1
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
2
|
Enhanced glycoprotein production in HEK-293 cells expressing pyruvate carboxylase. Metab Eng 2011; 13:499-507. [DOI: 10.1016/j.ymben.2011.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/26/2011] [Accepted: 05/13/2011] [Indexed: 12/22/2022]
|
3
|
Browne SM, Al-Rubeai M. Analysis of an artificially selected GS-NS0 variant with increased resistance to apoptosis. Biotechnol Bioeng 2010; 108:880-92. [DOI: 10.1002/bit.22994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/25/2010] [Indexed: 11/11/2022]
|
4
|
Genzel Y, Ritter JB, König S, Alt R, Reichl U. Substitution of Glutamine by Pyruvate To Reduce Ammonia Formation and Growth Inhibition of Mammalian Cells. Biotechnol Prog 2008; 21:58-69. [PMID: 15903241 DOI: 10.1021/bp049827d] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.
Collapse
Affiliation(s)
- Yvonne Genzel
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
5
|
de la Luz-Hernández K, Rojas-del Calvo L, Rabasa-Legón Y, Lage-Castellanos A, Castillo-Vitlloch A, Díaz J, Gaskell S. Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium. J Proteomics 2008; 71:133-47. [DOI: 10.1016/j.jprot.2008.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/14/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
|
6
|
Hartman TE, Sar N, Genereux K, Barritt DS, He Y, Burky JE, Wesson MC, Tso JY, Tsurushita N, Zhou W, Sauer PW. Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies. Biotechnol Bioeng 2007; 96:294-306. [PMID: 16897745 DOI: 10.1002/bit.21099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Presented is an antibody production platform based on the fed-batch culture of recombinant NS0-derived cell lines. NS0 host cells, obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK, Part No. 85110503), were first adapted to grow in a protein-free, cholesterol-free medium. The resulting host cell line was designated NS0-PFCF (protein-free, cholesterol-free). The five production cell lines presented here were generated using a common protocol consisting of transfection by electroporation and subcloning. The NS0-PFCF host cell line was transfected using a single expression vector containing the Escherichia coli xanthine-guanine phosphoribosyl transferase gene (gpt), and the antibody heavy and light chain genes driven by the CMV promoter. The five cell lines were chosen after one to three rounds of iterative subcloning, which resulted in a 19-64% increase in antibody productivity when four mother-daughter cell pairs were cultured in a fed-batch bioreactor process. The production cell lines were genetically characterized to determine antibody gene integrity, nucleotide sequences, copy number, and the number of insertion sites in the NS0 cell genome. Genetic characterization data indicate that each of the five production cell lines has a single stably integrated copy of the antibody expression vector, and that the antibody genes are correctly expressed. Stability of antibody production was evaluated for three of the five cell lines by comparing the early stage seed bank with the Working Cell Bank (WCB). Antibody productivity was shown to be stable in two of three cell lines evaluated, while one of the cell lines exhibited a 20% drop in productivity after passaging for approximately 4 weeks. These five NS0-derived production cell lines were successfully cultured to produce antibodies with acceptable product quality attributes in a standardized fed-batch bioreactor process, consistently achieving an average specific productivity of 20-60 pg/cell-day, and a volumetric productivity exceeding 120 mg/L-day (Burky et al., 2006). In contrast to the commonly available NS0 host cell line, which requires serum and cholesterol for growth, and the commonly used expression vector system, which uses a proprietary glutamine synthetase selection marker (GS-NS0), these NS0 cells are cholesterol-independent, grow well in a protein-free medium, use a non-proprietary selection marker, and do not require gene amplification for productivity improvement. These characteristics are advantageous for use of this NS0 cell line platform for manufacturing therapeutic antibodies.
Collapse
Affiliation(s)
- Taymar E Hartman
- Process Sciences and Engineering, PDL BioPharma, Inc., 34801 Campus Drive, Fremont, California 94555, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Burky JE, Wesson MC, Young A, Farnsworth S, Dionne B, Zhu Y, Hartman TE, Qu L, Zhou W, Sauer PW. Protein-free fed-batch culture of non-GS NS0 cell lines for production of recombinant antibodies. Biotechnol Bioeng 2007; 96:281-93. [PMID: 16933323 DOI: 10.1002/bit.21060] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.
Collapse
Affiliation(s)
- John E Burky
- Process Sciences and Engineering, PDL BioPharma, Inc., 34700 Campus Drive, Fremont, California 94555, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meleady P. Proteomic profiling of recombinant cells from large-scale mammalian cell culture processes. Cytotechnology 2007; 53:23-31. [PMID: 19003187 DOI: 10.1007/s10616-007-9052-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/25/2007] [Indexed: 11/26/2022] Open
Abstract
Global expression profiling of mammalian cells used for the production of biopharmaceuticals will allow greater insights into the molecular mechanisms that result in a high producing cellular phenotype. These studies may give insights for genetic intervention to possibly create better host cell lines or even to provide clues to more rational strategies for cell line and process development. In this review I will focus on the contribution of proteomic technologies to a greater understanding of the biology of Chinese hamster ovary cells and other producing cell lines such as NS0 mouse cells.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland,
| |
Collapse
|
9
|
Okonkowski J, Balasubramanian U, Seamans C, Fries S, Zhang J, Salmon P, Robinson D, Chartrain M. Cholesterol delivery to NS0 cells: Challenges and solutions in disposable linear low-density polyethylene-based bioreactors. J Biosci Bioeng 2007; 103:50-9. [PMID: 17298901 DOI: 10.1263/jbb.103.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/13/2006] [Indexed: 01/21/2023]
Abstract
We report the successful cultivation of cholesterol dependent NS0 cells in linear low-density polyethylene (LLDPE) Wave Bioreactors when employing a low ratio of cyclodextrin to cholesterol additive mixture. While cultivation of NS0 cells in Wave Bioreactors was successful when using a culture medium supplemented with fetal bovine serum (FBS), cultivation with the same culture medium supplemented with cholesterol-lipid concentrate (CLC), which contains lipids and synthetic cholesterol coupled with the carrier methyl-beta-cyclodextrin (mbetaCD), proved to be problematic. However, it was possible to cultivate NS0 cells in the medium supplemented with CLC when using conventional cultivation vessels such as disposable polycarbonate shake-flasks and glass bioreactors. A series of experiments investigating the effect of the physical conditions in Wave Bioreactors (e.g., rocking rate/angle, gas delivery mode) ruled out their likely influence, while the exposure of the cells to small squares of Wave Bioreactor film resulted in a lack of growth as in the Wave Bioreactor, suggesting an interaction between the cells, the CLC, and the LLDPE contact surface. Further experiments with both cholesterol-independent and cholesterol-dependent NS0 cells established that the concurrent presence of mbetaCD in the culture medium and the LLDPE film was sufficient to inhibit growth for both cell types. By reducing the excess mbetaCD added to the culture medium, it was possible to successfully cultivate cholesterol-dependent NS0 cells in Wave Bioreactors using a cholesterol-mbetaCD complex as the sole source of exogenous cholesterol. We propose that the mechanism of growth inhibition involves the extraction of cholesterol from cell membranes by the excess mbetaCD in the medium, followed with the irreversible adsorption or entrapment of the cholesterol-mbetaCD complexes to the LLDPE surface of the Wave Bioreactor. Controlling and mitigating these negative interactions enabled the routine utilization of disposable bioreactors for the cultivation of cholesterol-dependent NS0 cell lines in conjunction with an animal component-free cultivation medium.
Collapse
Affiliation(s)
- Jessica Okonkowski
- Merck Research Laboratories, Bioprocess R&D, PO Box 2000, RY80Y-105, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Seth G, Ozturk M, Hu WS. Reverting cholesterol auxotrophy of NS0 cells by altering epigenetic gene silencing. Biotechnol Bioeng 2006; 93:820-7. [PMID: 16189819 DOI: 10.1002/bit.20720] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
NS0 is a cholesterol-requiring mouse myeloma cell line widely used in the production of recombinant antibodies. We have previously reported that the deficiency of 17beta-hydroxysteroid dehydrogenase type7 (Hsd17b7) is responsible for the cholesterol auxotrophy of NS0 cells. Here we demonstrate DNA methylation to be the mechanism underlying transcriptional suppression of Hsd17b7 in cholesterol dependent NS0 cells. Analysis of the DNA methylation pattern revealed methylation of the CpG-rich region upstream of the Hsd17b7 transcription start site in NS0 cells. This is in contrast to the unmethylated status of this sequence in a naturally isolated cholesterol independent revertant cell population (NS0_r). This transcriptional repression was relieved after treating cells with the demethylating drug, 5-azacytidine. Drug treatment also gave rise to high frequency cholesterol-independent variants. Characterization of revertants revealed substantially elevated transcript level of 17beta-hydroxysteroid dehydrogenase type7 (Hsd17b7) gene along with hypomethylation of the CpG-rich region. These results affirm that deficiency of Hsd17b7 causes cholesterol dependence of NS0 cells. Furthermore, induction of cholesterol independence by altering DNA methylation pattern alludes to the role of epigenetics in the metabolic adaptation of NS0 cells. With the widespread use of NS0 cells, this finding will have a significant impact on the optimization of recombinant antibody production processes.
Collapse
Affiliation(s)
- Gargi Seth
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
11
|
Zhang J, Robinson D. Development of Animal-free, Protein-Free and Chemically-Defined Media for NS0 Cell Culture. Cytotechnology 2005; 48:59-74. [PMID: 19003032 PMCID: PMC3449720 DOI: 10.1007/s10616-005-3563-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022] Open
Abstract
There has been a recent boom of monoclonal antibodies on the market, and a significant portion of them were produced by NS0 cell lines. As regulations become more stringent in ensuring production processes are free of potential contamination by adventitious agents, it is highly desirable to further develop serum-free media into ones that do not contain any components of animal origin, or 'animal-free media'. Using a shake-flask batch culture system, recombinant proteins (human albumin and human insulin) and synthetic compounds (tropolone and ferric ammonium citrate) were identified to be capable of replacing the animal-sourced proteins commonly found in serum-free media for NS0 cell culture, namely bovine albumin, insulin and transferrin. The cholesterol requirement of NS0 cells was satisfied by the use of a commercially available non-proteinaceous, non-animal sourced cholesterol/fatty acid mix in place of bovine lipoproteins, which in effect also eliminated the need for recombinant albumin. In the animal-free medium thus formulated, NS0 cell lines, either the host or recombinant constructs, were all able to grow in batch culture to 1~ 3x10(6) viable cells/ml for multiple passages, with no requirement for gradual adaptation even when seeded from 10% serum-containing cultures. It was surprising to observe that the recombinant insulin was essentially ineffective as sodium salt compared to its zinc salt. Studies showed that the zinc deficiency in the former resulted in a rapid decline of cell viabilities. Supplementation of zinc ions greatly improved growth, and even led to the total replacement of recombinant insulin and hence the formulation of a protein-free medium. When the cell lines were adapted to cholesterol-independent growth which eliminated the need for any lipid source, a completely chemically-defined animal-free medium was formulated. In all cases, antibody production by various GS-NS0 constructs in animal-free media was stable for multiple passages and at least similar to the original serum-free medium containing the animal-sourced proteins. The medium also served well for cryopreservation of NS0 cells in the absence of serum.
Collapse
Affiliation(s)
- Jinyou Zhang
- Bioprocess R&D, Merck Research Laboratories, PO Box 2000, 07065, Rahway, NJ, USA,
| | | |
Collapse
|
12
|
Seth G, Philp RJ, Denoya CD, McGrath K, Stutzman-Engwall KJ, Yap M, Hu WS. Large-scale gene expression analysis of cholesterol dependence in NS0 cells. Biotechnol Bioeng 2005; 90:552-67. [PMID: 15830340 DOI: 10.1002/bit.20429] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NS0, a nonsecreting mouse myeloma cell, is a major host line used for recombinant antibody production. These cells have a cholesterol-dependent phenotype and rely on an exogenous supply of cholesterol for their survival and growth. To better understand the physiology underlying cholesterol dependence, we compared NS0 cells, cultivated under standard cholesterol-dependent growth conditions (NS0), to cells adapted to cholesterol-independent conditions (NS0 revertant, NS0_r). Large-scale transcriptional analyses were done using the Affymetrix GeneChip array, MG-U74Av2. The transcripts expressed differentially across the two cell lines were identified. Additionally, proteomic tools were employed to analyze cell lysates from these two cell lines. Cellular proteins from both NS0 and NS0_r were subjected to 2D gel electrophoresis. MALDI-TOF mass spectrometry was performed to determine the identity of the differentially expressed spots. We examined the expression level of mouse genes directly involved in cholesterol biosynthesis, lipid metabolism, and central energy metabolism. Most of these genes were downregulated in the revertant cell type, NS0_r, compared to NS0. Overall, a large number of genes are expressed differentially, indicating that the reversal of cholesterol dependency has a profound effect on cell physiology. It is probable that a single gene mutation, activation, or inactivation is responsible for cholesterol auxotrophy. However, the wide-ranging changes in gene expression point to the distinct possibility of a regulatory event affecting the reversibility of auxotrophy, either directly or indirectly.
Collapse
Affiliation(s)
- Gargi Seth
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Cruz HJ, Conradt HS, Dunker R, Peixoto CM, Cunha AE, Thomaz M, Burger C, Dias EM, Clemente J, Moreira JL, Rieke E, Carrondo MJT. Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 2002; 96:169-83. [PMID: 12039533 DOI: 10.1016/s0168-1656(02)00028-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production, purification and stability of quality (in terms of integrity and glycosylation) of an antibody/interleukin-2 fusion protein with potential application in tumour-targeted therapy expressed in BHK21 cells are described. Consistency of the product throughout time was determined by analysis of glycosylation of the fusion protein using MALDI-TOF mass spectroscopy and HPAEC-PAD combined with product integrity studies by SDS-PAGE and Western blotting. These investigations showed consistent expression in terms of integrity and of three major oligosaccharide structures of the fusion protein after 62 generations. The data obtained at this stage indicated the suitability of the cell line for production purposes. Different approaches for the production of this protein were subsequently carried out. The relative productivity of the recombinant fusion protein and general performance of the cells in two different protein-free medium (PFM) culture systems, continuous chemostat and continuous perfusion using a Centritech centrifuge as a cell retention device, were studied. The results indicate that the chemostat culture resulted in more stable and controllable nutrient environment, which could indicate better product consistency, in accordance with what has been observed under serum-containing conditions, in relation to the perfusion culture. Finally, product obtained from the chemostat culture was analysed and purified. The purification process was optimised with an increase in the overall yield from 38 to 70% being obtained, a significant improvement with important consequences for the implementation of an industrial-scale culture system. In conclusion, it was possible to produce and purify the recombinant antibody/interleukin-2 fusion protein assuring the quality and stability of the product in terms of integrity and glycosylation. Therefore, a candidate production process was established.
Collapse
Affiliation(s)
- H J Cruz
- IBET/ITQB-Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Irani N, Beccaria AJ, Wagner R. Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J Biotechnol 2002; 93:269-82. [PMID: 11755990 DOI: 10.1016/s0168-1656(01)00409-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, a recombinant yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells was shown to reconstitute the missing link between glycolysis and TCA, thus increasing the flux of glucose into the TCA and resulting in a higher intracellular ATP content. Now, these metabolically engineered cells have been additionally transfected with a plasmid bearing the gene for human erythropoietin. EPO yield and substrate-specific productivity of the recombinant BHK-21 cells have been compared to control cells without the PYC2-gene but transfected with the plasmid coding for the expression of the selection genes and EPO. PYC2-expressing clones showed a 2-fold higher glucose-specific productivity and a 2-fold higher product concentration in a continuously perfused bioreactor. Moreover, the PYC2 expression enabled the cells to become more resistant to low glucose concentrations in the culture medium. They could produce at nearly maximum productivity under glucose-limiting conditions of 0.05-1 gl(-1) that guaranteed a reduced accumulation of lactate in fed-batch production systems. Due to the fact that PYC2-expressing cells are characterized by reduced glucose consumption, a prolonged production phase in bioreactors can be maintained. Based on the demand not to fall short of 80% cell viability for the production, EPO could be produced for 2 days (30%) longer compared to the control due to a more economic exploitation of glucose, and the prolonged viability period of the cells using a batch cultivation driven by glutamine limitation.
Collapse
Affiliation(s)
- Noushin Irani
- Department of Cell Culture Technology (ZKT), National Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
15
|
Sauer PW, Burky JE, Wesson MC, Sternard HD, Qu L. A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000305)67:5<585::aid-bit9>3.0.co;2-h] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Barnes LM, Bentley CM, Dickson AJ. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 2000; 32:109-23. [PMID: 19002973 PMCID: PMC3449689 DOI: 10.1023/a:1008170710003] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.
Collapse
Affiliation(s)
- L M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT (Author for correspondence)
| | | | | |
Collapse
|
17
|
Irani N, Wirth M, van Den Heuvel J, Wagner R. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 1999; 66:238-46. [PMID: 10578094 DOI: 10.1002/(sici)1097-0290(1999)66:4<238::aid-bit5>3.0.co;2-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Continuous mammalian cell lines are important hosts for the production of biological pharmaceuticals. However, these cell lines show some severe disorders in primary metabolism, which they have in common with many cancer cells. This leads to a high throughput of substrates giving a low energy yield and ample toxic side products such as lactate and ammonia. Because the enzymatic connection between glycolysis and the tricarboxylic acid cycle (TCA) is very poor, glucose is mainly degraded via oxidative glycolysis. It will be shown that introducing a pyruvate carboxylase gene expressed in the cytoplasma into a continuous BHK-21 cell line, and thus reconstituting the missing link between glycolysis and TCA, can reduce this problem. Thus, glucose consumption could be reduced by a factor of four and glutamine utilization up to a factor of two, compared with control. Moreover, a 1.4-fold-higher adenosine triphosphate (ATP) content was achieved. The flux of labeled [(14)C]-glucose into the TCA is shown to be enhanced, indicating a higher rate of oxidative glucose degradation. Host cell lines with an improved energy metabolism will therefore result in better exploitation of substrates, an increasing yield by the more efficient use of carbon source, and higher product integrity combined with lower production costs.
Collapse
Affiliation(s)
- N Irani
- Department of Cell Culture Technology, Gesellschaft fur Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
18
|
Valley U, Nimtz M, Conradt HS, Wagner R. Incorporation of ammonium into intracellular UDP-activatedN-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990820)64:4<401::aid-bit3>3.0.co;2-m] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Paredes C, Prats E, Cairó JJ, Azorín F, Cornudella L, Gòdia F. Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology 1999; 30:85-93. [PMID: 19003358 PMCID: PMC3449941 DOI: 10.1023/a:1008012518961] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work describes the genetic modification of a hybridoma cell line with the aim to change its metabolic behaviour, particularly reducing the amounts of ammonia and lactate produced by the cells. The cellular excretion of ammonia was eliminated by transfection of a cloned glutamine synthetase gene. The metabolic characterisation of the transformed cell line includes the analysis of the changes introduced in its intracellular metabolic fluxes by means of a stoichiometric model. Furthermore, the reduction of lactate accumulation was attempted through an antisense mRNA approach, aiming to generate a rate limiting step in the glycolytic pathway, thus lowering the glucose consumption rate. The physiological results obtained with the transformed cells are discussed. A maximum reduction of about 47% in the glucose consumption rate was obtained for one of the transformations. However a main drawback was the lack of stability of the transformed cells.
Collapse
Affiliation(s)
- C Paredes
- Departament d'Enginyeria Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
Mammalian cell culture continues to draw major research efforts. A great deal of progress has recently been made in cellular physiology, especially in factors adversely affecting cell growth or viability. Through molecular genetic manipulation, cells are more readily cultivated in a medium free of animal proteins. Achieving a high cell concentration and high viability continue to be common themes in engineering research. The need to implement a control policy for fed-batch and perfusion cultures has prompted increased efforts in process monitoring and control. Integrating these advances will be beneficial for ensuring product quality and process consistency.
Collapse
Affiliation(s)
- W S Hu
- Chemical Engineering and Materials Science Department, University of Minnesota, 421 Washington Avenue South East, Minneapolis, MN 55455, USA
| | | |
Collapse
|
22
|
Xie L, Wang DI. Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol 1997; 15:109-13. [PMID: 9080717 DOI: 10.1016/s0167-7799(97)01014-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Animal cell culture has become an important approach for the production of biologically functional proteins for human therapy. The quantity and quality of protein production are influenced by the culture environment, which is subject to change over the course of cell cultivation. Therefore, it is vital to design an optimal culture environment and control it within an optimal region to maximize the productivity. This requires that the factors affecting the culture environment (nutrient concentrations, by-product accumulation, pH and osmolality) and cell growth be integrated into the design of culture media for fed-batch animal cell cultures.
Collapse
Affiliation(s)
- L Xie
- Merck Research Laboratory Co., Inc., West Point, PA 19486, USA
| | | |
Collapse
|
23
|
Sinacore MS, Charlebois TS, Harrison S, Brennan S, Richards T, Hamilton M, Scott S, Brodeur S, Oakes P, Leonard M, Switzer M, Anagnostopoulos A, Foster B, Harris A, Jankowski M, Bond M, Martin S, Adamson SR. CHO DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacture of recombinant proteins. Biotechnol Bioeng 1996; 52:518-28. [DOI: 10.1002/(sici)1097-0290(19961120)52:4<518::aid-bit7>3.0.co;2-s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
|