1
|
Kumara RP, Saitoh S, Aoyama H, Shinzato N, Tokuda G. Predominant expression and activity of vacuolar H(+)-ATPases in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:1-8. [PMID: 25937057 DOI: 10.1016/j.jinsphys.2015.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
The mixed segment is a unique part of the gut present only in the most apical lineage of termites and consists of a complex of overlapping mesenteric and proctodeal epithelia. In spite of its unique structure, the physiological functions of the mixed segment have been poorly studied. We performed transcriptome analysis to identify functional enzymes acting in the mixed segment of the wood-feeding higher termite Nasutitermes takasagoensis. We sequenced the transcripts (4563 isotigs) of the mixed segment and compared them with those of the midgut (4813 isotigs) and the first proctodeal segment (3629 isotigs). We found that vacuolar H(+)-ATPase (V-ATPase) subunits were predominant in the mixed segment, which was confirmed by RT-qPCR analysis. The V-ATPase activity in these three tissues was in a good agreement with the expression patterns, suggesting that V-ATPase is a prevalent enzyme in the mixed segment of the termites. The results confirmed the proposed role of the mixed segment as a transporting epithelium.
Collapse
Affiliation(s)
- Rohitha P Kumara
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Seikoh Saitoh
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Hiroaki Aoyama
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Gaku Tokuda
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, COMB, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
2
|
Borges R, Domínguez N, Estévez-Herrera J, Pereda D, Machado JD. Vesicular Ca(2+) mediates granule motion and exocytosis. Cell Calcium 2012; 51:338-41. [PMID: 22222091 DOI: 10.1016/j.ceca.2011.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.
Collapse
Affiliation(s)
- Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
3
|
|
4
|
Dos Santos PM, Freitas FP, Mendes J, Tararthuch AL, Fernandez R. Differential regulation of H+-ATPases in MDCK-C11 cells by aldosterone and vasopressin. Can J Physiol Pharmacol 2009; 87:653-65. [DOI: 10.1139/y09-057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of the present work was to characterize the biochemical activity of the proton pumps present in the C11 clone of Madin–Darby canine kidney (MDCK) cells, akin to intercalated cells of the collecting duct, as well as to study their regulation by hormones like aldosterone and vasopressin. MDCK-C11 cells from passages 78 to 86 were utilized. The reaction to determine H+-ATPase activity was started by addition of cell homogenates to tubes contained the assay medium. The inorganic phosphate (Pi) released was determined by a colorimetric method modified from that described by Fiske and Subbarow. Changes in intracellular calcium concentration in the cells was determined using the Ca2+-sensing dye fluo-4 AM. Homogenates of MDCK-C11 cells present a bafilomycin-sensitive activity (vacuolar H+-ATPase), and a vanadate-sensitive activity (H+/K+-ATPase). The bafilomycin-sensitive activity showed a pH optimum of 6.12. ATPase activity was also stimulated in a dose-dependent fashion as K+ concentration was increased between 0 and 50 mmol·L–1, with an apparent Km for the release of Pi of 0.13 mmol·L–1 and Vmax of 22.01 nmol·mg–1·min–1. Incubation of cell monolayers with 10−8 mol·L–1 aldosterone for 24 h significantly increased vacuolar H+-ATPase activity, an effect prevented by 10−5 mol·L–1 spironolactone. Vacuolar H+-ATPase activity was also stimulated by 10−11 mol·L–1 vasopressin, an effect prevented by a V1 receptor-specific antagonist. This dose of vasopressin determined a sustained rise of cytosolic ionized calcium. We conclude that (i) homogenates of MDCK-C11 cells present a bafilomycin-sensitive (H+-ATPase) activity and a vanadate-sensitive (H+/K+-ATPase) activity, and (ii) vacuolar H+-ATPase activity is activated by aldosterone through a genomic pathway and by vasopressin through V1 receptors.
Collapse
Affiliation(s)
- Priscilla M.C. Dos Santos
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Fabio P. Freitas
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Jeane Mendes
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ana Lucia Tararthuch
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| | - Ricardo Fernandez
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná (UFPR), Paraná, Brazil
| |
Collapse
|
5
|
Su Y, Blake-Palmer KG, Sorrell S, Javid B, Bowers K, Zhou A, Chang SH, Qamar S, Karet FE. Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol 2008; 295:F950-8. [PMID: 18632794 PMCID: PMC2576143 DOI: 10.1152/ajprenal.90258.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vacuolar-type ATPase (H+ATPase) is a ubiquitously expressed multisubunit pump whose regulation is poorly understood. Its membrane-integral a-subunit is involved in proton translocation and in humans has four forms, a1-a4. This study investigated two naturally occurring point mutations in a4's COOH terminus that cause recessive distal renal tubular acidosis (dRTA), R807Q and G820R. Both lie within a domain that binds the glycolytic enzyme phosphofructokinase-1 (PFK-1). We recreated these disease mutations in yeast to investigate effects on protein expression, H+ATPase assembly, targeting and activity, and performed in vitro PFK-1 binding and activity studies of mammalian proteins. Mammalian studies revealed complete loss of binding between the COOH terminus of a4 containing the G-to-R mutant and PFK-1, without affecting PFK-1's catalytic activity. In yeast expression studies, protein levels, H+ATPase assembly, and targeting of this mutant were all preserved. However, severe (78%) loss of proton transport but less decrease in ATPase activity (36%) were observed in mutant vacuoles, suggesting a requirement for the a-subunit/PFK-1 binding to couple these two functions. This role for PFK in H+ATPase function was supported by similar functional losses and uncoupling ratio between the two proton pump domains observed in vacuoles from a PFK-null strain, which was also unable to grow at alkaline pH. In contrast, the R-to-Q mutation dramatically reduced a-subunit production, abolishing H+ATPase function completely. Thus in the context of dRTA, stability and function of the metabolon composed of H+ATPase and glycolytic components can be compromised by either loss of required PFK-1 binding (G820R) or loss of pump protein (R807Q).
Collapse
Affiliation(s)
- Ya Su
- Department of Medical Genetics, Cambridge University, Cambridge Institute for Medical Research, Addenbrooke's Hospital Box 139, Cambridge, CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O. Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 2007; 282:33735-33742. [PMID: 17872947 DOI: 10.1074/jbc.m703368200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic vacuolar-type H(+)-ATPases (V-ATPases) are regulated by the reversible disassembly of the active V(1)V(0) holoenzyme into a cytosolic V(1) complex and a membrane-bound V(0) complex. The signaling cascades that trigger these events in response to changing cellular conditions are largely unknown. We report that the V(1) subunit C of the tobacco hornworm Manduca sexta interacts with protein kinase A and is the only V-ATPase subunit that is phosphorylated by protein kinase A. Subunit C can be phosphorylated as single polypeptide as well as a part of the V(1) complex but not as a part of the V(1)V(0) holoenzyme. Both the phosphorylated and the unphosphorylated form of subunit C are able to reassociate with the V(1) complex from which subunit C had been removed before. Using salivary glands of the blowfly Calliphora vicina in which V-ATPase reassembly and activity is regulated by the neurohormone serotonin via protein kinase A, we show that the membrane-permeable cAMP analog 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP) causes phosphorylation of subunit C in a tissue homogenate and that phosphorylation is reduced by incubation with antibodies against subunit C. Similarly, incubation of intact salivary glands with 8-CPT-cAMP or serotonin leads to the phosphorylation of subunit C, but this is abolished by H-89, an inhibitor of protein kinase A. These data suggest that subunit C binds to and serves as a substrate for protein kinase A and that this phosphorylation may be a regulatory switch for the formation of the active V(1)V(0) holoenzyme.
Collapse
Affiliation(s)
- Martin Voss
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Olga Vitavska
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Bernd Walz
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Helmut Wieczorek
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany.
| |
Collapse
|
7
|
Abstract
The vacuolar H(+)-ATPase is a multisubunit protein consisting of a peripheral catalytic domain (V(1)) that binds and hydrolyzes adenosine triphosphate (ATP) and provides energy to pump H(+) through the transmembrane domain (V(0)) against a large gradient. This proton-translocating vacuolar H(+)-ATPase is present in both intracellular compartments and the plasma membrane of eukaryotic cells. Mutations in genes encoding kidney intercalated cell-specific V(0) a4 and V(1) B1 subunits of the vacuolar H(+)-ATPase cause the syndrome of distal tubular renal acidosis. This review focuses on the function, regulation, and the role of vacuolar H(+)-ATPases in renal physiology. The localization of vacuolar H(+)-ATPases in the kidney, and their role in intracellular pH (pHi) regulation, transepithelial proton transport, and acid-base homeostasis are discussed.
Collapse
Affiliation(s)
- Patricia Valles
- Area de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
8
|
Féthière J, Venzke D, Madden DR, Böttcher B. Peripheral Stator of the Yeast V-ATPase: Stoichiometry and Specificity of Interaction between the EG Complex and Subunits C and H†. Biochemistry 2005; 44:15906-14. [PMID: 16313193 DOI: 10.1021/bi051762f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
V-ATPases are multisubunit membrane protein complexes that use the energy provided by ATP hydrolysis to generate a proton gradient across various intracellular and plasma membranes. In doing so, they maintain an acidic pH in the lumen of intracellular organelles and acidify extracellular milieu to support specific cellular functions. V-ATPases are structurally similar to the F1F0-ATP synthase, with an intrinsic membrane domain (V0) and an extrinsic peripheral domain (V1) joined by several connecting elements. To gain a clear functional understanding of the catalytic mechanism, and of the stability requirements for regulatory processes in the enzyme, a clear topology of the enzyme has to be established. In particular, the composition and arrangement of the peripheral stator subunits must be firmly settled, as these play specific roles in catalysis and regulation. We have designed a strategy allowing us to coexpress different combinations of these subunits to delineate specific interactions. In this study, we report the interaction between the peripheral stator EG complex and subunits C and H of the V-ATPase from the yeast Saccharomyces cerevisae. A combination of analytical gel filtration, native gel electrophoresis, and ultracentrifugation analysis allowed us to ascertain the homogeneity and molar mass of the purified EGC complex as well as of the EG complex, supporting the formation of 1:1(:1) stoichiometric complexes. The EGC complex can be formed in vitro by combining equimolar amounts of subunit C and the EG subcomplex and results most likely from the initial interaction between subunits E and C.
Collapse
Affiliation(s)
- James Féthière
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
9
|
Féthière J, Venzke D, Diepholz M, Seybert A, Geerlof A, Gentzel M, Wilm M, Böttcher B. Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G. J Biol Chem 2004; 279:40670-6. [PMID: 15292229 DOI: 10.1074/jbc.m407086200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.
Collapse
Affiliation(s)
- James Féthière
- Structural and Computational Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID. Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 2002; 282:F1120-8. [PMID: 11997329 DOI: 10.1152/ajprenal.00266.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ammonia stimulates cortical collecting duct (CCD) net bicarbonate reabsorption by activating an apical H(+)-K(+)-ATPase through mechanisms that are independent of ammonia's known effects on intracellular pH and active sodium transport. The present studies examined whether this stimulation occurs through soluble N-ethylmaleimide-sensitive fusion attachment receptor (SNARE) protein-mediated vesicle fusion. Rabbit CCD segments were studied using in vitro microperfusion, and transepithelial bicarbonate transport was measured using microcalorimetry. Ammonia's stimulation of bicarbonate reabsorption was blocked by either chelating intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester or by inhibiting microtubule polymerization with colchicine compared with parallel studies performed in the absence of these inhibitors. An inactive structural analog of colchicine, lumicolchicine, did not alter ammonia's stimulation of bicarbonate reabsorption. Tetanus toxin, a zinc endopeptidase specific for vesicle-associated SNARE (v-SNARE) proteins, prevented ammonia from stimulating net bicarbonate reabsorption. Consistent with the functional evidence for v-SNARE involvement, antibodies directed against a conserved region of isoforms 1-3 of the tetanus toxin-sensitive, vesicle-associated membrane protein (VAMP) members of v-SNARE proteins labeled the apical and subapical region of collecting duct intercalated cells. Similarly, antibodies to NSF protein, a protein involved in activation of SNARE proteins for subsequent vesicle fusion, localized to the apical and subapical region of collecting duct intercalated cells. These results indicate that ammonia stimulates CCD bicarbonate reabsorption through an intracellular calcium-dependent, microtubule-dependent, and v-SNARE-dependent mechanism that appears to involve insertion of cytoplasmic vesicles into the apical plasma membrane of CCD intercalated cells.
Collapse
Affiliation(s)
- Amy E Frank
- Division of Nephrology, Hypertension, and Transplantation, University of Florida and Gainesville Veterans Affairs Medical Center, Gainesville, Florida 32610-0224, USA
| | | | | | | | | | | |
Collapse
|
11
|
Asokan A, Cho MJ. Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci 2002; 91:903-13. [PMID: 11948528 DOI: 10.1002/jps.10095] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most cellular components such as the cytoplasm, endosomes, lysosomes, endoplasmic reticulum, Golgi bodies, mitochondria, and nuclei are known to maintain their own characteristic pH values. These pH values range from as low as 4.5 in the lysosome to about 8.0 in the mitochondria. Given these proton gradients around a neutral pH, weak acids, and bases with a pKa between 5.0 and 8.0 can exhibit dramatic changes in physicochemical properties. These compounds can be conjugated as such to macromolecules or incorporated into polymeric or liposomal formulations to promote the efficient cellular delivery of macromolecules. Mechanistically, the carrier molecules can facilitate favorable membrane partition, membrane fusion, transient pore formation, or membrane disruption. Drug carriers equipped with such pH-sensitive triggers and switches are able to significantly enhance the cellular delivery of macromolecules in vitro. However, the successful application of these molecules for efficient delivery in vivo requires the design of noncytotoxic, nonimmunogenic, serum compatible and biochemically labile carriers, systematic analysis of their mechanisms of action, and extensive animal studies.
Collapse
Affiliation(s)
- Aravind Asokan
- Division of Drug Delivery & Disposition, CB # 7360, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
12
|
Torigoe T, Izumi H, Ise T, Murakami T, Uramoto H, Ishiguchi H, Yoshida Y, Tanabe M, Nomoto M, Kohno K. Vacuolar H(+)-ATPase: functional mechanisms and potential as a target for cancer chemotherapy. Anticancer Drugs 2002; 13:237-43. [PMID: 11984067 DOI: 10.1097/00001813-200203000-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor cells in vivo often exist in a hypoxic microenvironment with a lower extracellular pH than that surrounding normal cells. Ability to upregulate proton extrusion may be important for tumor cell survival. Such microenvironmental factors may be involved in the development of resistant subpopulations of tumor cells. In solid tumors, both intracellular and extracellular pH differ between drug-sensitive and -resistant cells, and pH appears critical to the therapeutic effectiveness of anticancer agents. Four major types of pH regulators have been identified in tumor cells: the sodium-proton antiporter, the bicarbonate transporter, the proton-lactate symporter and proton pumps. Understanding mechanisms regulating tumor acidity opens up novel opportunities for cancer chemotherapy. In this minireview, we describe the structure and function of certain proton pumps overexpressed in many tumors--vacuolar H(+)-ATPases--and consider their potential as targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Takayuki Torigoe
- Department of Molecular Biology, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu T, Forgac M. Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar [H+]-ATPase in vivo. J Biol Chem 2001; 276:24855-61. [PMID: 11331282 DOI: 10.1074/jbc.m100637200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar [H(+)]-ATPases (V-ATPases) are composed of a peripheral V(1) domain and a membrane-embedded V(0) domain. Reversible dissociation of the V(1) and V(0) domains has been observed in both yeast and insects and has been suggested to represent a general regulatory mechanism for controlling V-ATPase activity in vivo. In yeast, dissociation of the V-ATPase is triggered by glucose depletion, but the signaling pathways that connect V-ATPase dissociation and glucose metabolism have not been identified. We have found that nocodazole, an agent that disrupts microtubules, partially blocked dissociation of the V-ATPase in response to glucose depletion in yeast. By contrast, latrunculin, an agent that disrupts actin filaments, had no effect on glucose-dependent dissociation of the V-ATPase complex. Neither nocodazole nor latrunculin blocked reassembly of the V-ATPase upon re-addition of glucose to the medium. The effect of nocodazole appears to be specifically through disruption of microtubules since glucose-dependent dissociation of the V-ATPase was not blocked by nocodazole in yeast strains bearing a mutation in tubulin that renders it resistant to nocodazole. Because nocodazole has been shown to arrest cells in the G(2) phase of the cell cycle, it was of interest to determine whether nocodazole exerted its effect on dissociation of the V-ATPase through cell cycle arrest. Glucose-dependent dissociation of the V-ATPase was examined in four yeast strains bearing temperature-sensitive mutations that arrest cells in different stages of the cell cycle. Because dissociation of the V-ATPase occurred normally at both the permissive and restrictive temperatures in these mutants, the results suggest that in vivo dissociation is not dependent upon cell cycle phase.
Collapse
Affiliation(s)
- T Xu
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
14
|
Kawasaki-Nishi S, Nishi T, Forgac M. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 2001; 276:17941-8. [PMID: 11278748 DOI: 10.1074/jbc.m010790200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 100 kDa a-subunit of the yeast vacuolar (H(+))-ATPase (V-ATPase) is encoded by two genes, VPH1 and STV1. These genes encode unique isoforms of the a-subunit that have previously been shown to reside in different intracellular compartments in yeast. Vph1p localizes to the central vacuole, whereas Stv1p is present in some other compartment, possibly the Golgi or endosomes. To compare the properties of V-ATPases containing Vph1p or Stv1p, Stv1p was expressed at higher than normal levels in a strain disrupted in both genes, under which conditions V-ATPase complexes containing Stv1p appear in the vacuole. Complexes containing Stv1p showed lower assembly with the peripheral V(1) domain than did complexes containing Vph1p. When corrected for this lower degree of assembly, however, V-ATPase complexes containing Vph1p and Stv1p had similar kinetic properties. Both exhibited a K(m) for ATP of about 250 microm, and both showed resistance to sodium azide and vanadate and sensitivity to nanomolar concentrations of concanamycin A. Stv1p-containing complexes, however, showed a 4-5-fold lower ratio of proton transport to ATP hydrolysis than Vph1p-containing complexes. We also compared the ability of V-ATPase complexes containing Vph1p or Stv1p to undergo in vivo dissociation in response to glucose depletion. Vph1p-containing complexes present in the vacuole showed dissociation in response to glucose depletion, whereas Stv1p-containing complexes present in their normal intracellular location (Golgi/endosomes) did not. Upon overexpression of Stv1p, Stv1p-containing complexes present in the vacuole showed glucose-dependent dissociation. Blocking delivery of Vph1p-containing complexes to the vacuole in vps21Delta and vps27Delta strains caused partial inhibition of glucose-dependent dissociation. These results suggest that dissociation of the V-ATPase complex in vivo is controlled both by the cellular environment and by the 100-kDa a-subunit isoform present in the complex.
Collapse
Affiliation(s)
- S Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
15
|
Xu T, Forgac M. Subunit D (Vma8p) of the yeast vacuolar H+-ATPase plays a role in coupling of proton transport and ATP hydrolysis. J Biol Chem 2000; 275:22075-81. [PMID: 10801866 DOI: 10.1074/jbc.m002983200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the function of subunit D in the vacuolar H(+)-ATPase (V-ATPase) complex, random and site-directed mutagenesis was performed on the VMA8 gene encoding subunit D in yeast. Mutants were selected for the inability to grow at pH 7.5 but the ability to grow at pH 5.5. Mutations leading to reduced levels of subunit D in whole cell lysates were excluded from the analysis. Seven mutants were isolated that resulted in pH-dependent growth but that contained nearly wild-type levels of subunit D and nearly normal assembly of the V-ATPase as assayed by subunit A levels associated with isolated vacuoles. Each of these mutants contained 2-3 amino acid substitutions and resulted in loss of 60-100% of proton transport and 58-93% of concanamycin-sensitive ATPase activity. To identify the mutations responsible for the observed effects on activity, 14 single amino acid substitutions and 3 double amino acid substitutions were constructed by site-directed mutagenesis and analyzed as described above. Six of the single mutations and all three of the double mutations led to significant (>30%) loss of activity, with the mutations having the greatest effects on activity clustering in the regions Val(71)-Gly(80) and Lys(209)-Met(221). In addition, both M221V and the double mutant V71D/E220V led to significant uncoupling of proton transport and ATPase activity, whereas the double mutant G80D/K209E actually showed increased coupling efficiency. Both a mutant showing reduced coupling and a mutant with only 6% of wild-type proton transport activity showed normal dissociation of the V-ATPase complex in vivo in response to glucose deprivation. These results suggest that subunit D plays an important role in coupling of proton transport and ATP hydrolysis and that only low rates of turnover of the enzyme are required to support in vivo dissociation.
Collapse
Affiliation(s)
- T Xu
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
16
|
Nishi T, Forgac M. Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J Biol Chem 2000; 275:6824-30. [PMID: 10702241 DOI: 10.1074/jbc.275.10.6824] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified cDNAs encoding three isoforms (a1, a2, and a3) of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase (V-ATPase). The predicted protein sequences of the three isoforms are 838, 856, and 834 amino acids, respectively, and they display approximately 50% identity between isoforms. Northern blot analysis demonstrated that all three isoforms are expressed in most tissues examined. However, the a1 isoform is expressed most heavily in brain and heart, a2 in liver and kidney, and a3 in liver, lung, heart, brain, spleen, and kidney. We also identified multiple alternatively spliced variants for each isoform. Reverse transcriptase-mediated polymerase chain reaction revealed that one splicing variant of the a1 isoform (a1-I) was expressed only in brain, whereas two other variants (a1-II and a1-III) were expressed in tissues other than brain. These alternatively spliced forms differ in the presence or absence of 6-7 amino acid residues near the amino and carboxyl termini of the proteins encoded. The a3 isoform is also encoded by three alternatively spliced variants, two of which are predicted to encode a protein that is truncated near the border of the amino- and carboxyl-terminal domains of the a subunit and therefore lacks the integral transmembrane-spanning helices thought to participate in proton translocation. Expression of each isoform (with the exception of a1-I) was detectable at all developmental stages investigated, with a1-I absent only in day 7 embryos. The results obtained suggest that isoforms of the 100-kDa a subunit may contribute to tissue-specific functions of the V-ATPase.
Collapse
Affiliation(s)
- T Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
17
|
Perry SF, Beyers ML, Johnson DA. Cloning and molecular characterisation of the trout (Oncorhynchus mykiss) vacuolar H(+)-ATPase B subunit. J Exp Biol 2000; 203:459-70. [PMID: 10637175 DOI: 10.1242/jeb.203.3.459] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current model of transepithelial ion movements in the gill of freshwater fish incorporates an apically oriented vacuolar H(+)-ATPase (H(+)V-ATPase; proton pump) that is believed to facilitate both acid excretion and Na(+) uptake. To substantiate this model, we have cloned and sequenced a cDNA encoding the B subunit of the rainbow trout (Oncorhynchus mykiss) H(+)V-ATPase. The cloning of the B subunit enabled an examination by northern analysis of its tissue distribution and expression during external hypercapnia. Degenerate oligonucleotide primers to the B subunit of the H(+)V-ATPase were designed and used in a semi-nested polymerase chain reaction (PCR) to amplify an 810 base pair (bp) product from a trout gill/kidney cDNA library. This PCR product was cloned and sequenced and then used to screen the same cDNA library. The assembled 2262 bp cDNA included an open reading frame coding for a deduced protein of 502 amino acid residues. A BLAST search of the GenBank nucleotide database revealed numerous matches to other vertebrate and invertebrate H(+)V-ATPase B subunits. Protein alignment demonstrated that the trout H(+)V-ATPase B subunit is more than 85 % identical and more than 90 % similar to those in other vertebrate species. An initial analysis of H(+)V-ATPase mRNA tissue distribution revealed significant expression in blood. Although a comparison of perfused tissues (blood removed) with non-perfused tissues demonstrated no obvious contribution of the blood to total tissue H(+)-ATPase mRNA levels, all subsequent experiments were performed using perfused tissues. Levels of H(+)V-ATPase mRNA expression were high in the gill, kidney (anterior or posterior), intestine, heart and spleen, but lower in liver and white muscle. Exposure of the fish to 12 h of external hypercapnia (water P(CO2)=7. 5 mmHg; 1 kPa) was associated with a transient increase (at 2 h) in the levels of H(+)V-ATPase B subunit mRNA in gill and kidney; liver mRNA levels were unaffected. These results are consistent with the hypothesis of an apically localised plasma membrane H(+)V-ATPase in the freshwater trout gill and that the expression of this proton pump is increased during periods of acidosis, at least in part because of an increased steady-state level of H(+)V-ATPase mRNA.
Collapse
Affiliation(s)
- S F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.
| | | | | |
Collapse
|
18
|
Vasilyeva E, Liu Q, MacLeod KJ, Baleja JD, Forgac M. Cysteine scanning mutagenesis of the noncatalytic nucleotide binding site of the yeast V-ATPase. J Biol Chem 2000; 275:255-60. [PMID: 10617613 DOI: 10.1074/jbc.275.1.255] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To investigate residues involved in the formation of the noncatalytic nucleotide binding sites of the vacuolar proton-translocating adenosine triphosphatase (V-ATPase), cysteine scanning mutagenesis of the VMA2 gene that encodes the B subunit in yeast was performed. Replacement of the single endogenous cysteine residue at position 188 gave rise to a Cys-less form of the B subunit (Vma2p) which had near wild-type levels of activity and which was used in the construction of 16 single cysteine-containing mutants. The ability of adenine nucleotides to prevent reaction of the introduced cysteine residues with the sulfhydryl reagent 3-(N-maleimidopropionyl)biocytin (biotin-maleimide) was evaluated by Western blot. Biotin-maleimide labeling of the purified V-ATPase from the wild-type and the mutants S152C, L178C, N181C, A184C, and T279C was reduced after reaction with the nucleotide analog 3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (BzATP). These results suggest the proximity of these residues to the nucleotide binding site on the B subunit. In addition, we have examined the level of endogenous nucleotide bound to the wild-type V-ATPase and to a mutant (the A subunit mutant R483Q) which is postulated to be altered at the noncatalytic site and which displays a marked nonlinearity in ATP hydrolysis (MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) J. Biol. Chem. 273, 150-156). The R483Q mutant contained 2.6 mol of ATP/mol of V-ATPase compared with the wild-type enzyme, which contained 0.8 mol of ATP/mol of V-ATPase. These results suggest that binding of additional ATP to the noncatalytic sites may modulate the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- E Vasilyeva
- Departments of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
19
|
Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Medina JF, Lifton RP. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet 1999; 65:1656-65. [PMID: 10577919 PMCID: PMC1288376 DOI: 10.1086/302679] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 09/08/1999] [Indexed: 02/04/2023] Open
Abstract
Failure of distal nephrons to excrete excess acid results in the "distal renal tubular acidoses" (dRTA). Early childhood features of autosomal recessive dRTA include severe metabolic acidosis with inappropriately alkaline urine, poor growth, rickets, and renal calcification. Progressive bilateral sensorineural hearing loss (SNHL) is evident in approximately one-third of patients. We have recently identified mutations in ATP6B1, encoding the B-subunit of the collecting-duct apical proton pump, as a cause of recessive dRTA with SNHL. We now report the results of genetic analysis of 13 kindreds with recessive dRTA and normal hearing. Analysis of linkage and molecular examination of ATP6B1 indicated that mutation in ATP6B1 rarely, if ever, accounts for this phenotype, prompting a genomewide linkage search for loci underlying this trait. The results strongly supported linkage with locus heterogeneity to a segment of 7q33-34, yielding a maximum multipoint LOD score of 8.84 with 68% of kindreds linked. The LOD-3 support interval defines a 14-cM region flanked by D7S500 and D7S688. That 4 of these 13 kindreds do not support linkage to rdRTA2 and ATP6B1 implies the existence of at least one additional dRTA locus. These findings establish that genes causing recessive dRTA with normal and impaired hearing are different, and they identify, at 7q33-34, a new locus, rdRTA2, for recessive dRTA with normal hearing.
Collapse
MESH Headings
- Acidosis, Renal Tubular/genetics
- Acidosis, Renal Tubular/physiopathology
- Adenosine Triphosphatases/genetics
- Adult
- Anion Transport Proteins
- Antiporters
- Child
- Child, Preschool
- Chromosome Mapping
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 7/genetics
- Consanguinity
- DNA Mutational Analysis
- Female
- Genes, Recessive/genetics
- Hearing/genetics
- Hearing/physiology
- Humans
- Hydrogen-Ion Concentration
- Infant
- Infant, Newborn
- Lod Score
- Male
- Membrane Proteins/genetics
- Middle East
- Molecular Sequence Data
- Pakistan
- Pedigree
- Polymorphism, Single-Stranded Conformational
- SLC4A Proteins
Collapse
Affiliation(s)
- F E Karet
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
MacLeod KJ, Vasilyeva E, Merdek K, Vogel PD, Forgac M. Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-[(32)P]ADP. J Biol Chem 1999; 274:32869-74. [PMID: 10551850 DOI: 10.1074/jbc.274.46.32869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular modeling studies have previously suggested the possible presence of four aromatic residues (Phe(452), Tyr(532), Tyr(535), and Phe(538)) near the adenine binding pocket of the catalytic site on the yeast V-ATPase A subunit (MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) J. Biol. Chem. 273, 150-156). To test the proximity of these aromatic residues to the adenine ring, the yeast V-ATPase containing wild-type and mutant forms of the A subunit was reacted with 2-azido-[(32)P]ADP, a photoaffinity analog that stably modifies tyrosine but not phenylalanine residues. Mutant forms of the A subunit were constructed in which the two endogenous tyrosine residues were replaced with phenylalanine and in which a single tyrosine was introduced at each of the four positions. Strong ATP-protectable labeling of the A subunit was observed for the wild-type and the mutant containing tyrosine at 532, significant ATP-protectable labeling was observed for the mutants containing tyrosine at positions 452 and 538, and only very weak labeling was observed for the mutants containing tyrosine at 535 or in which all four residues were phenylalanine. These results suggest that Tyr(532) and possibly Phe(452) and Tyr(538) are in close proximity to the adenine ring of ATP bound to the A subunit. In addition, the effects of mutations at Phe(452), Tyr(532), Tyr(535), and Glu(286) on dissociation of the peripheral V(1) and integral V(0) domains both in vivo and in vitro were examined. The results suggest that in vivo dissociation requires catalytic activity while in vitro dissociation requires nucleotide binding to the catalytic site.
Collapse
Affiliation(s)
- K J MacLeod
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
21
|
Xu T, Vasilyeva E, Forgac M. Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. J Biol Chem 1999; 274:28909-15. [PMID: 10506135 DOI: 10.1074/jbc.274.41.28909] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.
Collapse
Affiliation(s)
- T Xu
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
22
|
Leng XH, Nishi T, Forgac M. Transmembrane topography of the 100-kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1999; 274:14655-61. [PMID: 10329659 DOI: 10.1074/jbc.274.21.14655] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topography of the yeast vacuolar proton-translocating ATPase a subunit (Vph1p) has been investigated using cysteine-scanning mutagenesis. A Cys-less form of Vph1p lacking the seven endogenous cysteines was constructed and shown to have 80% of wild type activity. Single cysteine residues were introduced at 13 sites within the Cys-less mutant, with 12 mutants showing greater than 70% of wild type activity. To evaluate their disposition with respect to the membrane, vacuoles were treated in the presence or absence of the impermeant sulfhydryl reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS) followed by the membrane permeable sulfhydryl reagent 3-(N-maleimidylpropionyl) biocytin (MPB). Three of the 12 active cysteine mutants were not labeled by MPB. The mutants E3C, D89C, T161C, S266C, N447C, K450C, and S703C were labeled by MPB in an AMS-protectable manner, suggesting a cytoplasmic orientation, whereas G602C and S840C showed minimal protection by AMS, suggesting a lumenal orientation. Factor Xa cleavage sites were introduced at His-499, Leu-560, and Pro-606. Cleavage at 560 was observed in the absence of detergent, suggesting a cytoplasmic orientation for this site. Based on these results, we propose a model of the a subunit containing nine transmembrane segments, with the amino terminus facing the cytoplasm and the carboxyl terminus facing the lumen.
Collapse
Affiliation(s)
- X H Leng
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
23
|
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
24
|
Forgac M. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J Biol Chem 1999; 274:1301-5. [PMID: 9880499 DOI: 10.1074/jbc.274.3.1301] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been previously demonstrated that the vacuolar H+-ATPase (V-ATPase) of clathrin-coated vesicles is reversibly inhibited by disulfide bond formation between conserved cysteine residues at the catalytic site on the A subunit (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13224-13230). Proton transport and ATPase activity of the purified, reconstituted V-ATPase are now shown to be inhibited by the nitric oxide-generating reagent S-nitrosoglutathione (SNG). The K0.5 for inhibition by SNG following incubation for 30 min at 37 degreesC is 200-400 microM. As with disulfide bond formation at the catalytic site, inhibition by SNG is reversed upon treatment with 100 mM dithiothreitol and is partially protected in the presence of ATP. Also as with disulfide bond formation, treatment of the V-ATPase with SNG protects activity from subsequent inactivation by N-ethylmaleimide, as demonstrated by restoration of activity by dithiothreitol following sequential treatment of the V-ATPase with SNG and N-ethylmaleimide. Moreover, inhibition by SNG is readily reversed by dithiothreitol but not by the reduced form of glutathione, suggesting that the disulfide bond formed at the catalytic site of the V-ATPase may not be immediately reduced under intracellular conditions. These results suggest that SNG inhibits the V-ATPase through disulfide bond formation between cysteine residues at the catalytic site and that nitric oxide (or nitrosothiols) might act as a negative regulator of V-ATPase activity in vivo.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
25
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A-H) of molecular weight 70-13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a-d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
26
|
Vasilyeva E, Forgac M. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide. J Biol Chem 1998; 273:23823-9. [PMID: 9726993 DOI: 10.1074/jbc.273.37.23823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of adenosine triphosphate (ATP)-dependent proton transport into clathrin-coated vesicles from bovine brain have been studied. We observe that the vacuolar proton-translocating ATPase (V-ATPase) from clathrin-coated vesicles is subject to two different types of inhibition by ADP. The first is competitive inhibition with respect to ATP, with a Ki for ADP of 11 microM. The second type of inhibition occurs after preincubation of the V-ATPase in the presence of ADP and Mg2+, which results in inhibition of the initial rate of proton transport followed by reactivation over the course of several minutes. The second effect is observed at ADP concentrations as low as 0.1-0.2 microM, indicating that a high affinity inhibitory complex is formed between ADP and the V-ATPase and is only slowly dissociated after the addition of ATP. We have further investigated the effect of sodium azide, an inhibitor of the F-ATPases that has been shown to stabilize an inactive complex between ADP and the F1-F0-ATP synthase (F-ATPase). We observed that azide inhibited ATP-dependent proton transport by the purified, reconstituted V-ATPase with a K0.5 of 0.2-0.4 mM but had no effect on ATP hydrolysis. Azide was shown not to increase the passive proton permeability of reconstituted vesicles and did not stimulate ATP hydrolysis by the reconstituted enzyme, in contrast with CCCP, which both abolished the proton gradient and stimulated hydrolysis. Thus, azide does not appear to act as a simple uncoupler of proton transport and ATP hydrolysis. Rather, azide may have some more direct effect on V-ATPase activity. Possible mechanisms by which azide could exert this effect on the V-ATPase and the contrasting effects of azide on the F- and V-ATPases are discussed.
Collapse
Affiliation(s)
- E Vasilyeva
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
27
|
Oka T, Yamamoto R, Futai M. Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J Biol Chem 1998; 273:22570-6. [PMID: 9712884 DOI: 10.1074/jbc.273.35.22570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vacuolar-type H+-ATPase (V-ATPase), highly hydrophobic subunits known as the proteolipids are components of the integral membrane V0 sector. Previously, we described the identification of three different proteolipid genes in Caenorhabditis elegans (Oka, T., Yamamoto, R., and Futai, M. (1997) J. Biol. Chem. 272, 24387-24392): vha-1 and vha-2 encoded 16-kDa subunits, and vha-4, a 23-kDa isoform. We report here that a third 16-kDa gene, vha-3, has been identified on chromosome IV. This is the first example in which four proteolipid genes have been found in a single organism. vha-2 and vha-3 exhibited 85% nucleotide identity within the open reading frames which encoded the identical amino acid sequence. Northern blot analysis indicated that all four genes were expressed in a similar pattern during the worm life cycle; however, studies with transgenic worms indicated that the vha-3 gene was expressed differently from other proteolipid genes in a cell-specific manner. These results implied that the isoforms of the proteolipids may be related to functional differences of V-ATPases in various cell types. Another new gene, vha-11, contained seven exons and was found to be located immediately downstream of vha-3. The two genes constitute a single transcriptional unit. The VHA-11 protein had 384 amino acids and shared strong sequence similarities with the C subunit, a component of the peripheral V1 sector of the V-ATPase, from yeast, bovine, and human. Expression of the vha-11 cDNA complemented a null mutation of VMA5, the yeast C subunit gene, thus demonstrating that vha-11 was the functional C subunit of C. elegans.
Collapse
Affiliation(s)
- T Oka
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, CREST of the Japan Science and Technology Corporation, Osaka 567-0047, Japan
| | | | | |
Collapse
|
28
|
Leng XH, Manolson MF, Forgac M. Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J Biol Chem 1998; 273:6717-23. [PMID: 9506970 DOI: 10.1074/jbc.273.12.6717] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that mutations in buried charged residues in the last two transmembrane helices of Vph1p (the 100-kDa subunit of the yeast V-ATPase) inhibit proton transport and ATPase activity (Leng, X. H., Manolson, M., Liu, Q., and Forgac, M. (1996) J. Biol. Chem. 271, 22487-22493). In this report we have further explored the function of this region of Vph1p (residues 721-840) using a combination of site-directed and random mutagenesis. Effects of mutations on stability of Vph1p, assembly of the V-ATPase complex, 9-amino-6-chloro-2-methoxyacridine quenching (as a measure of proton transport), and ATPase activity were assessed. Additional mutations were analyzed to test the importance of Glu-789 in TM7 and His-743 in TM6. Although substitution of Asp for Glu at position 789 led to a 50% decrease in 9-amino-6-chloro-2-methoxyacridine quenching, substitution of Ala at this position gave a mutant with 40% quenching relative to wild type, suggesting that a negative charge at this position is not absolutely essential for proton transport. Similarly, a positive charge is not essential at position His-743, since the H743Y and H743A mutants retain 20 and 60% of wild-type quenching, respectively. Interestingly, H743A approaches wild-type ATPase activity at elevated pH while the E789D mutant shows a slightly lower pH optimum than wild type, suggesting that these residues are in a location to influence V-ATPase activity. The low pumping activity of the double mutant (E789H/H743E) suggests that these residues do not form a simple ion pair. Random mutagenesis identified a number of additional mutations both inside the membrane (L739S and L746S) as well as external to the membrane (H729R and V803D) which also significantly inhibited proton pumping and ATPase activity. By contrast, a cluster of five mutations were identified between residues 800 and 814 in the soluble segment just COOH-terminal to TM7 which affected either assembly or stability of the V-ATPase complex. Two mutations (F809L and G814D) may also affect targeting of the 100-kDa subunit. These results suggest that this segment of Vph1p plays a crucial role in organization of the V-ATPase complex.
Collapse
Affiliation(s)
- X H Leng
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
29
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function in the acidification of intracellular compartments in eukaryotic cells. The V-ATPases are multisubunit complexes composed of two functional domains. The peripheral V1 domain, a 500-kDa complex responsible for ATP hydrolysis, contains at least eight different subunits of molecular weight 70-13 (subunits A-H). The integral V0 domain, a 250-kDa complex, functions in proton translocation and contains at least five different subunits of molecular weight 100-17 (subunits a-d). Biochemical and genetic analysis has been used to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and coupling of these activities. Several mechanisms have been implicated in the regulation of vacuolar acidification in vivo, including control of pump density, regulation of assembly of V1 and V0 domains, disulfide bond formation, activator or inhibitor proteins, and regulation of counterion conductance. Recent information concerning targeting and regulation of V-ATPases has also been obtained.
Collapse
Affiliation(s)
- T H Stevens
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
30
|
MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1998; 273:150-6. [PMID: 9417059 DOI: 10.1074/jbc.273.1.150] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To further define the structure of the nucleotide binding sites on the vacuolar proton-translocating ATPase (V-ATPase), the role of aromatic residues at the catalytic sites was probed using site-directed mutagenesis of the VMA1 gene that encodes the A subunit in yeast. Substitutions were made at three positions (Phe452, Tyr532, and Phe538) that correspond to residues observed in the crystal structure of the homologous beta subunit of the bovine mitochondrial F-ATPase to be in proximity to the adenine ring of bound ATP. Although conservative substitutions at these positions had relatively little effect on V-ATPase activity, replacement with nonaromatic residues (such as alanine or serine) caused either a complete loss of activity (F452A) or a decrease in the affinity for ATP (Y532S and F538A). The F452A mutation also appeared to reduce stability of the V-ATPase complex. These results suggest that aromatic or hydrophobic residues at these positions are essential to maintain activity and/or high affinity binding to the catalytic sites of the V-ATPase. Site-directed mutations were also made at residues (Phe479 and Arg483) that are postulated to be contributed by the A subunit to the noncatalytic nucleotide binding sites. Generally, substitutions at these positions led to decreases in activity ranging from 30 to 70% relative to wild type as well as modest decreases in Km for ATP. Interestingly, the R483E and R483Q mutants showed a time-dependent increase in ATPase activity following addition of ATP, suggesting that events at the noncatalytic sites may modulate the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- K J MacLeod
- Departments of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
31
|
Marshansky V, Bourgoin S, Londoño I, Bendayan M, Maranda B, Vinay P. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 1997; 18:2661-76. [PMID: 9580051 DOI: 10.1002/elps.1150181423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preparation of kidney proximal tubules in suspension allows the study of receptor-mediated endocytosis, protein reabsorption, and traffic of endosomal vesicles. The study of tubular protein transport in vitro coupled with that of the function of endosomal preparation offers a unique opportunity to investigate a receptor-mediated endocytosis pathway under physiological and pathological conditions. We assume that receptor-mediated endocytosis of albumin in kidney proximal tubules in situ and in vitro can be regulated, on the one hand, by the components of the acidification machinery (V-type H+-ATPase, Cl(-)-channel and Na+/H+-exchanger), giving rise to formation and dissipation of a proton gradient in endosomal vesicles, and, on the other hand, by small GTPases of the ADP-ribosylation factor (Arf)-family. In this paper we thus analyze the recent advances of the studies of cellular and molecular mechanisms underlying the identification, localization, and function of the acidification machinery (V-type H+-ATPase, Cl(-)-channel) as well as Arf-family small GTPases and phospholipase D in the endocytotic pathway of kidney proximal tubules. Also, we explore the possible functional interaction between the acidification machinery and Arf-family small GTPases. Finally, we propose the hypothesis of the regulation of translocation of Arf-family small GTPases by an endosomal acidification process and its role during receptor-mediated endocytosis in kidney proximal tubules. The results of this study will not only enhance our understanding of the receptor-mediated endocytosis pathway in kidney proximal tubules under physiological conditions but will also have important implications with respect to the functional consequences under some pathological circumstances. Furthermore, it may suggest novel targets and approaches in the prevention and treatment of various diseases (cystic fibrosis, Dent's disease, diabetes and autosomal dominant polycystic kidney disease).
Collapse
Affiliation(s)
- V Marshansky
- Centre de Recherche L.-C. Simard, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Band 3 Campinas: A Novel Splicing Mutation in the Band 3 Gene (AE1 ) Associated With Hereditary Spherocytosis, Hyperactivity of Na+/Li+ Countertransport and an Abnormal Renal Bicarbonate Handling. Blood 1997. [DOI: 10.1182/blood.v90.7.2810.2810_2810_2818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the molecular defect underlying band 3 deficiency in one family with hereditary spherocytosis using nonradioactive single strand conformation polimorphism of polymerase chain reaction (PCR) amplified genomic DNA of the AE1 gene. By direct sequencing, a single base substitution in the splicing donor site of intron 8 (position + 1G → T) was identified. The study of the cDNA showed a skipping of exon 8. This exon skipping event is responsible for a frameshift leading to a premature stop codon 13 amino acids downstream. The distal urinary acidification test by furosemide was performed to verify the consequences of the band 3 deficiency in α intercalated cortical collecting duct cells (αICCDC). We found an increased basal urinary bicarbonate excretion, associated with an increased basal urinary pH and an efficient distal urinary acidification. We also tested the consequences of band 3 deficiency on the Na+/H+ exchanger, by the measurement of Na+/Li+ countertransport activity in red blood cells. The Na+/Li+ countertransport activity was increased threefold to sixfold in the patients compared with the controls. It is possible that band 3 deficiency in the kidney leads to a decrease in the reabsorption of HCO−3 in αICCDC and anion loss, which might be associated with an increased sodium-lithium countertransport activity.
Collapse
|
34
|
Band 3 Campinas: A Novel Splicing Mutation in the Band 3 Gene (AE1 ) Associated With Hereditary Spherocytosis, Hyperactivity of Na+/Li+ Countertransport and an Abnormal Renal Bicarbonate Handling. Blood 1997. [DOI: 10.1182/blood.v90.7.2810] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have studied the molecular defect underlying band 3 deficiency in one family with hereditary spherocytosis using nonradioactive single strand conformation polimorphism of polymerase chain reaction (PCR) amplified genomic DNA of the AE1 gene. By direct sequencing, a single base substitution in the splicing donor site of intron 8 (position + 1G → T) was identified. The study of the cDNA showed a skipping of exon 8. This exon skipping event is responsible for a frameshift leading to a premature stop codon 13 amino acids downstream. The distal urinary acidification test by furosemide was performed to verify the consequences of the band 3 deficiency in α intercalated cortical collecting duct cells (αICCDC). We found an increased basal urinary bicarbonate excretion, associated with an increased basal urinary pH and an efficient distal urinary acidification. We also tested the consequences of band 3 deficiency on the Na+/H+ exchanger, by the measurement of Na+/Li+ countertransport activity in red blood cells. The Na+/Li+ countertransport activity was increased threefold to sixfold in the patients compared with the controls. It is possible that band 3 deficiency in the kidney leads to a decrease in the reabsorption of HCO−3 in αICCDC and anion loss, which might be associated with an increased sodium-lithium countertransport activity.
Collapse
|
35
|
Liu Q, Leng XH, Newman PR, Vasilyeva E, Kane PM, Forgac M. Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem 1997; 272:11750-6. [PMID: 9115229 DOI: 10.1074/jbc.272.18.11750] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the function of residues at the catalytic nucleotide binding site of the V-ATPase, we have carried out site-directed mutagenesis of the VMA1 gene encoding the A subunit of the V-ATPase in yeast. Of the three cysteine residues that are conserved in all A subunits sequenced thus far, two (Cys284 and Cys539) appear essential for correct folding or stability of the A subunit. Mutation of the third cysteine (Cys261), located in the glycine-rich loop, to valine, generated an enzyme that was fully active but resistant to inhibition by N-ethylmalemide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and oxidation. To test the role of disulfide bond formation in regulation of vacuolar acidification in vivo, we have also determined the effect of the C261V mutant on targeting and processing of the soluble vacuolar protein carboxypeptidase Y. No difference in carboxypeptidase Y targeting or processing is observed between the wild type and C261V mutant, suggesting that disulfide bond formation in the V-ATPase A subunit is not essential for controlling vacuolar acidification in the Golgi. In addition, fluid phase endocytosis of Lucifer Yellow, quinacrine staining of acidic intracellular compartments and cell growth are indistinguishable in the C261V and wild type cells. Mutation of G250D in the glycine-rich loop also resulted in destabilization of the A subunit, whereas mutation of the lysine residue in this region (K263Q) gave a V-ATPase complex which showed normal levels of A subunit on the vacuolar membrane but was unstable to detergent solubilization and isolation and was totally lacking in V-ATPase activity. By contrast, mutation of the acidic residue, which has been postulated to play a direct catalytic role in the homologous F-ATPases (E286Q), had no effect on stability or assembly of the V-ATPase complex, but also led to complete loss of V-ATPase activity. The E286Q mutant showed labeling by 2-azido-[32P]ATP that was approximately 60% of that observed for wild type, suggesting that mutation of this glutamic acid residue affected primarily ATP hydrolysis rather than nucleotide binding.
Collapse
Affiliation(s)
- Q Liu
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nelson N, Klionsky DJ. Vacuolar H(+)-ATPase: from mammals to yeast and back. EXPERIENTIA 1996; 52:1101-10. [PMID: 8988252 DOI: 10.1007/bf01952108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vacuolar H(+)-adenosine triphosphatase (V-ATPase) is composed of distinct catalytic (V1) and membrane (V0) sectors containing several subunits. The biochemistry of the enzyme was mainly studied in organelles from mammalian cells such as chromaffin granules and clathrin-coated vesicles. Subsequently, mammalian cDNAs and yeast genes encoding subunits of V-ATPase were cloned and sequenced. The sequence information revealed the relation between V- and F-ATPase that evolved from a common ancestor. The isolation of yeast genes encoding subunits of V-ATPase opened an avenue for molecular biology studies of the enzyme. Because V-ATPase is present in every known eukaryotic cell and provides energy for vital transport systems, it was anticipated that disruption of genes encoding V-ATPase subunits would be lethal. Fortunately, yeast cells can survive the absence of V-ATPase by 'drinking' the acidic medium. So far only yeast cells have been shown to be viable without an active V-ATPase. In contrast to yeast, mammalian cells may have more than one gene encoding each of the subunits of the enzyme. Some of these genes encode tissue- and/or organelle-specific subunits. Expression of these specific cDNAs in yeast cells may reveal their unique functions in mammalian cells. Following the route from mammals to yeast and back may prove useful in the study of many other complicated processes.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
37
|
Sullivan GV, Perry SF, Fryer JN. Localization of mRNA for the proton pump (H+-ATPase) and exchanger in the rainbow trout gill. CAN J ZOOL 1996. [DOI: 10.1139/z96-238] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In situ hybridization was performed on sections of rainbow trout (Oncorhynchus mykiss) gill tissue using oligonucleotide probes complementary to the mRNA of the 31-kilodalton subunit of the bovine renal V-type H+-ATPase or rat kidney Band 3 anion exchanger ([Formula: see text] exchanger). This was conducted in conjunction with measurements of whole-body net acid fluxes and blood acid–base status during imposed conditions of respiratory acidosis (external hypercapnia) or metabolic alkalosis (NaHCO3infusion). A positive hybridization signal for the H+-ATPase mRNA was localized predominantly in lamellar epithelial cells and was less apparent in cells associated with the filament or interlamellar regions. The H+-ATPase hybridization signal was enhanced during hypercapnic acidosis concurrently with a marked increase in whole-body net acid excretion. A positive hybridization signal for the [Formula: see text] exchanger mRNA was observed in epithelial cells on both the filament and lamella. During metabolic alkalosis induced by intra-arterial infusion of NaHCO3, there was a marked increase in the [Formula: see text] exchanger mRNA hybridization signal in cells on both the filament and lamella that occurred concurrently with a decrease in net acid excretion. The results of this study support the existence of a V-type H+-ATPase and a [Formula: see text] exchanger in rainbow trout gill epithelial cells and demonstrate that alterations in gene expression for the pump–exchanger may be a significant mechanism underlying the altered rates of net acid equivalent excretion during acid – base disturbances.
Collapse
|
38
|
Marshansky V, Vinay P. Proton gradient formation in early endosomes from proximal tubules. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1284:171-80. [PMID: 8914581 DOI: 10.1016/s0005-2736(96)00123-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heavy endosomes were isolated from proximal tubules using a combination of magnesium precipitation and wheat-germ agglutinin negative selection techniques. Two small GTPases (Rab4 and Rab5) known to be specifically present in early endosomes were identified in our preparations. Endosomal acidification was followed fluorimetrically using acridine orange. In presence of chloride ions and ATP, the formation of a proton gradient (delta pH) was observed. This process is due to the activity of an electrogenic V-type ATPase present in the endosomal membrane since specific inhibitors bafilomycin and folimycin effectively prevented or eliminated endosomal acidification. In presence of chloride ions (K(m) = 30 mM) the formation of the proton gradient was optimal. Inhibitors of chloride channel activity such as DIDS and NPPB reduced acidification. The presence of sodium ions stimulated the dissipation of the proton gradient. This effect of sodium was abolished by amiloride derivative (MIA) but only when loaded into endosomes, indicating the presence of a physiologically oriented Na+/H(+)-exchanger in the endosomal membrane. Monensin restored the gradient dissipation. Thus three proteins (V-type ATPase, Cl(-)-channel, Na+/H(+)-exchanger) present in early endosomes isolated from proximal tubules may regulate the formation, maintenance and dissipation of the proton gradient.
Collapse
Affiliation(s)
- V Marshansky
- Nephrology Laboratory, Centre de Recherche Louis-Charles Simard, Hôpital Notre-Dame de Montréal, Québec, Canada.
| | | |
Collapse
|
39
|
Leng XH, Manolson MF, Liu Q, Forgac M. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem 1996; 271:22487-93. [PMID: 8798414 DOI: 10.1074/jbc.271.37.22487] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for acidification of intracellular compartments in eukaryotic cells. V-ATPases possess a subunit of approximate molecular mass 100 kDa of unknown function that is composed of an amino-terminal hydrophilic domain and a carboxyl-terminal hydrophobic domain. To test whether the 100-kDa subunit plays a role in proton transport, site-directed mutagenesis of the VPH1 gene, which is one of two genes that encodes this subunit in yeast, has been carried out in a strain lacking both endogenous genes. Ten charged and twelve polar residues located in the seven putative transmembrane helices in the COOH-terminal domain of the molecule were individually changed, and the effects on proton transport, ATPase activity, and assembly of the yeast V-ATPase were measured. Two mutations (R735L and Q634L) in transmembrane helix 6 and at the border of transmembrane helix 5, respectively, showed greatly reduced levels of the 100-kDa subunit in the vacuolar membrane, suggesting that these mutations affected stability of the 100-kDa subunit. Two mutations, D425N and K538A, in transmembrane helix 1 and at the border of transmembrane helix 3, respectively, showed reduced assembly of the V-ATPase, with the D425N mutation also reducing the activity of V-ATPase complexes that did assemble. Two mutations, H743A and K593A, in transmembrane helix 6 and at the border of transmembrane helix 4, respectively, have significantly greater effects on activity than on assembly, with proton transport and ATPase activity inhibited 40-60%. One mutation, E789Q, in transmembrane helix 7, virtually completely abolished proton transport and ATPase activity while having no effect on assembly. These results suggest that the 100-kDa subunit may be required for activity as well as assembly of the V-ATPase complex and that several charged residues in the last four putative transmembrane helices of this subunit may play a role in proton transport.
Collapse
Affiliation(s)
- X H Leng
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
40
|
Pacheco G, Lippo de Bécemberg I, Gonzalez de Alfonzo R, Alfonzo MJ. Biochemical characterization of a V-ATPase of tracheal smooth muscle plasma membrane fraction. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:182-92. [PMID: 8703972 DOI: 10.1016/0005-2736(96)00038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A biochemical characterization of a Mg(2+)-ATPase activity associated with a plasma membrane fraction isolated from airway (tracheal) smooth muscle was performed. This enzyme is an integral part of the membrane remaining tightly bound after 0.6 M KCl extraction. This enzyme activity showed a cold inactivation in the presence of ATP and Mg2+. Also, this Mg(2+)-ATPase was stimulated by monovalent anions being Cl-, the best anion for such stimulation, even though Br- and I- were good substitutes and F- was ineffective. This Cl--stimulated activity showed a powerful nucleosidetriphosphatase activity having the following divalent cation specificity: Mg2+ > Mn2+ > Ca2+, where Zn2+ and Fe2+ were ineffective. This ATPase activity was not inhibited by ouabain oligomycin C and vanadate indicating that neither P- or F-ATPases were associated with this enzyme activity. However, the existence of a V-ATPase was shown by the significant inhibition causes by bafilomycin A1. Additionally, this V-ATPase seems to be coupled to Cl- conductor because duramycin inhibited this ATPase activity. The presence of a H+ pump associated to this V-ATPase was shown indirectly, through the stimulatory effect produced by uncouplers such as FCCP and 1799, which were able to produce significant stimulation of this V-ATPase indicating the existence of a H(+)-ATPase. Finally, the immunodetection of a 72 kDa polypeptide using a specific antibody against the A subunit (72 kDa) of V-ATPase from chromaffin granule demonstrated the presence of a V-ATPase in this plasma membrane fraction.
Collapse
Affiliation(s)
- G Pacheco
- Catedras de Bioquímica y Patología General y Fisiopatología, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
41
|
Seki G, Coppola S, Yoshitomi K, Burckhardt BC, Samarzija I, Müller-Berger S, Frömter E. On the mechanism of bicarbonate exit from renal proximal tubular cells. Kidney Int 1996; 49:1671-7. [PMID: 8743474 DOI: 10.1038/ki.1996.244] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We compare here the results of electrophysiological measurements on proximal tubular cells performed on rat kidney in vivo and on isolated rabbit and rat tubules in vitro. Based on different effects of carbonic anhydrase inhibitors in the in vivo and in vitro preparation, we conclude that NaHCO3 cotransport across the basolateral cell membrane functions as Na(+)-CO3(2-)-HCO3- cotransport in vivo, but as Na(+)-HCO3(-)-HCO3- cotransport in the classical in vitro preparation. The former, but not the latter, transport mode is characterized by generation of local disequilibrium pH/CO3(2-) concentrations that oppose fluxes if membrane-bound carbonic anhydrase is inhibited. In support of this conclusion, we find that overall transport functions with a HCO3- to Na+ stoichiometry of 3:1 in vivo (since each transported CO3(2-) eventually generates 2 HCO3- ions), but 2:1 in vitro. This has been deduced from various measurements, among them super-Nernstian and reverse nernstian, potential responses to changing ion concentrations which are characteristic of obligatorily coupled cation-anion cotransporters, but are not known in classical electrochemistry. The different transport modes in vivo and in vitro suggest that isolated proximal tubules have functional deficits compared to proximal tubules in vivo.
Collapse
Affiliation(s)
- G Seki
- Zentrum der Physiologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Gluck SL, Iyori M, Holliday LS, Kostrominova T, Lee BS. Distal urinary acidification from Homer Smith to the present. Kidney Int 1996; 49:1660-4. [PMID: 8743472 DOI: 10.1038/ki.1996.242] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Since Smith's time, the essential role of collecting duct intercalated cells in controlling net acid excretion has been recognized. Rather than employing an H(+)-exchange mechanism, intercalated cells have V-ATPase on the plasma membrane and in plasmalemma-associated tubulovesicles, which functions in the bicarbonate reabsorption, regeneration, and bicarbonate secretion required for acid-base homeostasis. Several distinct mechanisms participate in regulating V-ATPase-driven H+ secretion in different cell types: (1) Renal epithelial cells have the capacity to express different structural forms of V-ATPase that have intrinsic differences in their enzymatic properties. 2) The kidney produces cytosolic regulatory proteins, capable of interacting directly with the V-ATPase, that may modify its activity. V-ATPases in different cell types may differ in the degree to which their activity is affected by regulatory factors, as a result of variations in V-ATPase structure. (3) In the alpha intercalated cell, the number of active V-ATPases on the luminal membrane is controlled in vivo by membrane vesicle-mediated traffic that may require unidentified mediators. In the beta intercalated cell, the number of active V-ATPases on the basolateral membrane may be controlled by regulated assembly and disassembly, responding directly to extracellular pH.
Collapse
Affiliation(s)
- S L Gluck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
43
|
Vasilyeva E, Forgac M. 3'-O-(4-Benzoyl)benzoyladenosine 5'-triphosphate inhibits activity of the vacuolar (H+)-ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, noncatalytic nucleotide binding site on the B subunit. J Biol Chem 1996; 271:12775-82. [PMID: 8662754 DOI: 10.1074/jbc.271.22.12775] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It was previously observed that the B subunit of the tonoplast V-ATPase is modified by the photoactivated nucleotide analog 3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (BzATP) (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). We have further characterized the nucleotide binding sites on the V-ATPase and the interaction between BzATP and the B subunit. We observe that the V-ATPase isolated from bovine clathrin-coated vesicles possesses approximately 1 mol of endogenous, tightly bound ATP/mol of V-ATPase complex. BzATP is not a substrate for the V-ATPase, but does act as a noncovalent inhibitor in the absence of irradiation, changing the kinetic characteristics of ATP hydrolysis. Irradiation of the V-ATPase in the presence of [3H]BzATP results primarily in modification of the 58-kDa B subunit, with complete inhibition of V-ATPase activity occurring upon modification of one B subunit per V-ATPase complex. Inhibition occurs as the result of modification of a rapidly (t1/2 < 2 min) exchangeable site, and yet this site does not correspond to a catalytic site, as indicated by the effects of cysteine-modifying reagents which react with Cys254 located at the catalytic sites on the A subunit. Thus, the noncatalytic nucleotide binding site modified by BzATP appears to be rapidly exchangeable. The site of [3H]BzATP modification of the B subunit was localized to the region Ile164 to Gln171, which from the x-ray crystal structure of the homologous F-ATPase alpha subunit, is within 10 A of the ribose ring of ATP bound to the noncatalytic nucleotide binding site. Thus, despite the absence of a glycine-rich loop region in the B subunit, these data are consistent with a similar overall folding pattern for the V-ATPase B subunit and the F-ATPase alpha subunit.
Collapse
Affiliation(s)
- E Vasilyeva
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
44
|
Abstract
Lysosomes, endosomes, and a variety of other intracellular organelles are acidified by a family of unique proton pumps, termed the vacuolar H(+)-ATPases, that are evolutionarily related to bacterial membrane proton pumps and the F1-F0 H(+)-ATPases that catalyze ATP synthesis in mitochondria and chloroplasts. The electrogenic vacuolar H(+)-ATPase is responsible for generating electrical and chemical gradients across organelle membranes with the magnitude of these gradients ultimately determined by both proton pump regulatory mechanisms and, more importantly, associated ion and organic solute transporters located in vesicle membranes. Analogous to Na+, K(+)-ATPase on the cell membrane, the vacuolar proton pump not only acidifies the vesicle interior but provides a potential energy source for driving a variety of coupled transporters, many of them unique to specific organelles. Although the basic mechanism for organelle acidification is now well understood, it is already apparent that there are many differences in both the function of the proton pump and the associated transporters in different organelles and different cell types. These differences and their physiologic and pathophysiologic implications are exciting areas for future investigation.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| |
Collapse
|
45
|
Supeková L, Supek F, Nelson N. The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. J Biol Chem 1995; 270:13726-32. [PMID: 7775427 DOI: 10.1074/jbc.270.23.13726] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) functions as a primary proton pump that generates an electrochemical gradient of protons across the membranes of several internal organelles. It is composed of distinct catalytic and membrane sectors, each containing several subunits. We identified a protein (M16) that copurifies with the V-ATPase complex from Saccharomyces cerevisiae and appears to be present at multiple copies/enzyme. Amino acid sequencing of its proteolytic products yielded three nonoverlapping peptide sequences matching an unidentified reading frame located on chromosome VIII. Sequence analysis of cDNA encoding M16 revealed that the gene encoding this protein (VMA10) is interrupted by a 162-nucleotide intron that begins after the ATG codon of the initiator methionine. The cDNA encodes an hydrophilic protein of 12,713 Da with a basic isoelectric point of pH 9. A delta vma10::URA3 null mutant exhibited growth characteristics typical of other vma disruptant mutants in genes encoding subunits of V-ATPase. The null mutant does not grow on medium buffered at pH 7.5. It fails to accumulate quinacrine into its vacuole, and subunits of the catalytic sector are not assembled onto the vacuolar membrane in the absence of M16. A cold inactivation experiment demonstrated that M16 is a subunit of the membrane sector of V-ATPase. M16 exhibits a significant sequence homology with subunit b of F-ATPase membrane sector.
Collapse
Affiliation(s)
- L Supeková
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | |
Collapse
|
46
|
Li CY, Watkins JA, Hamazaki S, Altazan JD, Glass J. Iron binding, a new function for the reticulocyte endosome H(+)-ATPase. Biochemistry 1995; 34:5130-6. [PMID: 7711032 DOI: 10.1021/bi00015a025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The significance of the H(+)-ATPase in iron absorption by rabbit reticulocytes is explored using isolated endosomes, effects of inhibitors, and the purified proton pump. We have recently reported H(+)-ATPase-mediated iron transfer across a liposomal membrane (Li et al., 1994). In this report, the effect of H(+)-ATPase inhibitors on iron mobilization is investigated at pH 6.0 in the presence of 15 microM FCCP in order to dissociate 59Fe(III) from transferrin and eliminate the kinetic effects of acidification by the ATPase. Iron transport by isolated endosomes is decreased 50% by the cation pore inhibitor dicyclohexylcarbodiimide (DCCD) for ascorbate-mediated iron mobilization and increased by 40-50% when NADH and ferrocyanide are used as electron donors. In contrast, the ATPase hydrolysis inhibitors N-methylmaleimide (NEM) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD) increase iron mobilization when NADH and ferrocyanide are used as reductants but have negligible effects for ascorbate. The differential inhibition or enhancement by DCCD, NEM, and NBD with respect to the reductants used for mobilization indicates that the H(+)-ATPase may be involved in the multiple pathways or iron transport found in isolated rabbit reticulocyte endosomes. Effects of inhibitors of ATP hydrolysis suggest significant structural interactions between the proton pump and sites for iron binding and/or reduction. The isolated H(+)-ATPase binds iron as revealed by using nondenaturing electrophoretic and chromatographic methods. One class of iron binding sites is suggested to be the 17.5 kDa proton pore subunits of the H(+)-ATPase which also covalently react with DCCD.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Li
- Department of Medicine, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Schuldiner S, Shirvan A, Stern-Bach Y, Steiner-Mordoch S, Yelin R, Laskar O. From bacterial antibiotic resistance to neurotransmitter uptake. A common theme of cell survival. Ann N Y Acad Sci 1994; 733:174-84. [PMID: 7978865 DOI: 10.1111/j.1749-6632.1994.tb17267.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Schuldiner
- Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- S Schuldiner
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
50
|
Abstract
Vacuolar H(+)-ATPase (V-ATPase) plays a key role in neurotransmission. It provides the energy for the uptake and storage of neurotransmitters in synaptic vesicles and granules. It also may play a role in the biogenesis of synaptic vesicles as well as in neurosecretion. This is one of the most conserved fundamental enzymes in nature, but functions in a wide variety or organelles and membranes. Its structure, function, molecular biology and biogenesis is discussed in relation to its role in neurotransmission. Termination of neurotransmission is carried out by neurotransmitter transporters that function in the reuptake of the neurotransmitters into the presynaptic cells. We cloned, sequenced and expressed several cDNAs encoding neurotransmitter transporters. Their specificity and site of synthesis revealed some new aspects of neurotransmission.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| |
Collapse
|