1
|
van der Vusse GJ, van Bilsen M. Free Fatty acids and postischemic myocardial function. Semin Cardiothorac Vasc Anesth 2007; 10:231-5. [PMID: 16959757 DOI: 10.1177/1089253206291319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review highlights the changes in fatty acid homeostasis in the postischemic heart. The impact of restoration of flow (reperfusion) after an ischemic episode on both structural fatty acids (ie, incorporated in phospholipids, the building blocks of cellular membranes) and fatty acids, serving as energy donors by mitochondrial oxidation, are discussed. Attempts to interfere with cardiac fatty acid homeostasis to prevent loss of cardiac function or to restore cardiac performance after reperfusion is also discussed.
Collapse
Affiliation(s)
- Ger J van der Vusse
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | |
Collapse
|
2
|
Comte B, Vincent G, Bouchard B, Benderdour M, Des Rosiers C. Reverse flux through cardiac NADP(+)-isocitrate dehydrogenase under normoxia and ischemia. Am J Physiol Heart Circ Physiol 2002; 283:H1505-14. [PMID: 12234803 DOI: 10.1152/ajpheart.00287.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the role of mitochondrial NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH) in the heart, where this enzyme shows its highest expression and activity. We tested the hypothesis that in the heart, NADP(+)-ICDH operates in the reverse direction of the citric acid cycle (CAC) and thereby may contribute to the fine regulation of CAC activity (Sazanov and Jackson, FEBS Lett 344: 109-116, 1994). We documented a reverse flux through this enzyme in rat hearts perfused with the medium-chain fatty acid octanoate using [U-(13)C(5)]glutamate and mass isotopomer analysis of tissue citrate (Comte et al., J Biol Chem 272: 26117-26124, 1997). In this study, we assessed the significance of our previous finding by perfusing hearts with long-chain fatty acids and tested the effects of changes in O(2) supply. We showed that under all of these conditions citrate was enriched in an isotopomer containing five (13)C atoms. This isotopomer can only be explained by substrate flux through reversal of the NADP(+)-ICDH reaction, which is evaluated at 3-7% of flux through citrate synthase. Small variations in reversal fluxes induced by low-flow ischemia that mimicked hibernation occurred despite major changes in contractile function and O(2) consumption of the heart as well as citrate and succinate release rates and tissue levels. Our data show a reverse flux through NADP(+)-ICDH and support its hypothesized role in the fine regulation of CAC activity in the normoxic and O(2)-deprived heart.
Collapse
Affiliation(s)
- Blandine Comte
- Department of Nutrition, University of Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
3
|
Ray J, Noll F, Daut J, Hanley PJ. Long-chain fatty acids increase basal metabolism and depolarize mitochondria in cardiac muscle cells. Am J Physiol Heart Circ Physiol 2002; 282:H1495-501. [PMID: 11893587 DOI: 10.1152/ajpheart.00696.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of long-chain (LC) fatty acids on rate of heat production (heat rate) and mitochondrial membrane potential (DeltaPsi) of intact guinea pig cardiac muscle were investigated at 37 degrees C. Heat rate of ventricular trabeculae was measured with microcalorimetry, and DeltaPsi was monitored in isolated ventricular myocytes with either JC-1 or tetramethylrhodamine ethyl ester (TMRE). Methyl-beta-cyclodextrin was used as fatty acid carrier. Application of 400 microM oleate or linoleate increased resting heat rate by approximately 30% and approximately 25%, respectively. When LC fatty acid was supplied as sole metabolic substrate, resting heat rate was decreased by 3-mercaptopropionic acid. In TMRE-loaded myocytes, neither 40-80 microM oleate nor 40 microM linoleate affected DeltaPsi. At a higher concentration (400 microM) both oleate and linoleate increased TMRE fluorescence by approximately 20% of maximum, obtained using 2,4-dinitrophenol (100 microM), indicating a depolarization of the inner mitochondrial membrane. We conclude that LC fatty acids, at sufficiently high concentration, increase heat rate and decrease DeltaPsi in intact cardiac muscle, consistent with a protonophoric uncoupling action. These effects may contribute to the high metabolic rate after reperfusion of postischemic myocardium.
Collapse
Affiliation(s)
- John Ray
- Institut für Normale und Pathologische Physiologie, Universität Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
4
|
Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz PA, Jorge-Costa M, Lerch R. Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 2000; 32:2025-34. [PMID: 11040106 DOI: 10.1006/jmcc.2000.1234] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.
Collapse
Affiliation(s)
- A Remondino
- Cardiology Center, University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Vincent G, Comte B, Poirier M, Rosiers CD. Citrate release by perfused rat hearts: a window on mitochondrial cataplerosis. Am J Physiol Endocrinol Metab 2000; 278:E846-56. [PMID: 10780941 DOI: 10.1152/ajpendo.2000.278.5.e846] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic citrate is proposed to play a crucial role in substrate fuel selection in the heart. However, little is known about factors regulating the transfer of citrate from the mitochondria, where it is synthesized, to the cytosol. Further to our observation that rat hearts perfused under normoxia release citrate whose (13)C labeling pattern reflects that of mitochondrial citrate (B. Comte, G. Vincent, B. Bouchard, and C. Des Rosiers. J. Biol. Chem. 272: 26117-26124, 1997), we report here data indicating that this citrate release is a specific process reflecting the mitochondrial efflux of citrate, a process referred to as cataplerosis. Indeed, measured rates of citrate release, which vary between 2 and 21 nmol/min, are modulated by the nature and concentration of exogenous substrates feeding acetyl-CoA (fatty acid) and oxaloacetate (lactate plus pyruvate) for the mitochondrial citrate synthase reaction. Such release rates that represent at most 2% of the citric acid cycle flux are in agreement with the activity of the mitochondrial tricarboxylate transporter whose participation is also substantiated by 1) parallel variations in citrate release rates and tissue levels of citrate plus malate, the antiporter, and 2) a lowering of the citrate release rate by 1,2, 3-benzenetricarboxylic acid, a specific inhibitor of the transporter. Taken together, the results from the present study indicate that citrate cataplerosis is modulated by substrate supply, in agreement with the role of cytosolic citrate in fuel partitioning, and occurs, at least in part, through the mitochondrial tricarboxylate transporter.
Collapse
Affiliation(s)
- G Vincent
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
6
|
Comte B, Vincent G, Bouchard B, Jetté M, Cordeau S, Rosiers CD. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J Biol Chem 1997; 272:26125-31. [PMID: 9334177 DOI: 10.1074/jbc.272.42.26125] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate synthesis were determined from the 13C labeling pattern of effluent citrate by gas chromatography-mass spectrometry (see companion article, Comte, B., Vincent, G., Bouchard, B., and Des Rosiers, C. (1997) J. Biol. Chem. 272, 26117-26124). Precision on flux measurements of anaplerotic pyruvate carboxylation depended on the mix of substrates supplied to the heart. Anaplerotic fluxes were precisely determined under conditions where acetyl-CoA was predominantly supplied by beta-oxidation, as it occurred with 0.2 or 1 mM octanoate. Then, anaplerotic pyruvate carboxylation provided 3-8% of the OAA moiety of citrate and was modulated by concentrations of lactate and pyruvate in the physiological range. Also, the contribution of pyruvate to citrate formation through carboxylation was equal to or greater than through decarboxylation. Furthermore, 13C labeling data on tissue citric acid cycle intermediates and pyruvate suggest that (i) anaplerosis occurs also at succinate and (ii) cataplerotic malate decarboxylation is low. Rather, the presence of citrate in the effluent perfusate of hearts perfused with physiological concentrations of glucose, lactate, and pyruvate and concentrations of octanoate leading to maximal oxidative rates suggests a cataplerotic citrate efflux from mitochondria to cytosol. Taken altogether, our data raise the possibility of a link between pyruvate carboxylation and mitochondrial citrate efflux. In view of the proposed feedback regulation of glycolysis by cytosolic citrate, such a link would support a role of anaplerosis and cataplerosis in metabolic signal transmission between mitochondria and cytosol in the normoxic heart.
Collapse
Affiliation(s)
- B Comte
- Department of Nutrition, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH. Substrate metabolism as a determinant for postischemic functional recovery of the heart. Am J Cardiol 1997; 80:3A-10A. [PMID: 9293950 DOI: 10.1016/s0002-9149(97)00452-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mammalian myocardium meets its high energy needs through the oxidation of a variety of substrates, chiefly fatty acids. This review examines the hypothesis that efficient energy transfer in the heart occurs through a series of moiety-conserved cycles, which makes the heart an obligatory "omnivore." Ischemia results in a transformation of efficient metabolic cycles to less-efficient linear pathways. Substrate metabolism during reperfusion requires the replenishment of depleted cycles and is a major determinant for the return of contractile function. Although there is growing recognition of the concept that regulation of substrate flux through metabolic pathways is shared by several of the pathway enzymes it is apparent that glucose oxidation and glycogen resynthesis promote the return of normal contractile function in the postischemic heart. This concept is supported by clinical observations on the beneficial effects of a solution containing glucose, insulin, and potassium (GIK) for treatment of refractory left ventricular contractile failure after hypothermic ischemic arrest during cardiac surgery.
Collapse
Affiliation(s)
- H Taegtmeyer
- University of Texas-Houston Medical School, Department of Medicine, Texas Heart Institute, 77030, USA
| | | | | | | |
Collapse
|
8
|
Zuurbier CJ, van Beek JH. Mitochondrial response to heart rate steps in isolated rabbit heart is slowed after myocardial stunning. Circ Res 1997; 81:69-75. [PMID: 9201029 DOI: 10.1161/01.res.81.1.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The oxidative capacity of mitochondria isolated from myocardium is undiminished after myocardial stunning, which is remarkable because stunning affects many other cellular functions. The aim of the present study was to assess the mitochondrial oxidative response in intact rather than isolated myocardium. The mean response time of mitochondrial O2 consumption to heart rate steps (tmito) was measured before and after 15-minute ischemia or high-flow hypoxia in isolated rabbit hearts. The tmito was calculated from the time course of venous O2 tension to steps in heart rate, with corrections made for diffusion and vascular transport delay. Isovolumic hearts were perfused with Tyrode's solution at 37 degrees C. Developed left ventricular pressure at 35 minutes of reperfusion was decreased significantly to 67 +/- 3% after ischemia (mean +/- SEM, n = 8) and to 79 +/- 6% after hypoxia (n = 8) relative to the control condition (n = 8), without increased cellular creatine kinase release. Before ischemia or hypoxia, tmito was 4.3 +/- 0.3 seconds. During reperfusion after ischemia or hypoxia, the increase in tmito (by 62 +/- 10% and 64 +/- 18%, respectively) was significantly larger than that in time controls (24 +/- 12% increase). The major determinant of decreased contractility and slower mitochondrial response appeared to be O2 deprivation and/or reintroduction rather than other consequences of stopped flow. O2 consumption at a given rate-pressure product was not increased after ischemia or hypoxia, indicating undiminished cardiac contractile economy. Brief ischemia or hypoxia, resulting in stunning, was associated with a slowing of the in vivo mitochondrial oxidative response, indicating that energy transfer and/or signaling between energy-consuming sites and mitochondria is affected in stunned myocardium.
Collapse
Affiliation(s)
- C J Zuurbier
- Laboratory for Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Schmiedl A, Schnabel PA, Richter J. Cellular edema and alterations in metabolite content in the ischemic and reperfused canine heart following different forms of cardiac arrest. Pathol Res Pract 1996; 192:1163-78. [PMID: 9122037 DOI: 10.1016/s0344-0338(96)80038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigates firstly how far cellular edema correlates with parameters of the anaerobic energy turnover independent of the method used for cardiac arrest, and secondly to what extent cellular edema developing during reversible global ischemia is reduced after reperfusion. Canine hearts were arrested 1. by aortic cross clamping (ACC), 2. by coronary perfusion with St. Thomas solution, or 3. HTK (histidine tryptophan ketoglutarate) solution (Custodiol). Samples for biochemical and structural analysis were taken at different times during ischemia and after reperfusion with Tyrode solution. Cellular edema determined morphometrically and given as volume ratio of sarcoplasm and mitochondria to myofibrils (Vvsp + V vmi/Vvmf) varies significantly in the differently arrested hearts. Reperfusion after a decrease in ATP to 4 mumol/gww (revival time) leads to a nearly complete structural recovery. The relationship between cellular edema and defined over-all metabolite tissue concentrations and extracellular pHe values shows: 1. during the decrease of creatine phosphate to 3 mumol/gww, cellular edema does not change; it is, however, significantly higher after ACC and St. Thomas than after HTK perfusion; 2. at each lactate concentration, cellular edema differs significantly depending on the form of cardiac arrest; 3. during the decrease of ATP and pHe cellular edema increases and is comparable at concentrations < 4 mumol/gww and at pHe values < 6.5 independent of the form of cardiac arrest; 4. beyond 10 mumol/gww of inorganic phosphate (Pi), increasing values for cellular edema correspond to defined Pi values in the differently arrested hearts. Thus, the ratio VVSp+ VVMi/VVMf is a powerful parameter for the determination of cellular edema during ischemia, as well as for correlations with metabolic parameters.
Collapse
Affiliation(s)
- A Schmiedl
- Department of Anatomy, University of Göttingen, FRG
| | | | | |
Collapse
|