1
|
Mossine VV, Kelley SP, Mawhinney TP. β-d-Galacto-pyranosyl-(1→4)-2-amino-2-de-oxy-α-d-gluco-pyran-ose hydro-chloride monohydrate (lactosamine). IUCRDATA 2022; 7:x220061. [PMID: 36337090 PMCID: PMC9028551 DOI: 10.1107/s241431462200061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
The title compound, C12H24NO10 +·Cl-·H2O, (I), crystallizes in the monoclinic space group P21 and exists as a monohydrate of a monosubstituted ammonium chloride salt, with the reducing carbohydrate portion existing exclusively as the α-pyran-ose tautomer. The glycosidic bond geometry in (I) is stabilized by an intra-molecular hydrogen bond and is close to that found in crystalline α-lactose. All heteroatoms except gluco-pyran-ose ring O4 participate in an extensive hydrogen-bonding network, which propagates in all directions in the crystal structure of (I).
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
2
|
Tyrikos-Ergas T, Fittolani G, Seeberger PH, Delbianco M. Structural Studies Using Unnatural Oligosaccharides: Toward Sugar Foldamers. Biomacromolecules 2019; 21:18-29. [DOI: 10.1021/acs.biomac.9b01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
4
|
Engelsen SB, Hansen PI, Pérez S. POLYS 2.0: An open source software package for building three-dimensional structures of polysaccharides. Biopolymers 2014; 101:733-43. [DOI: 10.1002/bip.22449] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Søren B. Engelsen
- Spectroscopy & Chemometrics; Faculty of Science, University of Copenhagen; Rolighedsvej 30, DK-1958 Frederiksberg C Copenhagen Denmark
| | - Peter I. Hansen
- Spectroscopy & Chemometrics; Faculty of Science, University of Copenhagen; Rolighedsvej 30, DK-1958 Frederiksberg C Copenhagen Denmark
| | - Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales; CNRS; BP 53 X 380451 Grenoble Cedex France
| |
Collapse
|
5
|
Benevides RG, Ganne G, Simões RDC, Schubert V, Niemietz M, Unverzagt C, Chazalet V, Breton C, Varrot A, Cavada BS, Imberty A. A lectin from Platypodium elegans with unusual specificity and affinity for asymmetric complex N-glycans. J Biol Chem 2012; 287:26352-64. [PMID: 22692206 DOI: 10.1074/jbc.m112.375816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with K(d) of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm.
Collapse
Affiliation(s)
- Raquel Guimarães Benevides
- Centre de Recherche sur les Macromolécules Végétales-CNRS (affiliated with Université Joseph Fourier and Institut de Chimie Moléculaire de Grenoble), 38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Echeverria I, Amzel LM. Disaccharide binding to galectin-1: free energy calculations and molecular recognition mechanism. Biophys J 2011; 100:2283-92. [PMID: 21539798 DOI: 10.1016/j.bpj.2011.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/19/2023] Open
Abstract
Galectin-1, a member of the conserved family of carbohydrate-binding proteins with affinity for β-galactosides, is a key modulator of diverse cell functions such as immune response and regulation. The binding affinity and specificity of galectin-1 for eight different β-galactosyl terminal disaccharides was studied using molecular-dynamics simulations in which the ligand was pulled away from the binding site using a mechanical force. We present what we believe to be a novel procedure, based on combinations of multistep trajectories, that was used to estimate the binding free energy (ΔG) of each disaccharide. The computed binding free energy differences show excellent correlation with experimental values determined previously. The small differences in affinity among the disaccharides are the result of an exquisite balance between the strengths of the galectin-sugar H-bonds and the H-bonds the protein and the disaccharides make with the solvent. Analysis of the free energies along the reaction coordinate shows that disaccharide unbinding/binding presents no energetic barrier and, therefore, is diffusion-limited. In addition, the calculations revealed that as the ligand is undocked from the binding site, breaking of protein-disaccharide H-bonds takes place in stages with intermediate states in which the interactions are bridged by water molecules.
Collapse
Affiliation(s)
- Ignacia Echeverria
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
Mathieu SV, Aragão KS, Imberty A, Varrot A. Discoidin I from Dictyostelium discoideum and Interactions with oligosaccharides: specificity, affinity, crystal structures, and comparison with discoidin II. J Mol Biol 2010; 400:540-54. [PMID: 20580724 DOI: 10.1016/j.jmb.2010.05.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 12/21/2022]
Abstract
Discoidin I (DiscI) and discoidin II (DiscII) are N-acetylgalactosamine (GalNAc)-binding proteins from Dictyostelium discoideum. They consist of two domains: an N-terminal discoidin domain and a C-terminal H-type lectin domain. They were cloned and expressed in high yield in recombinant form in Escherichia coli. Although both lectins bind galactose (Gal) and GalNAc, glycan array experiments performed on the recombinant proteins displayed strong differences in their specificity for oligosaccharides. DiscI and DiscII bind preferentially to Gal/GalNAcbeta1-3Gal/GalNAc-containing and Gal/GalNAcbeta1-4GlcNAcbeta1-6Gal/GalNAc-containing glycans, respectively. The affinity of the interaction of DiscI with monosaccharides and disaccharides was evaluated using isothermal titration calorimetry experiments. The three-dimensional structures of native DiscI and its complexes with GalNAc, GalNAcbeta1-3Gal, and Galbeta1-3GalNAc were solved by X-ray crystallography. DiscI forms trimers with involvement of calcium at the monomer interface. The N-terminal discoidin domain presents a structural similarity to F-type lectins such as the eel agglutinin, where an amphiphilic binding pocket suggests possible carbohydrate-binding activity. In the C-terminal H-type lectin domain, the GalNAc residue establishes specific hydrogen bonds that explain the observed affinity (K(d)=3x10(-4) M). The different specificities of DiscI and DiscII for oligosaccharides were rationalized from the different structures obtained by either X-ray crystallography or molecular modeling.
Collapse
Affiliation(s)
- Sophie V Mathieu
- CERMAV-CNRS, 601 rue de la Chimie, BP53, F-38041 Grenoble Cedex 09, France
| | | | | | | |
Collapse
|
8
|
Xia J, Margulis CJ. Computational Study of the Conformational Structures of Saccharides in Solution Based on J Couplings and the “Fast Sugar Structure Prediction Software”. Biomacromolecules 2009; 10:3081-8. [DOI: 10.1021/bm900756q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junchao Xia
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | | |
Collapse
|
9
|
Xia J, Margulis C. A tool for the prediction of structures of complex sugars. JOURNAL OF BIOMOLECULAR NMR 2008; 42:241-256. [PMID: 18953494 DOI: 10.1007/s10858-008-9279-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/11/2008] [Indexed: 05/27/2023]
Abstract
In two recent back to back articles(Xia et al., J Chem Theory Comput 3:1620-1628 and 1629-1643, 2007a, b) we have started to address the problem of complex oligosaccharide conformation and folding. The scheme previously presented was based on exhaustive searches in configuration space in conjunction with Nuclear Overhauser Effect (NOE) calculations and the use of a complex rotameric library that takes branching into account. NOEs are extremely useful for structural determination but only provide information about short range interactions and ordering. Instead, the measurement of residual dipolar couplings (RDC), yields information about molecular ordering or folding that is long range in nature. In this article we show the results obtained by incorporation RDC calculations into our prediction scheme. Using this new approach we are able to accurately predict the structure of six human milk sugars: LNF-1, LND-1, LNF-2, LNF-3, LNnT and LNT. Our exhaustive search in dihedral configuration space combined with RDC and NOE calculations allows for highly accurate structural predictions that, because of the non-ergodic nature of these molecules on a time scale compatible with molecular dynamics simulations, are extremely hard to obtain otherwise (Almond et al., Biochemistry 43:5853-5863, 2004). Molecular dynamics simulations in explicit solvent using as initial configurations the structures predicted by our algorithm show that the histo-blood group epitopes in these sugars are relatively rigid and that the whole family of oligosaccharides derives its conformational variability almost exclusively from their common linkage (beta-D: -GlcNAc-(1-->3)-beta-D: -Gal) which can exist in two distinct conformational states. A population analysis based on the conformational variability of this flexible glycosidic link indicates that the relative population of the two distinct states varies for different human milk oligosaccharides.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
10
|
Gourdine JP, Cioci G, Miguet L, Unverzagt C, Silva DV, Varrot A, Gautier C, Smith-Ravin EJ, Imberty A. High affinity interaction between a bivalve C-type lectin and a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry. J Biol Chem 2008; 283:30112-20. [PMID: 18687680 PMCID: PMC2662075 DOI: 10.1074/jbc.m804353200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/21/2008] [Indexed: 01/02/2023] Open
Abstract
Codakine is an abundant 14-kDa mannose-binding C-type lectin isolated from the gills of the sea bivalve Codakia orbicularis. Binding studies using inhibition of hemagglutination indicated specificity for mannose and fucose monosaccharides. Further experiments using a glycan array demonstrated, however, a very fine specificity for N-linked biantennary complex-type glycans. An unusually high affinity was measured by titration microcalorimetry performed with a biantennary Asn-linked nonasaccharide. The crystal structure of the native lectin at 1.3A resolution revealed a new type of disulfide-bridged homodimer. Each monomer displays three intramolecular disulfide bridges and contains only one calcium ion located in the canonical binding site that is occupied by a glycerol molecule. The structure of the complex between Asn-linked nonasaccharide and codakine has been solved at 1.7A resolution. All residues could be located in the electron density map, except for the capping beta1-4-linked galactosides. The alpha1-6-linked mannose binds to calcium by coordinating the O3 and O4 hydroxyl groups. The GlcNAc moiety of the alpha1,6 arm engages in several hydrogen bonds with the protein, whereas the GlcNAc on the other antenna is stacked against Trp(108), forming an extended binding site. This is the first structural report for a bivalve lectin.
Collapse
Affiliation(s)
- Jean-Philippe Gourdine
- Département de Biologie, Université des Antilles et de la Guyane, Pointe-à-Pitre, F-97159 Guadeloupe, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Buts L, Garcia-Pino A, Imberty A, Amiot N, Boons GJ, Beeckmans S, Versées W, Wyns L, Loris R. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. FEBS J 2006; 273:2407-20. [PMID: 16704415 DOI: 10.1111/j.1742-4658.2006.05248.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.
Collapse
Affiliation(s)
- Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
González-Outeiriño J, Kadirvelraj R, Woods RJ. Structural elucidation of type III group B Streptococcus capsular polysaccharide using molecular dynamics simulations: the role of sialic acid. Carbohydr Res 2005; 340:1007-18. [PMID: 15780265 DOI: 10.1016/j.carres.2004.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/16/2004] [Indexed: 11/23/2022]
Abstract
The conformational properties of the capsular polysaccharide (CPS) from group B Streptococcus serotype III (GBS III) are derived from 50 ns explicitly solvated molecular dynamics simulations of a 25-residue fragment of the CPS. The results from the simulations are shown to be consistent with experimental NMR homo- and heteronuclear J-coupling and NOE data for both the sialylated native CPS and for the chemically desialylated polysaccharide. A helical structure is predicted with a diameter of 29.3 A and a pitch 89.5 A, in which the sialylated side chains are arrayed on the exterior surface of the helix. The results provide an explanation for the observation that CPS antigenicity varies with carbohydrate chain length up to approximately 4 pentasaccharide repeat units. The conformation of the immunodominant region is established and shown to be independent of the presence of sialic acid. The data provide an explanation for the observation that the specificity of the determinant, associated with the major population of antibodies raised upon immunization of rabbits with GBS III, is dependent on the presence of sialic acid. In the sialylated native CPS, the antibody response is largely directed against the immunodominant core of the helix. From simulations of the desialylated CPS, a model emerges which suggests that the minor population of antibodies, whose determinant is not sialic acid dependent, recognizes the same immunodominant region, but that in the disordered CPS this region is not presented in a regular repeating motif.
Collapse
Affiliation(s)
- Jorge González-Outeiriño
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
13
|
Johansson P, Nilsson J, Angström J, Miller-Podraza H. Interaction of Helicobacter pylori with sialylated carbohydrates: the dependence on different parts of the binding trisaccharide Neu5Acα3Galβ4GlcNAc. Glycobiology 2005; 15:625-36. [PMID: 15659615 DOI: 10.1093/glycob/cwi044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have recently shown that binding of Helicobacter pylori to sialylated carbohydrates is dependent on the presence of the carboxyl group and the glycerol chain of Neu5Ac. In this work we investigated the importance of GlcNAc in the binding trisaccharide Neu5Acalpha3Galbeta4GlcNAc and the role of the N-acetamido groups of both Neu5Ac and GlcNAc. An important part of the project was epitope dissection, that is chemical derivatizations of the active carbohydrate followed by binding studies. In addition we used a panel of various unmodified carbohydrate structures in the form of free oligosaccharides or glycolipids. These were tested for binding by hemagglutination inhibition assay, TLC overlay tests, and a new quantitative approach using radiolabeled neoglycoproteins. The studies showed that the N-acetamido group of Neu5Ac is important for binding by H. pylori, whereas the same group of GlcNAc is not. In addition, Fuc attached to GlcNAc, as tested with sialyl-Lewis x, did not affect the binding. Free Neu5Ac was inactive as inhibitor, and Neu5Acalpha3Gal turned out to be active. The binding preference for neolacto structures was confirmed, although one strain also was inhibited by lacto chains. The combined results revealed that an intact Neu5Ac is crucial for the interactions with H. pylori. Parts of Gal also seem to be necessary, whereas the role of the GlcNAc is secondary. GlcNAc does influence binding, however, primarily serving as a guiding carrier for the binding epitope rather than being a part of the binding structure.
Collapse
Affiliation(s)
- Petra Johansson
- Institute of Medical Biochemistry, Göteborg University, PO Box 440, SE 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
14
|
Cioci G, Rivet A, Koca J, Pérez S. Conformational analysis of complex oligosaccharides: the CICADA approach to the uromodulin O-glycans. Carbohydr Res 2004; 339:949-59. [PMID: 15010302 DOI: 10.1016/j.carres.2003.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/12/2003] [Indexed: 11/26/2022]
Abstract
Uromodulin is the pregnancy-associated Tamm-Horsfall glycoprotein, with the enhanced ability to inhibit T-cell proliferation. Pregnancy-associated structural changes mainly occur in the O-glycosylation of this glycoprotein. These include up to 12 glycan structures, made up of an unusual core type 2 sequence terminated with one, two, or three sialyl Lewis(x) sequences; this type of O-glycans could serve as E- and P-selectin ligands. The present work focuses on the most complex one; a tetradecamer made up of a type 2 core carrying three sialyl Lewis(x) branches. Five different monosaccharides are assembled by 14 glycosidic linkages. The conformational behavior of the constituting disaccharide segments was evaluated using the flexible residue procedure of the MM3 molecular mechanics procedure. For each disaccharide, the adiabatic energy surface, along with the local energy minima were established. All these results were used for the generation, prior to complete optimization of the tetradecamer. This was followed by a complete exploration of conformational hyperspace throughout the use of the single coordinate method as implemented in the CICADA program. Despite the potential flexibility of the tetradecasaccharide, only four conformational families occur, accounting for more than 95% of the total low energy conformations. For each family, the molecular properties (electrostatic, lipophilicity, and hydrogen potential) were studied. The shape of the tetradecasaccharide is best described as a flat ribbon, flanked by three branches having terminal sialyl residues. Two of the branches interact through nonbonded interactions, bringing further energy stabilization, and limiting the conformational flexibility of the sialyl residues. Only one branch maintains the original conformational features of sialyl Lewis(x). This O-glycan can be seen as a fascinating example of 'dendrimeric' structure, where the spatial arrangement of three S-Le(x) epitopes may favor its complementary 'presentations' for the interactions with E- and P-selectins.
Collapse
Affiliation(s)
- Gianluca Cioci
- Centre de Recherches sur les Macromolécules Végétales, CNRS and Joseph Fourier University, IFR 2607, BP#53, F-38041 Grenoble, France.
| | | | | | | |
Collapse
|
15
|
Koča J, Pérez S, Imberty A. Conformational analysis and flexibility of carbohydrates using the CICADA approach with MM3. J Comput Chem 2004. [DOI: 10.1002/jcc.540160305] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Engelsen SB, Pérez S, Braccini I, Du Penhoat CH. Internal motions of carbohydrates as probed by comparative molecular modeling and nuclear magnetic resonance of ethyl β-lactoside. J Comput Chem 2004. [DOI: 10.1002/jcc.540160905] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Ford MG, Weimar T, Köhli T, Woods RJ. Molecular dynamics simulations of galectin-1-oligosaccharide complexes reveal the molecular basis for ligand diversity. Proteins 2004; 53:229-40. [PMID: 14517974 PMCID: PMC4190840 DOI: 10.1002/prot.10428] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Galectin-1 is a member of a protein family historically characterized by its ability to bind carbohydrates containing a terminal galactosyl residue. Galectin-1 is found in a variety of mammalian tissues as a homodimer of 14.5-kDa subunits. A number of developmental and regulatory processes have been attributed to the ability of galectin-1 to bind a variety of oligosaccharides containing the Gal-beta-(1,4)-GlcNAc (LacNAc(II)) sequence. To probe the origin of this permissive binding, solvated molecular dynamics (MD) simulations of several representative galectin-1-ligand complexes have been performed. Simulations of structurally defined complexes have validated the computational approach and expanded upon data obtained from X-ray crystallography and surface plasmon resonance measurements. The MD results indicate that a set of anchoring interactions between the galectin-1 carbohydrate recognition domain (CRD) and the LacNAc core are maintained for a diverse set of ligands and that substituents at the nonreducing terminus of the oligosaccharide extend into the remainder of a characteristic surface groove. The anionic nature of ligands exhibiting relatively high affinities for galectin-1 implicates electrostatic interactions in ligand selectivity, which is confirmed by a generalized Born analysis of the complexes. The results suggest that the search for a single endogenous ligand or function for this lectin may be inappropriate and instead support a more general role for galectin-1, in which the lectin is able to crosslink heterogeneous oligosaccharides displayed on a variety of cell surfaces. Such binding promiscuity provides an explanation for the variety of adhesion phenomena mediated by galectin-1.
Collapse
Affiliation(s)
- Michael G. Ford
- Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602
| | - Thomas Weimar
- Institute for Chemistry, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Thies Köhli
- Institute for Chemistry, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602
- Correspondence to: Robert J. Woods, Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, GA 30602.
| |
Collapse
|
18
|
Krengel U, Olsson LL, Martínez C, Talavera A, Rojas G, Mier E, Angström J, Moreno E. Structure and Molecular Interactions of a Unique Antitumor Antibody Specific for N-Glycolyl GM3. J Biol Chem 2004; 279:5597-603. [PMID: 14627696 DOI: 10.1074/jbc.m311693200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-glycolyl GM3 ganglioside is an attractive target antigen for cancer immunotherapy, because this epitope is a molecular marker of certain tumor cells and not expressed in normal human tissues. The murine monoclonal antibody 14F7 specifically recognizes N-glycolyl GM3 and shows no cross-reactivity with the abundant N-acetyl GM3 ganglioside, a close structural homologue of N-glycolyl GM3. Here, we report the crystal structure of the 14F7 Fab fragment at 2.5 A resolution and its molecular model with the saccharide moiety of N-glycolyl GM3, NeuGcalpha3Galbeta4Glcbeta. Fab 14F7 contains a very long CDR H3 loop, which divides the antigen-binding site of this antibody into two subsites. In the docking model, the saccharide ligand is bound to one of these subsites, formed solely by heavy chain residues. The discriminative feature of N-glycolyl GM3 versus N-acetyl GM3, its hydroxymethyl group, is positioned in a hydrophilic cavity, forming hydrogen bonds with the carboxyl group of Asp H52, the indole NH of Trp H33 and the hydroxyl group of Tyr H50. For the hydrophobic methyl group of N-acetyl GM3, this environment would not be favorable, explaining why the antibody specifically recognizes N-glycolyl GM3, but not N-acetyl GM3. Mutation of Asp H52 to hydrophobic residues of similar size completely abolished binding. Our model of the antibodycarbohydrate complex is consistent with binding data for several tested glycolipids as well as for a variety of 14F7 mutants with replaced VL domains.
Collapse
Affiliation(s)
- Ute Krengel
- Department of Chemistry and Biosciences, Chalmers University of Technology, P. O. Box 462, SE-40530 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Comparative analysis of ganglioside conformations by MD simulations: implications for specific recognition by proteins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(01)00813-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Vasudevan SV, Balaji PV. Molecular dynamics simulations of alpha2 --> 8-linked disialoside: conformational analysis and implications for binding to proteins. Biopolymers 2002; 63:168-80. [PMID: 11787005 DOI: 10.1002/bip.10019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.
Collapse
Affiliation(s)
- Sheeja V Vasudevan
- Biotechnology Center, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
21
|
Bryce RA, Hillier IH, Naismith JH. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Biophys J 2001; 81:1373-88. [PMID: 11509352 PMCID: PMC1301617 DOI: 10.1016/s0006-3495(01)75793-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.
Collapse
Affiliation(s)
- R A Bryce
- School of Pharmacy and Pharmaceutical Sciences, United Kingdom.
| | | | | |
Collapse
|
22
|
Waddling CA, Plummer TH, Tarentino AL, Van Roey P. Structural basis for the substrate specificity of endo-beta-N-acetylglucosaminidase F(3). Biochemistry 2000; 39:7878-85. [PMID: 10891067 DOI: 10.1021/bi0001731] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endo-beta-N-acetylglucosaminidase F(3) cleaves the beta(1-4) link between the core GlcNAc's of asparagine-linked oligosaccharides, with specificity for biantennary and triantennary complex glycans. The crystal structures of Endo F(3) and the complex with its reaction product, the biantennary octasaccharide, Gal-beta(1-4)-GlcNAc-beta(1-2)-Man-alpha(1-3)[Gal-beta(1-4)-GlcNAc-be ta(1-2)-Man-alpha(1-6)]-Man-beta(1-4)-GlcNAc, have been determined to 1.8 and 2.1 A resolution, respectively. Comparison of the structure of Endo F(3) with that of Endo F(1), which is specific for high-mannose oligosaccharides, reveals highly distinct folds and amino acid compositions at the oligosaccharide recognition sites. Binding of the oligosaccharide to the protein does not affect the protein conformation. The conformation of the oligosaccharide is similar to that seen for other biantennary oligosaccharides, with the exception of two links: the Gal-beta(1-4)-GlcNAc link of the alpha(1-3) branch and the GlcNAc-beta(1-2)-Man link of the alpha(1-6) branch. Especially the latter link is highly distorted and energetically unfavorable. Only the reducing-end GlcNAc and two Man's of the trimannose core are in direct contact with the protein. This is in contrast with biochemical data for Endo F(1) that shows that activity depends on the presence and identity of sugar residues beyond the trimannose core. The substrate specificity of Endo F(3) is based on steric exclusion of incompatible oligosaccharides rather than on protein-carbohydrate interactions that are unique to complexes with biantennary or triantennary complex glycans.
Collapse
Affiliation(s)
- C A Waddling
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | |
Collapse
|
23
|
Wong NK, Renouf DV, Lehmann S, Hounsell EF. Glycosylation of prions and its effects on protein conformation relevant to amino acid mutations. J Mol Graph Model 2000; 18:126-34, 163-5. [PMID: 10994516 DOI: 10.1016/s1093-3263(00)00044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The three-dimensional coordinates from a nuclear magnetic resonance (NMR)-averaged structure containing residues 121-226 of mouse prion were used as the starting geometry for MD of prion either with or without glycan in both mutant and wild-type forms. The following mutants were studied: Asp-178 to Asn, Thr-183 to Ala, Phe-198 to Ser, Glu-200 to Lys, and Gln-217 to Arg. NMR data vs structural models were compared to observe any major differences. Simulations of the change in protein structure with and without glycan were performed, as they cannot be tested by NMR analysis. Several mutants were expressed and analyzed for altered glycosylation and the results interpreted in terms of molecular modeling. N-linked glycosylation is likely to play an important role in prion biology as shown by visualization of glycoprotein conformation.
Collapse
Affiliation(s)
- N K Wong
- School of Biological & Chemical Sciences, Birkbeck, University of London, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Bailey D, Renouf DV, Large DG, Warren CD, Hounsell EF. Conformational studies of the glycopeptide Ac-Tyr-[Man5GlcNAc-beta-(1-->4)GlcNAc-beta-(1-->Ndelta)]-Asn-Leu-Thr-Se r-OBz and the constituent peptide and oligosaccharide. Carbohydr Res 2000; 324:242-54. [PMID: 10744333 DOI: 10.1016/s0008-6215(99)00247-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glycopeptides of desired structure can be conveniently prepared by the coupling of reducing oligosaccharides to aspartic acid of peptides via their glycosylamines formed in the presence of saturated aqueous ammonium hydrogen carbonate. The resulting oligosaccharide chains are N-linked to asparagine as in natural glycoproteins, allowing different peptide oligosaccharide combinations to be analysed for conformational effects. In the present paper, a pentapeptide of ovalbumin was coupled to Man5GlcNAc2 oligosaccharide and the glycopeptide and the two parent compounds compared by NMR ROESY experiments and molecular dynamics simulations. Despite the small size of the peptide, conformational effects were observed suggestive of the oligosaccharide stabilising the peptide in solution and of the peptide influencing oligosaccharide conformation. These effects are relevant to the function of glycosylation and the enzymic processing of oligosaccharide chains.
Collapse
Affiliation(s)
- D Bailey
- School of Biological and Chemical Sciences, Birkbeck University of London, UK
| | | | | | | | | |
Collapse
|
25
|
Petrescu AJ, Petrescu SM, Dwek RA, Wormald MR. A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology 1999; 9:343-52. [PMID: 10089208 DOI: 10.1093/glycob/9.4.343] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have generated a database of 639 glycosidic linkage structures by an exhaustive survey of the available crystallographic data for isolated oligosaccharides, glycoproteins, and glycan-binding proteins. For isolated oligosaccharides there is relatively little crystallographic data available. A much larger number of glycoprotein and glycan-binding protein structures have now been solved in which two or more linked monosaccharides can be resolved. In the majority of these cases, only a few residues can be seen. Using the 639 glycosidic linkage structures, we have identified one or more distinct conformers for all the linkages. The O5-C1-O-C(x)' torsion angles for all these distinct conformers appear to be determined chiefly by the exo-anomeric effect. The Manalpha1-6Man linkage appears to be less restrained than the others, showing a wide degree of dispersion outside the ranges of the defined conformers. The identification of distinct conformers for glyco-sidic linkages allows "average" glycan structures to be modeled and also allows the easy identification of distorted glycosidic linkages. Such an analysis shows that the interactions between IgG Fc and its own N-linked glycan result in severe distortion of the terminal Galbeta1-4GlcNAc linkage only, indicating the strong interactions that must be present between the Gal residue and the protein surface. The applicability of this crystallographic based analysis to glycan structures in solution is discussed. This database of linkagestructures should be a very useful reference tool in three-dimensional structure determinations.
Collapse
Affiliation(s)
- A J Petrescu
- Oxford Glycobiology Institute, Department of Biochemistry,University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
26
|
Varghese JN, Hrmova M, Fincher GB. Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 1999; 7:179-90. [PMID: 10368285 DOI: 10.1016/s0969-2126(99)80024-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cell walls of the starchy endosperm and young vegetative tissues of barley (Hordeum vulgare) contain high levels of (1-->3,1-->4)-beta-D-glucans. The (1-->3,1-->4)-beta-D-glucans are hydrolysed during wall degradation in germinated grain and during wall loosening in elongating coleoptiles. These key processes of plant development are mediated by several polysaccharide endohydrolases and exohydrolases. RESULTS . The three-dimensional structure of barley beta-D-glucan exohydrolase isoenzyme ExoI has been determined by X-ray crystallography. This is the first reported structure of a family 3 glycosyl hydrolase. The enzyme is a two-domain, globular protein of 605 amino acid residues and is N-glycosylated at three sites. The first 357 residues constitute an (alpha/beta)8 TIM-barrel domain. The second domain consists of residues 374-559 arranged in a six-stranded beta sandwich, which contains a beta sheet of five parallel beta strands and one antiparallel beta strand, with three alpha helices on either side of the sheet. A glucose moiety is observed in a pocket at the interface of the two domains, where Asp285 and Glu491 are believed to be involved in catalysis. CONCLUSIONS The pocket at the interface of the two domains is probably the active site of the enzyme. Because amino acid residues that line this active-site pocket arise from both domains, activity could be regulated through the spatial disposition of the domains. Furthermore, there are sites on the second domain that may bind carbohydrate, as suggested by previously published kinetic data indicating that, in addition to the catalytic site, the enzyme has a second binding site specific for (1-->3, 1-->4)-beta-D-glucans.
Collapse
Affiliation(s)
- J N Varghese
- Biomolecular Research Institute, 343 Royal Parade, Parkville, Victoria 3052 Australia.
| | | | | |
Collapse
|
27
|
Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem 1998; 273:13047-52. [PMID: 9582341 DOI: 10.1074/jbc.273.21.13047] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectins are a family of lectins which share similar carbohydrate recognition domains (CRDs) and affinity for small beta-galactosides, but which show significant differences in binding specificity for more complex glycoconjugates. We report here the x-ray crystal structure of the human galectin-3 CRD, in complex with lactose and N-acetyllactosamine, at 2.1-A resolution. This structure represents the first example of a CRD determined from a galectin which does not show the canonical 2-fold symmetric dimer organization. Comparison with the published structures of galectins-1 and -2 provides an explanation for the differences in carbohydrate-binding specificity shown by galectin-3, and for the fact that it fails to form dimers by analogous CRD-CRD interactions.
Collapse
Affiliation(s)
- J Seetharaman
- Departments of Molecular and Medical Genetics and Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Angström J, Teneberg S, Milh MA, Larsson T, Leonardsson I, Olsson BM, Halvarsson MO, Danielsson D, Näslund I, Ljungh A, Wadström T, Karlsson KA. The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology 1998; 8:297-309. [PMID: 9499377 DOI: 10.1093/glycob/8.4.297] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The possible role of glycosphingolipids as adhesion receptors for the human gastric pathogen Helicobacter pylori was examined by use of radiolabeled bacteria, or protein extracts from the bacterial cell surface, in the thin-layer chromatogram binding assay. Of several binding specificities found, the binding to lactosylceramide is described in detail here, the others being reported elsewhere. By autoradiography a preferential binding to lactosylceramide having sphingosine/phytosphingosine and 2-D hydroxy fatty acids was detected, whereas lactosylceramide having sphingosine and nonhydroxy fatty acids was consistently nonbinding. A selective binding of H. pylori to lactosylceramide with phytosphingosine and 2-D hydroxy fatty acid was obtained when the different lactosylceramide species were incorporated into liposomes, but only in the presence of cholesterol, suggesting that this selectivity may be present also in vivo . Importantly, lactosylceramide with sphingosine and hydroxy fatty acids does not bind in this assay. Furthermore, a lactosylceramide-based binding pattern obtained for different trisaccharide glycosphingolipids is consistent with the assumption that this selectivity is due to binding of a conformation of lactosylceramide in which the oxygen of the 2-D fatty acid hydroxyl group forms a hydrogen bond with the Glc hydroxy methyl group, yielding an epitope presentation different from other possible conformers. An alternative conformation that may come into consideration corresponds to the crystal structure found for cerebroside, in which the fatty acid hydroxyl group is free to interact directly with the adhesin. By isolating glycosphingolipids from epithelial cells of human stomach from seven individuals, a binding of H.pylori to the diglycosylceramide region of the non-acid fraction could be demonstrated in one of these cases. Mass spectrometry showed that the binding-active sample contained diglycosylceramides with phytosphingosine and 2-D hydroxy fatty acids with 16-24 carbon atoms in agreement with the results related above.
Collapse
Affiliation(s)
- J Angström
- Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, S-413 90 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Glycoprotein-glycans have recently been implicated to play a variety of functional roles. The same glycan chain have been found complexed with proteins of diverse functions. In this article two such glycan chains found attached to Fc regions of immunoglobulin G and immunoglobulin M have been studied. An extensive simulated annealing procedure have been adopted to arrive at a low-energy minimum of the two oligosaccharides. Molecular dynamics simulations have been performed to study the flexibility of the glycosidic linkages. It was found that both glycan chains can undergo conformational transitions and adopt folded and extended conformations. The two beta (1-2) linkages of complex-type glycan had been found to prefer different conformational regime and the terminal fucose linked to the GlcNAc residue drastically modifies the GlcNAc beta (1-4) GlcNAc linkage conformation. In the high-mannose type glycan chain alpha (1-3) linkages can induce flexibility in addition to the alpha (1-6) linkages. The results have been compared with recent experimental nmr and fluorescence energy transfer data.
Collapse
Affiliation(s)
- C Mukhopadhyay
- Distributed Information Center, Bose Institute, Calcutta, India
| |
Collapse
|
30
|
Moothoo DN, Naismith JH. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Glycobiology 1998; 8:173-81. [PMID: 9451027 DOI: 10.1093/glycob/8.2.173] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbohydrate recognition by proteins is a key event in many biological processes. Concanavalin A is known to specifically recognize the pentasaccharide core (beta-GlcNAc-(1-->2)-alpha- Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man) of N-linked oligosaccharides with a Ka of 1.41 x 10(6 )M-1. We have determined the structure of concanavalin A bound to beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man to 2.7A. In six of eight subunits there is clear density for all five sugar residues and a well ordered binding site. The pentasaccharide adopts the same conformation in all eight subunits. The binding site is a continuous extended cleft on the surface of the protein. Van der Waals interactions and hydrogen bonds anchor the carbohydrate to the protein. Both GlcNAc residues contact the protein. The GlcNAc on the 1-->6 arm of the pentasaccharide makes particularly extensive contacts and including two hydrogen bonds. The binding site of the 1-->3 arm GlcNAc is much less extensive. Oligosaccharide recognition by Con A occurs through specific protein carbohydrate interactions and does not require recruitment of adventitious water molecules. The beta-GlcNAc-(1-->2)-Man glycosidic linkage PSI torsion angle on the 1-->6 arm is rotated by over 50 degrees from that observed in solution. This rotation is coupled to disruption of interactions at the monosaccharide site. We suggest destabilization of the monosaccharide site and the conformational strain reduces the free energy liberated by additional interactions at the 1-->6 arm GlcNAc site.
Collapse
Affiliation(s)
- D N Moothoo
- Centre for Biomolecular Sciences, The University, St. Andrews, Scotland, United Kingdom
| | | |
Collapse
|
31
|
Henrick K, Bawumia S, Barboni EA, Mehul B, Hughes RC. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiology 1998; 8:45-57. [PMID: 9451013 DOI: 10.1093/glycob/8.1.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A model of the carbohydrate recognition domain CRD, residues 111-245, of hamster galectin-3 has been made using homology modeling and dynamics minimization methods. The model is based on the known x-ray structures of bovine galectin-1 and human galectin-2. The oligosaccharides NeuNAc-alpha2,3-Gal-beta1,4-Glc and GalNAc-alpha1, 3-[Fuc-alpha1,2]-Gal-beta1,4-Glc, known to be specific high-affinity ligands for galectin-3, as well as lactose recognized by all galectins were docked in the galectin-3 CRD model structure and a minimized binding conformation found in each case. These studies indicate a putative extended carbohydrate-binding subsite in the hamster galectin-3 involving Arg139, Glu230, and Ser232 for NeuNAc-alpha2,3-; Arg139 and Glu160 for fucose-alpha1,2-; and Arg139 and Ile141 for GalNAc-alpha1,3- substituents on the primary galactose. Each of these positions is variable within the whole galectin family. Two of these residues, Arg139 and Ser232, were selected for mutagenesis to probe their importance in this newly identified putative subsite. Residue 139 adopts main-chain dihedral angles characteristic of an isolated bridge structural feature, while residue 232 is the C-terminal residue of beta-strand-11, and is followed immediately by an inverse gamma-turn. A systematic series of mutant proteins have been prepared to represent the residue variation present in the aligned sequences of galectins-1, -2, and -3. Minimized docked models were generated for each mutant in complex with NeuNAc-alpha2,3-Gal-beta1,4-Glc, GalNAc-alpha1, 3-[Fuc-alpha1,2]-Gal-beta1,4- Glc, and Gal-beta1,4-Glc. Correlation of the computed protein-carbohydrate interaction energies for each lectin-oligosaccharide pair with the experimentally determined binding affinities for fetuin and asialofetuin or the relative potencies of lactose and sialyllactose in inhibiting binding to asiolofetuin is consistent with the postulated key importance of Arg139 in recognition of the extended sialylated ligand.
Collapse
Affiliation(s)
- K Henrick
- National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Olsen LR, Dessen A, Gupta D, Sabesan S, Sacchettini JC, Brewer CF. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 1997; 36:15073-80. [PMID: 9398234 DOI: 10.1021/bi971828+] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Soybean agglutinin (SBA) (Glycine max) is a tetrameric GalNAc/Gal-specific lectin which forms unique cross-linked complexes with a series of naturally occurring and synthetic multiantennary carbohydrates with terminal GalNAc or Gal residues [Gupta et al. (1994) Biochemistry 33, 7495-7504]. We recently reported the X-ray crystal structure of SBA cross-linked with a biantennary analog of the blood group I carbohydrate antigen [Dessen et al. (1995) Biochemistry 34, 4933-4942]. In order to determine the molecular basis of different carbohydrate-lectin cross-linked lattices, a comparison has been made of the X-ray crystallographic structures of SBA cross-linked with four isomeric analogs of the biantennary blood group I carbohydrate antigen. The four pentasaccharides possess the common structure of (beta-LacNAc)2Gal-beta-R, where R is -O(CH2)5COOCH3. The beta-LacNAc moieties in the four carbohydrates are linked to the 2,3-, 2,4-, 3,6-, and 2,6-positions of the core Gal residue(s), respectively. The structures of all four complexes have been refined to approximately 2.4-2.8 A. Noncovalent lattice formation in all four complexes is promoted uniquely by the bridging action of the two arms of each bivalent carbohydrate. Association between SBA tetramers involves binding of the terminal Gal residues of the pentasaccharides at identical sites in each monomer, with the sugar(s) cross-linking to a symmetry-related neighbor molecule. While the 2,4-, 3,6-, and 2,6-pentasaccharide complexes possess a common P6422 space group, their unit cell dimensions differ. The 2, 3-pentasaccharide cross-linked complex, on the other hand, possesses the space group I4122. Thus, all four complexes are crystallographically distinct. The four cross-linking carbohydrates are in similar conformations, possessing a pseudo-2-fold axis of symmetry which lies on a crystallographic 2-fold axis of symmetry in each lattice. In the case of the 3,6- and 2,6-pentasaccharides, the symmetry of their cross-linked lattices requires different rotamer orientations about their beta(1,6) glycosidic bonds. The results demonstrate that crystal packing interactions are the molecular basis for the formation of distinct cross-linked lattices between SBA and four isomeric pentasaccharides. The present findings are discussed in terms of lectins forming unique cross-linked complexes with glycoconjugate receptors in biological systems.
Collapse
Affiliation(s)
- L R Olsen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
33
|
Qasba PK, Balaji PV, Rao VS. Conformational analysis of Asn-linked oligosaccharides: implications in biological processes. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0166-1280(96)04543-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
von der Lieth CW, Kozár T, Hull WE. A (critical) survey of modelling protocols used to explore the conformational space of oligosaccharides. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0166-1280(96)04953-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Hamelryck TW, Poortmans F, Goossens A, Angenon G, Van Montagu M, Wyns L, Loris R. Crystal structure of arcelin-5, a lectin-like defense protein from Phaseolus vulgaris. J Biol Chem 1996; 271:32796-802. [PMID: 8955116 DOI: 10.1074/jbc.271.51.32796] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the seeds of the legume plants, a class of sugar-binding proteins with high structural and sequential identity is found, generally called the legume lectins. The seeds of the common bean (Phaseolus vulgaris) contain, besides two such lectins, a lectin-like defense protein called arcelin, in which one sugar binding loop is absent. Here we report the crystal structure of arcelin-5 (Arc5), one of the electrophoretic variants of arcelin, solved at a resolution of 2.7 A. The R factor of the refined structure is 20.6%, and the free R factor is 27.1%. The main difference between Arc5 and the legume lectins is the absence of the metal binding loop. The bound metals are necessary for the sugar binding capabilities of the legume lectins and stabilize an Ala-Asp cis-peptide bond. Surprisingly, despite the absence of the metal binding site in Arc5, this cis-peptide bond found in all legume lectin structures is still present, although the Asp residue has been replaced by a Tyr residue. Despite the high identity between the different legume lectin sequences, they show a broad range of quaternary structures. The structures of three different dimers and three different tetramers have been solved. Arc5 crystallized as a monomer, bringing the number of known quaternary structures to seven.
Collapse
Affiliation(s)
- T W Hamelryck
- Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Van Dorst JA, Tikkanen JM, Krezdorn CH, Streiff MB, Berger EG, Van Kuik JA, Kamerling JP, Vliegenthart JF. Exploring the substrate specificities of alpha-2,6- and alpha-2,3-sialyltransferases using synthetic acceptor analogues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:674-81. [PMID: 9022696 DOI: 10.1111/j.1432-1033.1996.0674r.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The acceptor specificities of rat liver Gal(beta 1-4)GlcNAc alpha-2,6-sialyltransferase, recombinant full-length human liver Gal(beta 1-4)GlcNAc alpha-2,6-sialyltransferase, and a soluble form of recombinant rat liver Gal(beta 1-3/4)GlcNAc alpha-2,3-sialyltransferase were studied with a panel of analogues of the trisaccharide Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-O)(CH2)7CH3. These analogues contain structural variants of D-galactose, modified at either C3, C4 or C5 by deoxygenation, fluorination, O-methylation, epimerization, or by the introduction of an amino group. In addition, the enantiomer of D-galactose is included. The alpha-2,6-sialyltransferases tolerated most of the modifications at the galactose residue to some extent, whereas the alpha-2,3-sialyltransferase displayed a narrower specificity. Molecular dynamics simulations were performed in order to correlate enzymatic activity to three-dimensional structure. Ineffective acceptors for rat liver alpha-2,6-sialyltransferase were shown to be inhibitory towards the enzyme; likewise, the alpha-2,3-sialyltransferase was found to be inhibited by all non-substrates. Modified sialyloligosaccharides were obtained on a milligram scale by incubation of effective acceptors with one of each of the three enzymes, and characterized by 500-MHz 1H-NMR spectroscopy.
Collapse
Affiliation(s)
- J A Van Dorst
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
There has been a recent resurgence of interest in the post-translational modification of serine and threonine hydroxyl groups by glycosylation, because the resulting O-linked oligosaccharide chains tend to be clustered over short stretches of peptide and hence they can present multivalent carbohydrate antigenic or functional determinants for antibody recognition, mammalian cell adhesion and microorganism binding. Co-operativity can greatly increase the affinity of interactions with antibodies or carbohydrate binding proteins. Thus, in addition to their known importance in bearing tumour associated antigens in the gastrointestinal and respiratory tracts, glycoproteins with O-linked chains have been implicated as ligands or co-receptors for selectins (mammalian carbohydrate binding proteins). Microorganisms may have adopted similar mechanisms for interactions with mammalian cells in infection, by having relatively low affinity ligands (adhesins) for carbohydrate binding, which may bind with higher affinity due to the multivalency of the host ligand and which are complemented by other virulence factors such as interactions with integrin-type molecules. In addition to specific adhesion signals from O-linked carbohydrate chains, multivalent O-glycosylation is involved in determining protein conformation and forming conjugate oligosaccharide-protein antigenic, and possible functional determinants.
Collapse
Affiliation(s)
- E F Hounsell
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | | | |
Collapse
|
38
|
Balaji PV, Qasba PK, Rao VS. Molecular dynamics simulations of hybrid and complex type oligosaccharides. Int J Biol Macromol 1996; 18:101-14. [PMID: 8852759 DOI: 10.1016/0141-8130(95)01064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conformational preferences of hybrid (GlcNAc1Man5GlcNAc2) and complex (GlcNAc1Man3GlcNAc2; GlcNAc2Man3GlcNAc2) type asparagine-linked oligosaccharides and the corresponding bisected oligosaccharides have been studied by molecular dynamics simulations for 2.5 ns. The fluctuations of the core Man-alpha 1,3-Man fragment are restricted to a region around (-30 degrees, -30 degrees) due to a 'face-to-face' arrangement of bisecting GlcNAc and the beta 1,2-GlcNAc on the 1,3-arm. However, conformations where such a 'face-to-face' arrangement is disrupted are also accessed occasionally. The orientation of the 1,6-arm is affected not only by changes in chi, but also by changes in phi and psi around the core Man-alpha 1,6-Man linkage. The conformation around the core Man-alpha 1,6-Man linkage is different in the hybrid and the two complex types suggesting that the preferred values of phi, psi, and chi are affected by the addition or deletion of saccharides to the alpha 1,6-linked mannose. The conformational data are in agreement with the available experimental studies and also explain the branch specificity of galactosyltransferases.
Collapse
Affiliation(s)
- P V Balaji
- Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-8105, USA
| | | | | |
Collapse
|
39
|
Richardson JM, Milton MJ, Homans SW. Solution dynamics of the oligosaccharide moiety of ganglioside GM1: comparison of solution conformations with the bound state conformation in association with cholera toxin B-pentamer. J Mol Recognit 1995; 8:358-62. [PMID: 9052976 DOI: 10.1002/jmr.300080605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solution dynamics of the oligosaccharide moiety of ganglioside GM1 have been determined by use of a combination of 1H rotating frame Overhauser effect measurements and restrained molecular dynamics simulations. It is found that the Galbeta1-3 and NeuNAc moieties which are primarily recognized by cholera toxin both exhibit considerable torsional flexibility about their respective glycosidic linkages. A comparison with the bound state conformation of the ganglioside in association with cholera toxin B-pentamer, shows that a low energy conformation of the oligosaccharide, which closely approximates the global minimum, is selected upon binding.
Collapse
Affiliation(s)
- J M Richardson
- Centre for Biomolecular Sciences, University of St. Andrews, UK
| | | | | |
Collapse
|
40
|
Lommerse JP, Kroon-Batenburg LM, Kroon J, Kamerling JP, Vliegenthart JF. Conformations and internal mobility of a glycopeptide derived from bromelain using molecular dynamics simulations and NOESY analysis. JOURNAL OF BIOMOLECULAR NMR 1995; 6:79-94. [PMID: 7663144 DOI: 10.1007/bf00417494] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The conformation and internal flexibility of a glycopeptide Manalpha1-6 (Xylbeta1-2)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3) GlcNAcbeta1-N(Asn-Glu-Ser-Ser), prepared from pineapple stem bromelain, have been analyzed using a combination of molecular dynamics (MD) simulations in water with NOESY 1H NMR spectroscopy. Theoretical NOESY cross-peak intensities were calculated by the CROSREL program on the basis of models, obtained from MD simulations, using a full relaxation matrix approach. Special attention was paid to the description of internal flexibility of the hexasaccharide moiety by the use of generalized order parameters, in combination with the application of an individual rotation correlation tme for each monosaccharide residue. The tetrapeptide moiety appeared to be very mobile during the MD simulations, which was confirmed by the absence of NOE cross peaks. For the oligosaccharide part a model was developed to estimate characteristic times for large reorientational motions around the glycosidic linkages, associated with conformational transitions. For the Manalpha1-6Man and the Fucalpha1-3GlcNAc linkages such a flexibility was found with a characteristic time of 2 ns. In contrast, the Xylbeta1-2Manbeta1-4GlcNAcbeta1-4GlcNAc part of the glycan appears to be relatively rigid.
Collapse
Affiliation(s)
- J P Lommerse
- Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Taguchi T, Kitajima K, Muto Y, Yokoyama S, Inoue S, Inoue Y. Proton NMR study of the trimannosyl unit in a pentaantennary N-linked decasaccharide structure. Complete assignment of the proton resonances and conformational characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:822-9. [PMID: 7737182 DOI: 10.1111/j.1432-1033.1995.tb20328.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chemical shifts of all the ring protons of the three Man residues in a pentaantennary glycan chain have been unambiguously assigned by two-dimensional proton nuclear magnetic resonance (1H-NMR) spectroscopic methods. The study, using chemical shift and J values on the conformation of the trimannosyl unit, revealed that the rotamer about the C5-C6 bond of the alpha 1-->6 linkage in the sequence of Man alpha 1-->6Man beta 1--> is predominantly confined to a gauche-gauche rotamer (omega = 180 degrees, omega = O6-C6-C5-H5) and not to a gauche-trans rotamer (omega = -60 degrees). We do not know of any previous demonstration that the dihedral angle omega (O6-C6-C5-H5) in Man alpha 1-->6Man beta 1--> is preferentially 180 degrees in complex-type N-linked glycans having no bisecting GlcNAc residue.
Collapse
Affiliation(s)
- T Taguchi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Dauchez M, Derreumaux P, Lagant P, Vergoten G. A vibrational molecular force field of model compounds with biological interest. IV. Parameters for the different glycosidic linkages of oligosaccharides. J Comput Chem 1995. [DOI: 10.1002/jcc.540160206] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
P�rez S, Meyer C, Imberty A. Practical tools for molecular modeling of complex carbohydrates and their interactions with proteins. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf00999595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Renouf DV, Hounsell EF. Molecular modelling of glycoproteins by homology with non-glycosylated protein domains, computer simulated glycosylation and molecular dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 376:37-45. [PMID: 8597261 DOI: 10.1007/978-1-4615-1885-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES This study aims to visualise glycoproteins by computer graphics molecular modelling in order to research the dynamics of the oligosaccharide chains, determine their affects on protein conformation, antigenicity and function and to characterise oligosaccharide recognition determinants. With respect to the last, the modelling included the sialylpolylactosamine of thymocyte Thy-l and the sialyl Le(x)/Le(a) determinant present on brain Thy-l. METHODS The following techniques were used: 1) database searching for homologies with non-glycosylated protein domains; 2) protein modelling on the basis of homology and secondary structure prediction techniques; 3) oligosaccharide construction using a simulated annealing approach utilising the AMBER forcefield with appropriate parameters in the Biosyn software environment; 4) creation of glycoprotein conjugates for further investigation by energy minimisation and molecular dynamics. RESULTS This approach was successful in providing models of Thy-l and the carboxy terminus 27.5 kD of HIV-1 gp 120, by homology with immunoglobulin light chain folds and in one case (Thy-l) adding the oligosaccharide chains, phosphatidylinositol glycan anchor and lipid membrane and, in the other, adding additional highly glycosylated domains, and domains which folded by molecular dynamics. Significant affects on protein conformation were shown in the presence or absence of the lipid anchor and simulated membrane, but not by the N-linked oligosaccharide chains. CONCLUSIONS The highly glycosylated molecules Thy-l and gp120, which are not expected to crystallise in their native state, were modelled by computer graphics simulated annealing or molecular dynamics from which interactions could be predicted which agree with experimental data on antibody binding and in vitro activity.
Collapse
Affiliation(s)
- D V Renouf
- University College London, Department of Biochemistry and Molecular Biology, United Kingdom
| | | |
Collapse
|
45
|
|
46
|
Chapter 3 3D Structure 1. The Structural Features of Protein-Carbohydrate Interactions Revealed by X-Ray Crystallography. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
47
|
Bourne Y, Bolgiano B, Liao DI, Strecker G, Cantau P, Herzberg O, Feizi T, Cambillau C. Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. NATURE STRUCTURAL BIOLOGY 1994; 1:863-70. [PMID: 7773775 DOI: 10.1038/nsb1294-863] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Galectins are beta-galactoside-binding proteins that occur intra- and extracellularly in many animal tissues. They have been proposed to form networks of glycoconjugates on the cell surface, where they may modulate various cell response pathways such as growth, activation and adhesion. The high resolution X-ray crystallographic analyses of three crystal forms of bovine galectin-1 in complex with biantennary saccharides of N-acetyllactosamine type reveal infinite chains of lectin dimers cross-linked through N-acetyllactosamine units located at the end of the oligosaccharide antenna. The oligosaccharide adopts a different low energy conformation in each of the three crystal forms.
Collapse
Affiliation(s)
- Y Bourne
- Laboratoire de Cristallographie et de Cristallisation des Macromolécules Biologiques, CNRS URA 1296, Secteur-Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bourne Y, Mazurier J, Legrand D, Rougé P, Montreuil J, Spik G, Cambillau C. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety. Structure 1994; 2:209-19. [PMID: 8069634 DOI: 10.1016/s0969-2126(00)00022-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Lectins mediate cell-cell interactions by specifically recognizing oligosaccharide chains. Legume lectins serve as mediators for the symbiotic interactions between plants and nitrogen-fixing microorganisms, an important process in the nitrogen cycle. Lectins from the Viciae tribe have a high affinity for the fucosylated biantennary N-acetyllactosamine-type glycans which are to be found in the majority of N-glycosylproteins. While the structures of several lectins complexed with incomplete oligosaccharides have been solved, no previous structure has included the complete glycoprotein. RESULTS We have determined the crystal structures of Lathyrus ochrus isolectin II complexed with the N2 monoglycosylated fragment of human lactotransferrin (18 kDa) and an isolated glycopeptide (2.1 kDa) fragment of human lactotransferrin (at 3.3 A and 2.8 A resolution, respectively). Comparison between the two structures showed that the protein part of the glycoprotein has little influence on either the stabilization of the complex or the sugar conformation. In both cases the oligosaccharide adopts the same extended conformation. Besides the essential mannose moiety of the monosaccharide-binding site, the fucose-1' of the core has a large surface of interaction with the lectin. This oligosaccharide conformation differs substantially from that seen in the previously determined isolectin I-octasaccharide complex. Comparison of our structure with that of concanavalin A (ConA) suggests that the ConA binding site cannot accommodate this fucose. CONCLUSIONS Our results explain the observation that Viciae lectins have a higher affinity for fucosylated oligosaccharides than for unfucosylated ones, whereas the affinity of ConA for these types of oligosaccharides is similar. This explanation is testable by mutagenesis experiments. Our structure shows a large complementary surface area between the oligosaccharide and the lectin, in contrast with the recently determined structure of a complex between the carbohydrate recognition domain of a C-type mammalian lectin and an oligomannoside, where only the non-reducing terminal mannose residue interacts with the lectin.
Collapse
Affiliation(s)
- Y Bourne
- Laboratoire de Cristallographie et de Cristallisation des Macromolécules Biologiques, CNRS URA 1296, Faculté de Médecine Secteur-Nord, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Bara J, Imberty A, Pérez S, Imai K, Yachi A, Oriol R. A fucose residue can mask the MUC-1 epitopes in normal and cancerous gastric mucosae. Int J Cancer 1993; 54:607-13. [PMID: 7685744 DOI: 10.1002/ijc.2910540414] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MUSE11, DF3 and SM3 MAbs react with a synthetic peptide of 20 amino-acids: VTSAPDTRPAPGSTAPPAHG. This sequence is a tandem repeat domain of the mucin-type glycoprotein coded by the muc-1 gene. MUSE11 and DF3 MAbs immunoreact strongly with mucus cells of the normal surface gastric epithelium of Le(a+b-) non-secretors, but in spite of the peptidic nature of the recognized epitope, the same tissue of Le(a-b+) secretors reacts only after treatment with alpha-fucosidase. These reactions are inhibited by the PNA lectin, which recognizes the T disaccharide antigen (beta Gal 1-3 alpha GalNAc), suggesting that the peptide epitope may be close to the T-saccharide structure. The SM3 MAb reacted on the surface gastric epithelium of all individuals after a more drastic deglycosylation using 20 mM periodate. Computer modeling of the MUC-1 immunoreactive glycopeptide containing the H type-3 trisaccharide alpha Fuc 1-2 beta Gal 1-3 alpha GalNAc- bound to the threonine of the PDTRP-pentapeptide shows that the peptide epitope might be masked when the fucose is positioned over the arginine. Thus, a single fucose linked to the T structure could mask the MUC-1 epitopes. In gastric adenocarcinomas, MUSE11 and SM3 epitopes are expressed in 75% (25/33) and 9% (3/33) respectively, while, after partial deglycosylation by periodate treatment, they are positive in 100% (33/33) and 70% (23/33) of cases, respectively.
Collapse
Affiliation(s)
- J Bara
- Mucin Immunochemistry Laboratory, IRSC, Villejuif, France
| | | | | | | | | | | |
Collapse
|