulk WP. Lactoferrin activates plasma membrane oxidase and Na+/H+ antiport activity. Biochem Biophys Res Commun 1991; 176:498-504. [PMID: 1850271 DOI: 10.1016/0006-291x(91)90952-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin is a growth stimulant. The basis for this effect is not clear since it is not thought to be involved in iron uptake through endocytosis. Ferric lactoferrin supports external ferrous chelate formation by K562 and HeLa cells, and ferric lactoferrin stimulates the reduction of external ferric iron by cells. Ferric lactoferrin also stimulates NADH oxidase activity in isolated rat liver plasma membranes and stimulates amiloride sensitive proton release from K562 cells. The evidence that ferric lactoferrin can participate in oxidoreduction reactions at the plasma membrane leading to activation of Na+/H+ exchange provides an alternative explanation for the proliferative effect.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | |
Collapse
|
37
|
Bérczi A, Sizensky JA, Crane FL, Faulk WP. Diferric transferrin reduction by K562 cells. A critical study. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:562-70. [PMID: 2015280 DOI: 10.1016/0304-4165(91)90231-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.
Collapse
Affiliation(s)
- A Bérczi
- Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, Indianapolis 46202
| | | | | | | |
Collapse
|
38
|
Alcain FJ, Buron MI, Villalba JM, Navas P. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:380-5. [PMID: 2009284 DOI: 10.1016/0304-4165(91)90146-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ascorbate was maintained in the media during a long-term culture by HL-60 cells. The chemical oxidation of ascorbate was reversed in vitro by living HL-60 cells and was related to the amount of cells added. The increase of NADH concentration by lactate addition to cells was accompanied by an increase of both ascorbate regeneration and ferricyanide reduction. Further, plasma membrane enriched fractions from HL-60 cells revealed enhancement of both ascorbate regeneration and ferricyanide reduction in the presence of NADH when previously treated with detergent. The blockage of cell surface carbohydrates by wheat germ agglutinin (WGA) and Concanavalina ensiformis (Con A) lectins significantly inhibited the regeneration of ascorbate caused by the cells. These results support the idea that ascorbate is externally regenerated by the NADH-ascorbate free radical reductase as a part of the transplasma membrane redox system.
Collapse
Affiliation(s)
- F J Alcain
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | | | |
Collapse
|
39
|
Sun IL, Sun EE, Crane FL, Morré DJ. Evidence for coenzyme Q function in transplasma membrane electron transport. Biochem Biophys Res Commun 1990; 172:979-84. [PMID: 2244922 DOI: 10.1016/0006-291x(90)91542-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
40
|
Singh RK, Barrand MA. Lipid peroxidation effects of a novel iron compound, ferric maltol. A comparison with ferrous sulphate. J Pharm Pharmacol 1990; 42:276-9. [PMID: 1974297 DOI: 10.1111/j.2042-7158.1990.tb05407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid peroxidation effects of ferric maltol have been compared with those of ferrous sulphate both in lecithin liposomes and in brush border and mitochondrial membranes prepared from rat small intestine. Ferrous sulphate, but not ferric maltol, initiated peroxidation in liposomes as measured by conjugated diene production, but, with 500 microM ascorbic acid present, both caused intense peroxidation which was inhibitable by N2, tocopherol, maltol and ferrous chelators, but not by OH or H2O2 scavengers. The rate of peroxidation increased with ferrous sulphate concentration up to 100 microM but was independent of ferric maltol concentration between 5-500 microM. Material eluted from rat small intestine contained a reducing factor, similar in size to ascorbic acid, capable of generating ferrous ions from ferric maltol and initiating peroxidation. Peroxidation in mitochondrial membranes appeared unaffected by addition of iron whilst that in brush border membranes was detectable only in the presence of iron. At iron concentrations of 100 microM and above ferric maltol produced less liposomal peroxidation than ferrous sulphate. Maltol itself may delay recycling of Fe3+ to Fe2+. Thus ferric maltol could provide a less toxic alternative to ferrous salts in the oral treatment of iron-deficiency.
Collapse
Affiliation(s)
- R K Singh
- Department of Pharmacology, University of Cambridge, UK
| | | |
Collapse
|
41
|
Thorstensen K. Hepatocytes and reticulocytes have different mechanisms for the uptake of iron from transferrin. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37467-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Thorstensen K, Romslo I. Uptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process? J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68384-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Sun IL, Toole-Simms W, Crane FL, Morré DJ, Löw H, Chou JY. Reduction of diferric transferrin by SV40 transformed pineal cells stimulates Na+/H+ antiport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:17-23. [PMID: 2827775 DOI: 10.1016/0005-2736(88)90117-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transplasmalemma electron transport by HeLa and pineal cells to reduce external ferricyanide is associated with proton release from the cells. Diferric transferrin also acts as an electron acceptor for the transmembrane oxidoreductase. We now show that reduction of external diferric transferrin by RPNA-209-1 SV40 transformed pineal cells is accompanied by proton release from the cells. The stoichiometry of proton release to electron transfer is much greater than would be expected from aniostropic electron flow across the membrane through protonated carriers. The proton release is not stimulated by apotransferrin and the diferric transferrin-stimulated activity is inhibited by apotransferrin. Apotransferrin also inhibits reduction of diferric transferrin by these cells. The proton release is dependent on external sodium ions and is inhibited by amiloride, which indicates that the proton release is mediated by the Na+/H+ antiport and that this antiport is activated by electron transport through the transmembrane dehydrogenase. Growth stimulation by diferric transferrin or other external oxidants can be based in part on activation of the Na+/H+ antiport.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | |
Collapse
|
44
|
Revis S, Misra PC. Hormonal Modulation of Redox Activity Associated with the Plasma Membrane of Cuscuta reflexa. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/s0015-3796(88)80007-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Sun IL, Navas P, Crane FL, Morré DJ, Löw H. NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47676-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Löw H, Grebing C, Lindgren A, Tally M, Sun IL, Crane FL. Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembr 1987; 19:535-49. [PMID: 3693344 DOI: 10.1007/bf00770036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonpermeable electron acceptors can be reduced by a transplasma membrane electron transport system in suspensions of intact cells. Here we report that diferric transferrin is reduced by HeLa S3 cells. The reduction is recorded spectrophotometrically as the formation of the ferrous complex of bathophenanthroline disulfonate. Ferric ammonium citrate can also be used as an electron acceptor and the presence of low concentrations of diferric transferrin greatly stimulates the reduction of trivalent iron under these conditions. Likewise very low concentrations of ferricyanide, which does not give rise to a ferrous bathophenanthroline disulfonate complex formation, have a strong stimulatory effect on the complex formation when ferric ammonium citrate is the source of ferric iron. Apotransferrin is a potent inhibitor of the reaction. The inhibition occurs at the concentration necessary for complete occupancy of the transferrin receptors. The inhibition can be demonstrated also when high concentrations of ferricyanide are used as electron acceptor. The possible mechanism behind the reported phenomena is discussed, and it is concluded that the transplasma membrane electron transport system can be involved in the process of cellular iron uptake.
Collapse
Affiliation(s)
- H Löw
- Department of Endocrinology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Sun IL, Toole-Simms W, Crane FL, Golub ES, Díaz de Pagán T, Morré DJ, Löw H. Retinoic acid inhibition of transplasmalemma diferric transferrin reductase. Biochem Biophys Res Commun 1987; 146:976-82. [PMID: 3619945 DOI: 10.1016/0006-291x(87)90743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.
Collapse
|
48
|
Sun IL, Garcia-Cañero R, Liu W, Toole-Simms W, Crane FL, Morré DJ, Löw H. Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells. Biochem Biophys Res Commun 1987; 145:467-73. [PMID: 3036130 DOI: 10.1016/0006-291x(87)91344-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proton release from HeLa cells is stimulated by external oxidants for the transplasmalemma electron transport enzymes. These oxidants, such as ferricyanide and diferric transferrin, also stimulate cell growth. We now present evidence that proton release associated with the reduction of ferricyanide and diferric transferrin is through the Na+/H+ antiport. The stoichiometry of H+/e- release with diferric transferrin is over 50 to 1, which is greater than expected for oxidation of a protonated transmembrane electron carrier. Diferric transferrin induced proton release depends on external sodium and is inhibited by amiloride. Proton release is also inhibited when diferric transferrin reduction is inhibited by apotransferrin. A tightly coupled association between the redox system and the antiport is shown by sodium dependence and amiloride inhibition of diferric transferrin reduction. The results indicate a new role for ferric transferrin in growth stimulation by activation of the sodium-proton antiport.
Collapse
|
49
|
Laliberté JF, Sun IL, Crane FL, Clarke MJ. Ruthenium ammine complexes as electron acceptors for growth stimulation by plasma membrane electron transport. J Bioenerg Biomembr 1987; 19:69-81. [PMID: 3571216 DOI: 10.1007/bf00769733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E'0) from 305 to -42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.
Collapse
|
50
|
Sun IL, Navas P, Crane FL, Chou JY, Löw H. Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells. J Bioenerg Biomembr 1986; 18:471-85. [PMID: 3025192 DOI: 10.1007/bf00743145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40 degrees C) and permissive temperature (33 degrees C). The transformed cells grown at 33 degrees C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40 degrees C. Both the Km and Vmax for ferricyanide reduction were changed in the transformed state. The change in Vmax can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.
Collapse
|