1
|
Deisl C, Chung JH, Hilgemann DW. Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes. J Gen Physiol 2023; 155:e202213329. [PMID: 37555782 PMCID: PMC10412754 DOI: 10.1085/jgp.202213329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Using optical and electrical methods, we document that diffusion in the cytoplasm of BL6 murine cardiomyocytes becomes restricted >20-fold as molecular weight increases from 30 to 2,000, roughly as expected for pores with porin channel dimensions. Bodipy-FL ATP diffuses >40-fold slower than in free water at 25°C. From several fluorophores analyzed, bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. Unbound fluorophores diffuse at 0.5-8 × 10-7 cm2/s (5-80 μm2/s). Analysis of Na/K pump and veratridine-modified Na channel currents suggests that Na diffusion is nearly unrestricted at 35°C (time constant for equilibration with the pipette tip, ∼20 s). Using multiple strategies, we estimate that at 35°C, ATP diffuses four to eight times slower than in free water. To address whether restrictions are caused more by protein or membrane networks, we verified first that a protein gel, 10 g% gelatin, restricts diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is less restricted than in intact myocytes. Notably, myofilaments extracted similarly from skeletal (diaphragm) myocytes are less restrictive. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similar to diffusion in intact myocytes. Restrictions are strain-dependent, being twofold greater in BL6 myocytes than in CD1/J6/129svJ myocytes. Furthermore, longitudinal diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, VDAC1, than in WT CD1/J6/129svJ myocytes. Thus, mitochondria networks restrict long-range diffusion while presumably optimizing nucleotide transfer between myofilaments and mitochondria. We project that diffusion restrictions imposed by both myofilaments and the outer mitochondrial membrane are important determinants of total free cytoplasmic AMP and ADP (∼10 μM). However, the capacity of diffusion to deliver ATP to myofilaments remains ∼100-fold greater than ATP consumption.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX, USA
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Deisl C, Chung JA, Hilgemann DW. Pore-like diffusion barriers in murine cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522313. [PMID: 36712045 PMCID: PMC9881867 DOI: 10.1101/2023.01.02.522313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using both optical and electrical methods, we document that solute diffusion in the cytoplasm of BL6 murine cardiac myocytes becomes restricted >30-fold as molecular weight increases from 30 to 2000, roughly as expected for pores with dimensions of cardiac porin channels. The Bodipy-FL ATP analogue diffuses ∼50-fold slower in BL6 cardiac cytoplasm than in free water. From several fluorophores analyzed, our estimates of bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. We estimate that diffusion coefficients of unbound fluorophores range from 0.5 to 8 x 10 -7 cm 2 /s. Analysis of Na/K pump and veratridine-modified Na channel currents confirms that Na diffusion is nearly unrestricted (time constant for equilibration with the pipette tip, ∼20 s). Using three different approaches, we estimate that ATP diffuses 8 to 10-times slower in the cytoplasm of BL6 myocytes than in free water. To address whether restrictions are caused more by cytoplasmic protein or membrane networks, we verified first that a protein gel, 10 gram% gelatin, restricts solute diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is however less restricted than in intact myocytes. Notably, myofilaments from equivalently extracted skeletal (diaphragm) myocytes restrict diffusion less than cardiac myofilaments. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similarly restricted as in intact myocytes. Diffusion restriction in cardiac myocytes is strain-dependent, being about two-fold greater in BL6 myocytes than in myocytes with a CD1/J6/129svJ background. Furthermore, diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, Vdac1, than in WT CD1/J6/129svJ myocytes. We conclude that both myofilaments and mitochondria networks restrict diffusion in cardiac myocytes. As a result, long-range solute diffusion may preferentially occur via passage through porin channels and intramembrane mitochondrial spaces, where diffusion is less restricted than in myofilament spaces.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| | - Jay A Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Donald W Hilgemann
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| |
Collapse
|
3
|
Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods Enzymol 2022; 673:475-516. [PMID: 35965017 DOI: 10.1016/bs.mie.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.
Collapse
|
4
|
Gatto C, Thornewell SJ, Holden JP, Kaplan JH. Cys(577) is a conformationally mobile residue in the ATP-binding domain of the Na,K-ATPase alpha-subunit. J Biol Chem 1999; 274:24995-5003. [PMID: 10455178 DOI: 10.1074/jbc.274.35.24995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-[4'-Maleimidylanilino]naphthalene 6-sulfonic acid (MIANS) irreversibly inactivates Na,K-ATPase in a time- and concentration-dependent manner. Inactivation is prevented by 3 mM ATP or low K(+) (<1 mM); the protective effect K(+) is reversed at higher concentrations. This biphasic effect was also observed with K(+) congeners. In contrast, Na(+) ions did not protect. MIANS inactivation disrupted high affinity ATP binding. Tryptic fragments of MIANS-labeled protein were analyzed by reversed phase high performance liquid chromatography. ATP clearly protected one major labeled peptide peak. This observation was confirmed by separation of tryptic peptides in SDS-polyacrylamide gel electrophoresis revealing a single fluorescently-labeled peptide of approximately 5 kDa. N-terminal amino acid sequencing identified the peptide (V(545)LGFCH...). This hydrophobic peptide contains only two Cys residues in all sodium pump alpha-subunit sequences and is found in the major cytoplasmic loop between M4 and M5, a region previously associated with ATP binding. Subsequent digestion of the tryptic peptide with V8 protease and N-terminal amino acid sequencing identified the modified residue as Cys(577). The cation-dependent change in reactivity of Cys(577) implies structural alterations in the ATP-binding domain following cation binding and occlusion in the intramembrane domain of Na,K-ATPase and expands our knowledge of the extent to which cation binding and occlusion are sensed in the ATP hydrolysis domain.
Collapse
Affiliation(s)
- C Gatto
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
5
|
Gatto C, Lutsenko S, Kaplan JH. Chemical modification with dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonate reveals the distance between K480 and K501 in the ATP-binding domain of the Na,K-ATPase. Arch Biochem Biophys 1997; 340:90-100. [PMID: 9126281 DOI: 10.1006/abbi.1997.9879] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonate (H2DIDS) inactivates the renal Na,K-ATPase in an ATP- and K-preventable fashion; inactivation results in the covalent incorporation of a single [3H2]DIDS molecule into the Na pump alpha-subunit. K+ protection is observed at low concentrations (< 2 mM) and reversed at higher concentrations. The biphasic effect is also seen with Rb+, to a lesser extent by Cs+, and not at all by Na+ or choline. After extensive tryptic digestion of 3H2DIDS-inactivated enzyme, a single radiolabeled peptide is seen in 16.5% Tricine gels. N-terminal amino acid sequencing revealed two sequences 470IVEIPFNSTNxYQLS and 495HLLVMxGAPER, the unidentified residues were K480 and K501, respectively. These data provide suggestive evidence of cross-linking by H2DIDS between the two lysines. CNBr digestion of 3H2DIDS-labeled alpha-subunit produced a single radioactive band of the predicted 15-kDa mass for cross-linking between K480 an K501 produced by cleavage at known methione residues. The 15-kDa band combined two N-terminal sequences 464RDRYAKIVEI and 501xGAPERILDR which include K480 and K501. Thus K480 and K501 are within approximately 14 A of each other in the Na-bound form of the enzyme and information about the occupancy of the cation binding domain is transmitted to the ATP binding loop of the Na,K-ATPase.
Collapse
Affiliation(s)
- C Gatto
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | |
Collapse
|
6
|
Lutsenko S, Daoud S, Kaplan JH. Identification of two conformationally sensitive cysteine residues at the extracellular surface of the Na,K-ATPase alpha-subunit. J Biol Chem 1997; 272:5249-55. [PMID: 9030596 DOI: 10.1074/jbc.272.8.5249] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Na,K-ATPase in right-side-out oriented vesicles was stabilized in different conformations, and the location of intramembrane Cys residues of the alpha-subunit was assessed with membrane-permeable and membrane-impermeable Cys-directed reagents. In the presence of Mg2+ and Pi, Cys964 was the most accessible for both membrane-impermeable 4-acetamido-4'-maleimidylstilbene-2, 2'disulfonic acid (or stilbene disulfonate maleimide, SDSM) and membrane-permeable 7-diethylamino-3-(4'-maleimidyl)-4-methylcoumarin (CPM). In the presence of K+, Cys964 was modified only by hydrophobic CPM, indicating that the environment around Cys964 was different in these two conformations. Cys964 seems to mark the extracellular border of transmembrane segment M9. Cys911 in transmembrane segment M8 showed similar behavior; however, it was not so readily modified. Complete modification of Cys964 and Cys911 causes only partial (about 50%) inactivation of both ATPase activity and Rb+ (or K+) occlusion, indicating that the effect on cation occlusion is indirect and not within the occlusion cavity. The ATP binding capacity remains unaltered by the modifications. Treatment of the K+-stabilized post-tryptic preparation of purified Na, K-ATPase revealed labeling of several cysteines by CPM, none of which were labeled with SDSM. Removal of K+ ions from the preparation, which we have previously shown is accompanied by release of the M5M6 hairpin to the supernatant (), causes changes in the organization of the C-terminal 21-kDa fragment. In particular Cys983 in M10 became labeled by both CPM and SDSM, pointing to a tight association between the C terminus and the M5M6 hairpin of the alpha-subunit.
Collapse
Affiliation(s)
- S Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | |
Collapse
|
7
|
Robinson JD, Pratap PR. Indicators of conformational changes in the Na+/K(+)-ATPase and their interpretation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:83-104. [PMID: 8389590 DOI: 10.1016/0304-4157(93)90018-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J D Robinson
- Department of Pharmacology State University of New York Health Science Center, Syracuse 13210
| | | |
Collapse
|
8
|
Campos M, Beaugé L. Effects of magnesium and ATP on pre-steady-state phosphorylation kinetics of the Na+,K(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:51-60. [PMID: 1314673 DOI: 10.1016/0005-2736(92)90161-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present work was to elucidate the role played by ATP and Mg2+ ions in the early steps of the Na+,K(+)-ATPase cycle. The approach was to follow pre-steady-state phosphorylation kinetics in Na(+)-containing K(+)-free solutions under variable ATP and MgCl2 concentrations. The experiments were performed with a rapid mixing apparatus at 20 +/- 2 degrees C. The concentrations of free and complexes species of Mg2+ and ATP were calculated on the basis of a dissociation constant of 0.091 +/- 0.004 mM, estimated with Arsenazo III under identical conditions. A simplified scheme were ATP binds to the ENa enzyme, which is phosphorylated to MgEPNa and consequently dephosphorylated returning to the ENa form, was used. In the absence of ADP and phosphate four rate constants are relevant: k1 and k-1, the on and off rate constants for ATP binding; k2, the transphosphorylation rate constant and k3, the constant that governs the dephosphorylation rate. The values obtained were: k1 = 0.025 +/- 0.003 microM-1 ms-1 for both free ATP and ATPMg; k-1 = 0.038 +/- 0.004 ms-1 for free ATP and 0.009 +/- 0.002 ms-1 for ATPMg; k2 = 0.199 +/- 0.005 ms-1; k3 = 0.0019 +/- 0.0002 ms-1. The model that seems best to explain the data is one where (i) the role of true substrate can be played equally well by free ATP or ATPMg, and (ii) free Mg2+, an essential activator, acts by binding to a specific Mg2+ site on the enzyme molecule.
Collapse
Affiliation(s)
- M Campos
- División de Biofísica, Instituto de Investigación Médica M. y M. Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
9
|
Pratap PR, Robinson JD, Steinberg MI. The reaction sequence of the Na+/K(+)-ATPase: rapid kinetic measurements distinguish between alternative schemes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:288-98. [PMID: 1657171 DOI: 10.1016/0005-2736(91)90137-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conformational changes between E1 and E2 enzyme forms of a dog kidney Na+/K(+)-ATPase preparation labeled with 5-iodoacetamidofluorescein were followed with a stopped-flow fluorimeter, in terms of the rate constant, kobs, and the steady-state magnitude, % delta F of fluorescence change. On rapid mixing of enzyme plus Mg2+ plus Na+ with saturating (0.5 mM) ATP in the absence of K+, kobs varied with Na+ concentration in the range 0-155 mM, with a K1/2 of 10 mM, while % delta F was relatively insensitive to Na+, with a K1/2 of 0.5 mM. Oligomycin reduced kobs by 98-99% for Na+ greater than or equal to 10 mM, but only by 50% for Na+ = 1 mM; % delta F was reduced at most by 20%. At 155 mM Na+, both kobs and % delta F changed if K+ was present with the enzyme. kobs decreased by 50% when K+ was increased from 0 to 0.2 mM, but increased when K+ was varied in the range 0.2-5 mM. K+ increased % delta F by a factor of 3 with a K1/2 of 0.3-0.5 mM as measured in both stopped-flow and steady-state experiments. These data are considered in terms of the derived presteady-state equations for two alternate schemes for the enzyme, with the E1P to E2P conformational change either preceding (Albers-Post) or following (Nørby-Yoda-Skou) Na+ transport and release. The analysis indicates that: (i) Na+ must be released before the conformational transition, from an E1 form; (ii) the step in which the second and/or third Na+ is released is rate-limiting, but this release is accelerated by Na+; and (iii) the release is also accelerated by K+ acting with low affinity (possibly at extracellular sites).
Collapse
Affiliation(s)
- P R Pratap
- Department of Pharmacology, SUNY Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
10
|
Arguello J, Kaplan J. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98732-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Binding of Na+ ions to the Na,K-ATPase increases the reactivity of an essential residue in the ATP binding domain. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30540-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Argüello JM, Kaplan JH. N-acetylimidazole inactivates renal Na,K-ATPase by disrupting ATP binding to the catalytic site. Biochemistry 1990; 29:5775-82. [PMID: 2166561 DOI: 10.1021/bi00476a019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.
Collapse
Affiliation(s)
- J M Argüello
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085
| | | |
Collapse
|
13
|
Campos M, Beaugé L. Binding of manganese ions to the Na+/K+-ATPase during phosphorylation by ATP. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 944:242-8. [PMID: 2846058 DOI: 10.1016/0005-2736(88)90437-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.
Collapse
Affiliation(s)
- M Campos
- División de Biofísica, Instituto de Investigación Médica M. y M. Ferreyra, Córdoba, Argentina
| | | |
Collapse
|
14
|
Campos M, Berberián G, Beaugé L. Some total and partial reactions of Na+/K+-ATPase using ATP and acetyl phosphate as a substrate. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:7-16. [PMID: 2827776 DOI: 10.1016/0005-2736(88)90116-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acetyl phosphate, as a substrate of (Na+ + K+)-ATPase, was further characterized by comparing its effects with those of ATP on some total and partial reactions carried out by the enzyme. In the absence of Mg2+ acetyl phosphate could not induce disocclusion (release) of Rb+ from E2(Rb); nor did it affect the acceleration of Rb+ release by non-limiting concentrations of ADP. In K+-free solutions and at pH 7.4 sodium ions were essential for ATP hydrolysis by (Na+ + K+)-ATPase; when acetyl phosphate was the substrate a hydrolysis (inhibited by ouabain) was observed in the presence and absence of Na+. In liposomes with (Na+ + K+)-ATPase incorporated and exposed to extravesicular (intracellular) Na+, acetyl phosphate could sustain a ouabain-sensitive Rb+ efflux; the levels of that flux were similar to those obtained with micromolar concentrations of ATP. When the liposomes were incubated in the absence of extravesicular Na+ a ouabain-sensitive Rb+ efflux could not be detected with either substrate. Native (Na+ + K+)-ATPase was phosphorylated at 0 degrees C in the presence of NaCl (50 mM for ATP and 10 mM for acetyl phosphate); after phosphorylation had been stopped by simultaneous addition of excess trans-1,2-diaminocyclohexane-N,N,N',N' tetraacetic acid and 1 M NaCl net synthesis of ATP by addition of ADP was obtained with both phosphoenzymes. The present results show that acetyl phosphate can fuel the overall cycle of cation translocation by (Na+ + K+)-ATPase acting only at the catalytic substrate site; this takes place via the formation of phosphorylated intermediates which can lead to ATP synthesis in a way which is indistinguishable from that obtained with ATP.
Collapse
Affiliation(s)
- M Campos
- División de Biofisica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | | | |
Collapse
|
15
|
Robinson JD. Estimating affinities for physiological ligands and inhibitors by kinetic studies on Na+,K+-ATPase and its partial activities. Methods Enzymol 1988; 156:236-51. [PMID: 2835608 DOI: 10.1016/0076-6879(88)56025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Carbodiimide inactivation of Na,K-ATPase, via intramolecular cross-link formation, is due to inhibition of phosphorylation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66616-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Pauls H, Serpersu EH, Kirch U, Schoner W. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:585-95. [PMID: 2424757 DOI: 10.1111/j.1432-1033.1986.tb09706.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromium(III) complex of ATP, an MgATP complex analogue, inactivates (Na+ + K+)-ATPase by forming a stable chromo-phosphointermediate. The rate constant k2 of inactivation at 37 degrees C of the beta, gamma-bidentate of CrATP is enhanced by Na+ (K0.5 = 1.08 mM), imidazole (K0.5 = 15 mM) and Mg2+ (K0.5 = 0.7 mM). These cations did not affect the dissociation constant of the enzyme-chromium-ATP complex. The inactive chromophosphoenzyme is reactivated slowly by high concentrations of Na+ at 37 degrees C. The half-maximal effect on the reactivation was reached at 40 mM NaCl, when the maximally observable reactivation was studied. However, 126 mM NaCl was necessary to see the half-maximal effect on the apparent reactivation velocity constant. K+ ions hindered the reactivation with a Ki of 70 microM. Formation of the chromophosphoenzyme led to a reduction of the Rb+ binding sites and of the capacity to occlude Rb+. The beta, gamma-bidentate of chromium(III)ATP (Kd = 8 microM) had a higher than the alpha, beta, gamma-tridentate of chromium(III)ATP (Kd = 44 microM) or the cobalt tetramine complex of ATP (Kd = 500 microM). The beta, gamma-bidentate of the chromium(III) complex of adenosine 5'-[beta, gamma-methylene]triphosphate also inactivated (Na+ + K+)ATPase. Although CrATP could not support Na+, K+ exchange in everted vesicles prepared from human red blood cells, it supported the Na+-Na+ and Rb+-Rb+ exchange. It is concluded that CrATP opens up Na+ and K+ channels by forming a relatively stable modified enzyme-CrATP complex. This stable complex is also formed in the presence of the chromium complex of adenosine 5'-[beta, gamma-methylene]triphosphate. Because the beta, gamma-bidentate of chromium ATP is recognized better than the alpha, beta, gamma-tridentate, it is concluded that the triphosphate site recognizes MgATP with a straight polyphosphate chain and that the Mg2+ resides between the beta- and the gamma-phosphorus. The enhancement of inactivation by Mg2+ and Na+ may be caused by conformational changes at the triphosphate site.
Collapse
|
18
|
Pedemonte CH, Beaugé L. Effects of ATP and monovalent cations on Mg2+ inhibition of (Na,K)-ATPase. Arch Biochem Biophys 1986; 244:596-606. [PMID: 3004346 DOI: 10.1016/0003-9861(86)90628-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.
Collapse
|
19
|
|
20
|
Abstract
Reaction of a dog kidney (Na + K)-ATPase with pyridoxal phosphate, followed by borohydride reduction, reduced the catalytic activity when measured subsequently. The time course of inactivation did not follow a first-order process, and certain characteristics of the residual enzymatic activity were modified. Moreover, various catalytic activities were diminished differently: Na-ATPase activity was largely spared, K-phosphatase activity was diminished only by half that of the (Na + K)-ATPase, whereas (Na + K)-CTPase and Na-CTPase activities were diminished more. ATP, ADP, CTP, nitrophenyl phosphate, and Pi all protected against inactivation. Increasing salt concentrations increased inactivation, but KCl slowed and NaCl hastened inactivation when compared with choline chloride. Occupancy of certain substrate or cation sites seemed more crucial than selection of conformational states. For the residual (Na + K)-ATPase activity the K0.5 for K+ was lower and the K0.5 for Na+ higher, while the sensitivities to ouabain, oligomycin, and dimethylsulfoxide were diminished; for the residual K-phosphatase activity the K0.5 for K+ was unchanged, the sensitivity to ouabain and oligomycin diminished, but the stimulation by dimethylsulfoxide increased. These properties cannot be wholly accommodated by assuming merely shifts toward either of the two major enzyme conformations.
Collapse
|
21
|
Askari A, Huang WH. Reaction of (Na+ + K+)-dependent adenosine triphosphatase with inorganic phosphate. Regulation by Na+, K+, and nucleotides. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43025-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Schuurmans Stekhoven FM, Swarts HG, De Pont JJ, Bonting SL. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 736:73-8. [PMID: 6317029 DOI: 10.1016/0005-2736(83)90171-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Contrary to what has usually been assumed, (Na+ + K+)-ATPase slowly hydrolyses AdoPP[NH]P in the presence of Na+ + Mg2+ to ADP-NH2 and Pi. The activity is ouabain-sensitive and is not detected in the absence of either Mg2+ or Na2+. The specific activity of the Na+ + Mg2+ dependent AdoPP[NH]P hydrolysis at 37 degrees C and pH 7.0 is 4% of that for ATP under identical conditions and only 0.07% of that for ATP in the presence of K+. The activity is not stimulated by K+, nor can K+ replace Na+ in its stimulatory action. This suggests that phosphorylation is rate-limiting. Stimulation by Na+ is positively cooperative with a Hill coefficient of 2.4; half-maximal stimulation occurs at 5-9 mM. The Km value for AdoPP[NH]P is 17 microM. At 0 degrees C and 21 degrees C the specific activity is 2 and 14%, respectively, of that at 37 degrees C. AMP, ADP and AdoPP[CH2]P are not detectably hydrolysed by (Na+ + K+)-ATPase in the presence of Na+ + Mg2+. In addition, AdoPP[NH]P undergoes spontaneous, non-enzymatic hydrolysis at pH 7.0 with rate constants at 0, 21 and 37 degrees C of 0.0006, 0.006 and 0.07 h-1, respectively. This effect is small compared to the effect of enzymatic hydrolysis under comparable conditions. Mg2+ present in excess of AdoPP[NH]P reduces the rate constant of the spontaneous hydrolysis to 0.005 h-1 at 37 degrees C, indicating that the MgAdoPP[NH]P complex is virtually stable to spontaneous hydrolysis, as is also the case for its enzymatic hydrolysis. A practical consequence of these findings is that AdoPP[NH]P binding studies in the presence of Na+ + Mg2+ with enzyme concentrations in the mg/ml range are not possible at temperatures above 0 degrees C. On the other hand, determination of affinity in the (Na+ + K+)-ATPase reaction by competition with ATP at low protein concentrations (microgram/ml range) remains possible without significant hydrolysis of AdoPP[NH]P even at 37 degrees C.
Collapse
|
23
|
Chipman DM, Lev A. Modification of the conformational equilibria in the sodium and potassium dependent adenosinetriphosphatase with glutaraldehyde. Biochemistry 1983; 22:4450-9. [PMID: 6313040 DOI: 10.1021/bi00288a016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.
Collapse
|
24
|
Rempeters G, Schoner W. Imidazole chloride and tris-chloride substitute for sodium chloride in inducing high-affinity AdoPP[NH]P binding to (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 727:13-21. [PMID: 6297570 DOI: 10.1016/0005-2736(83)90363-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Optimal binding of [2,8-3H]AdoPP[NH]P to (Na+ + K+)-ATPase requires 25 mM Na+ (Cl-), 50 mM imidazole+ (Cl-) or 50 mM Tris+ (Cl-). Chloride is essential as counterion. We conclude that imidazole+ and Tris+ are able to bind to the Na+ site, and recommend the use of dilute buffers for studying the partial reactions of (Na+ + K+)-ATPase. In NaCl or the substituting buffers the dissociation constant for the enzyme-AdoPP[NH]P complex at 0 degrees C and pH 7.25 is 0.4 microM, whereas in millimolar MgCl2 it is about 2 microM. These distinct levels in affinity with MgCl2 as compared to NaCl, together with the MgCl2-dependence of photolabelling of the enzyme with ATP analogues (Rempeters, G. and Schoner, W. (1981) Eur. J. Biochem. 121, 131-137), suggest significant changes within the substrate site of (Na+ + K+)-ATPase upon binding of Mg2+ (Cl-)2.
Collapse
|
25
|
Patzelt-Wenczler R, Mertens W. Effects of cations on high-affinity and low-affinity ATP-binding sites of (Na+, K+)-ATPase as studied by disulfides of thioinosine triphosphate and its analogue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 121:197-202. [PMID: 6276169 DOI: 10.1111/j.1432-1033.1981.tb06449.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Rempeters G, Schoner W. Evidence for a Mg2+-induced conformational change at the ATP-binding site of (Na+ + K+)-ATPase demonstrated with a photoreactive ATP-analogue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 121:131-7. [PMID: 6276168 DOI: 10.1111/j.1432-1033.1981.tb06441.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The 3'-ribosyl ester of ATP with 2-nitro-4-azidophenyl propionic acid has been prepared and its ability to act as a photoaffinity label of (Na+ + K+)-ATPase has been tested. 2. In the dark 3'-O-[3-(2-nitro-4-azidophenyl)-propionyl]adenosine triphosphate (N3-ATP) is a substrate of (Na+ + K+)-ATPase and a competitive inhibitor of ATP hydrolysis. 3. Upon irradiation by ultraviolet light, N3-ATP photolabels the high-affinity ATP-binding site and is covalently attached to the alpha-subunit and an approximately 12000-Mr component. 4. Photolabeling of the alpha-subunit by N3-ATP irreversibly inactivates (Na+ + K+)-ATPase. 5. Photoinactivation is strictly Mg2+-dependent. Na+ enhances the inactivation. ATP or ADP and K+ protect the enzyme against inactivation. 6. Mg2+, in concentrations required for photoinactivation, protects (Na+ + K+)-ATPase against inactivation by tryptic digestion under controlled conditions. 7. It is assumed that a conformational change of the ATP-binding site of (Na+ + K+)-ATPase occurs upon binding of Mg2+ to a low-affinity site.
Collapse
|
27
|
Abstract
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37 degrees C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 the Kd was 96 nM; substituting MnCl2 decreased the Kd to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with a K0.5 for KCl near 0.5 mM; the increased binding was associated with a drop in Kd for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with an I50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, beta, gamma-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme, the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.
Collapse
|
28
|
Robinson JD. Substituting manganese for magnesium alters certain reaction properties of the (Na+ + K+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 642:405-17. [PMID: 6269615 DOI: 10.1016/0005-2736(81)90456-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+- dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187--3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabain-inhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V] -vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution. These findings are considered in terms of Mn2+ at the divalent cation site being a better selector than Mg2+ of the E2 conformational states of the enzyme, states also selected by K+ and by dimethylsulfoxide and reactive with ouabain and vanadate; the E1 conformational states, by contrast, are those selected by Na+ and ATP, and also by Triton X-100.
Collapse
|