1
|
Lozano O, Marcos P, Salazar-Ramirez FDJ, Lázaro-Alfaro AF, Sobrevia L, García-Rivas G. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiol (Oxf) 2023; 237:e13946. [PMID: 36751976 DOI: 10.1111/apha.13946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Patricio Marcos
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Felipe de Jesús Salazar-Ramirez
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Anay F Lázaro-Alfaro
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis Sobrevia
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Center of Functional Medicine, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
2
|
Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 2013; 592:829-39. [PMID: 24366263 DOI: 10.1113/jphysiol.2013.268235] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it has long been known that mitochondria take up Ca2+, the molecular identities of the channels and transporters involved in this process were revealed only recently. Here, we discuss the recent work that has led to the characterization of the mitochondrial calcium uniporter complex, which includes the channel-forming subunit MCU (mitochondrial calcium uniporter) and its regulators MICU1, MICU2, MCUb, EMRE, MCUR1 and miR-25. We review not only the biochemical identities and structures of the proteins required for mitochondrial Ca2+ uptake but also their implications in different physiopathological contexts.
Collapse
Affiliation(s)
- Saverio Marchi
- Signal Transduction Lab, c/o CUBO, via Fossato di Mortara 70, I-44121 Ferrara, Italy.
| | | |
Collapse
|
3
|
Robles SG, Franco M, Zazueta C, García N, Correa F, García G, Chávez E. Thyroid hormone may induce changes in the concentration of the mitochondrial calcium uniporter. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:177-82. [PMID: 12781984 DOI: 10.1016/s1096-4959(03)00079-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explored the possibility that the hormone 3,3',5-tri-iodothyronine can regulate the biosynthesis of the mitochondrial calcium uniporter. To meet this objective experiments on Ca(2+) transport, and binding of the specific inhibitor Ru(360) were carried out in mitochondria isolated from euthyroid, hyperthyroid and hypothyroid rats. It was found that V(max) for Ca(2+) transport increased from 11.67+/-0.8 in euthyroid to 14.36+/-0.44 in hyperthyroid, and decreased in hypothyroid mitochondria to 8.62+/-0.63 nmol Ca(2+)/mg/s. Furthermore, the K(i) for the specific inhibitor Ru(360), depends on the thyroid status, i.e. 18, 19 and 13 nM for control, hyper- and hypothyroid mitochondria, respectively. In addition, the binding of 103Ru(360) was increased in hyperthyroid and decreased in hypothyroid mitochondria. Scatchard analysis for the binding of 103Ru(360) showed the following values: 28, 40 and 23 pmol/mg for control, hyper- and hypothyroid mitochondria, respectively. The K(d) for 103Ru(360) was found to be 30.39, 37.03 and 35.71 nM for controls, hyper- and hypothyroid groups, respectively. When hypothyroid rats were treated with thyroid hormone, mitochondrial Ca(2+) transport, as well as 103Ru(360) binding, reached similar values to those found for euthyroid mitochondria.
Collapse
Affiliation(s)
- Sandra G Robles
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1 Tlalpan, México, D.F. 014080, Mexico
| | | | | | | | | | | | | |
Collapse
|
4
|
Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 2000; 28:285-96. [PMID: 11115368 DOI: 10.1054/ceca.2000.0168] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+)transport across the mitochondrial inner membrane is facilitated by transporters having four distinct sets of characteristics as well as through the Ca(2+)-induced mitochondrial permeability transition pore (PTP). There are two modes of inward transport, referred to as the Ca(2+)uniporter and the rapid mode or RaM. There are also two distinct mechanisms mediating outward transport, which are not associated with the PTP, referred to as the Na(+)-dependent and the Na(+)-independent Ca(2+)efflux mechanisms. Several important functions have been proposed for these mechanisms, including control of the metabolic rate for cellular energy (ATP) production, modulation of the amplitude and shape of cytosolic Ca(2+)transients, and induction of apoptosis through release of cytochrome c from the mitochondrial inter membrane space into the cytosolic space. The goals of this review are to survey the literature describing the characteristics of the mechanisms of mitochondrial Ca(2+)transport and their proposed physiological functions, emphasizing the more recent contributions, and to consider how the observed characteristics of the mitochondrial Ca(2+)transport mechanisms affect our understanding of their functions.
Collapse
Affiliation(s)
- T E Gunter
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
5
|
Villa A, García-Simón MI, Blanco P, Sesé B, Bogónez E, Satrustegui J. Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:347-59. [PMID: 9733995 DOI: 10.1016/s0005-2736(98)00120-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immobilized calcium affinity chromatography was used to obtain a preparation enriched in calcium transporters from Triton X-100 extracts of rat liver mitochondria inner membranes (PPCT). The PPCT were reconstituted into preformed asolectin liposomes which contained 120 mM KCl as internal high K+ medium. 45Ca2+ uptake into proteoliposomes was studied under conditions favoring electrophoretic uptake, and H+i/45Ca2+o or Na+i/45Ca2+o exchange, to test for the presence of the three calcium transport modes present in mitochondria. 45Ca2+ uptake in liposomes was studied in parallel. Na+i/45Ca2+o exchange activity was not detectable. H+i/45Ca2+o exchange activity measured in the presence of a pH gradient (acid inside) obtained after suspension in low K medium in the presence of nigericin, was 100-200 nmoles 45Ca2+ per mg protein in 30 s. 45Ca2+ uptake in voltage-dependent assays (a K+ diffusion membrane potential induced by valinomycin in the presence of methylamine) was not electrophoretic since it was stimulated by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and probably due to secondary Ca2+/H+ countertransport. H+i/45Ca2+o uptake showed a saturable component at around 80 microM Ca and was coupled to an increase in internal pH in pyranine-loaded PPCT proteoliposomes. 45Ca2+ uptake in PPCT proteoliposomes could also be driven by a pH gradient obtained by raising external pH in high K+ medium. The results are consistent with the presence of a functional nH+/Ca2+ antiporter. Polyclonal antibodies raised against the PPCT were able to immunoprecipitate the H+/45Ca2+ uptake activity and recognized two major bands in the PPCT with molecular masses of about 66 kDa and 55 kDa. This is the first report of a partial purified protein(s) which may represent the H+/Ca2+ exchanger of the inner mitochondrial membrane, and represents an important step towards its identification.
Collapse
Affiliation(s)
- A Villa
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa', C.S.I.C.-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Zazueta C, Massò F, Paez A, Bravo C, Vega A, Montaño L, Vázquez M, Ramírez J, Chávez E. Identification of a 20-kDa protein with calcium uptake transport activity. Reconstitution in a membrane model. J Bioenerg Biomembr 1994; 26:555-62. [PMID: 7896770 DOI: 10.1007/bf00762740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper presents results of experiments designed to further purify the membrane system involved in mitochondrial calcium transport. A partially purified extract, which transported calcium with a specific activity of 1194 nmol 45Ca2+/mg protein/5 min, was used to obtain mouse hyperimmune serum. This serum inhibited calcium uptake both in mitoplasts and in vesicles reconstituted with mitochondrial proteins containing cytochrome oxidase. Western blot analysis of the semipurified fraction showed that the serum recognized specifically two antigens of 75 and 20 kDa. Both antibodies were purified by elution from the nitrocellulose sheets and their inhibition capacity was analyzed. The antibody that recognized the 20-kDa protein produced a higher degree of inhibition than the other one.
Collapse
Affiliation(s)
- C Zazueta
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D.F., México
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Saris NE, Sirota TV, Virtanen I, Niva K, Penttilä T, Dolgachova LP, Mironova GD. Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT. J Bioenerg Biomembr 1993; 25:307-12. [PMID: 7688718 DOI: 10.1007/bf00762591] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyclonal rabbit antibodies against a Ca(2+)-binding mitochondrial glycoprotein were found to inhibit the uniporter-mediated transport of Ca2+ in mitoplasts prepared from rat liver mitochondria. Spermine, a modulator of the uniporter, decreased the inhibition. This glycoprotein of M(r) 40,000, isolated from beef heart mitochondria and earlier shown to form Ca(2+)-conducting channels in black-lipid membranes, thus is a good candidate for being a component of the uniporter. Antibody-IgG was found to specifically bind to mitochondria in human fibroblasts.
Collapse
Affiliation(s)
- N E Saris
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|