1
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
2
|
Eckberg K, Weisser I, Buttram D, Somia N, Igarashi P, Aboudehen KS. Small hairpin inhibitory RNA delivery in the metanephric organ culture identifies long noncoding RNA Pvt1 as a modulator of cyst growth. Am J Physiol Renal Physiol 2022; 323:F335-F348. [PMID: 35862648 PMCID: PMC9423782 DOI: 10.1152/ajprenal.00016.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder characterized by the formation of kidney cysts that originate from the epithelial tubules of the nephron and primarily results from mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). The metanephric organ culture (MOC) is an ex vivo system in which explanted embryonic kidneys undergo tubular differentiation and kidney development. MOC has been previously used to study polycystic kidney disease as treatment with 8-bromo-cAMP induces the formation of kidney cysts. However, the inefficiency of manipulating gene expression in MOC has limited its utility for identifying genes and pathways that are involved in cystogenesis. Here, we used a lentivirus and three serotypes of self-complementary adeno-associated viral (scAAV) plasmids that express green fluorescent protein and found that scAAV serotype D/J transduces the epithelial compartment of MOC at an efficiency of 68%. We used scAAV/DJ to deliver shRNA to knockdown Pvt1, a long noncoding RNA, which was upregulated in kidneys from Pkd1 and Pkd2 mutant mice and humans with ADPKD. shRNA delivery by scAAV/DJ downregulated expression of Pvt1 by 45% and reduced the cyst index by 53% in wild-type MOCs and 32% in Pkd1-null MOCs. Knockdown of Pvt1 decreased the level of c-MYC protein by 60% without affecting Myc mRNA, indicating that Pvt1 regulation of c-MYC was posttranscriptional. These results identify Pvt1 as a long noncoding RNA that modulates cyst progression in MOC.NEW & NOTEWORTHY This study identified scAAV/DJ as effective in transducing epithelial cells of the metanephric organ culture (MOC). We used scAAV/DJ shRNA to knockdown Pvt1 in cystic MOCs derived from Pkd1-null embryos. Downregulation of Pvt1 reduced cyst growth and decreased levels of c-MYC protein. These data suggest that suppression of Pvt1 activity in autosomal dominant polycystic kidney disease might reduce cyst growth.
Collapse
Affiliation(s)
- Kara Eckberg
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ivan Weisser
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Buttram
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nikunj Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karam S Aboudehen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Yang C, Harafuji N, O'Connor AK, Kesterson RA, Watts JA, Majmundar AJ, Braun DA, Lek M, Laricchia KM, Fathy HM, Mane S, Shril S, Hildebrandt F, Guay-Woodford LM. Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep 2021; 11:18274. [PMID: 34521872 PMCID: PMC8440558 DOI: 10.1038/s41598-021-97046-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Amber K O'Connor
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jacob A Watts
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanan M Fathy
- Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, CT, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Oda Y, Sawa N, Hasegawa E, Mizuno H, Kawada M, Sekine A, Hiramatsu R, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Takaichi K, Kinowaki K, Ohashi K, Fujii T, Ubara Y. PKD1-associated autosomal dominant polycystic kidney disease with glomerular cysts presenting with nephrotic syndrome caused by focal segmental glomerulosclerosis. BMC Nephrol 2019; 20:337. [PMID: 31455242 PMCID: PMC6712641 DOI: 10.1186/s12882-019-1524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/16/2019] [Indexed: 11/20/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) may manifest non-nephrotic range proteinuria, but is rarely complicated with nephrotic syndrome. Limited number of reports describe the histology of ADPKD with nephrotic syndrome in detail. Case presentation We encountered a 23-year-old man with polycystic kidney disease (PKD) with small kidney volume and nephrotic syndrome, which eventually progressed to end-stage renal disease. Renal histology showed typical focal segmental glomerulosclerosis and remarkable glomerular cyst formation, but did not reveal tubular cysts. PKD1 mutation was detected in him and his father, who also had PKD with small kidney volume. Conclusions In contrast to tubular cysts which develop along ADPKD progression, glomerular cysts may likely be associated with ADPKD with slower volume progression manifesting small kidney volume. Although previous investigations report that ADPKD with smaller kidney volume is attributed to slower decline in renal function, coexistence of nephrotic-range proteinuria implies complication of other glomerular diseases and needs histological evaluation since it may lead to poor renal outcome.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Eiko Hasegawa
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Hiroki Mizuno
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Masahiro Kawada
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Akinari Sekine
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Rikako Hiramatsu
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Masayuki Yamanouchi
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Noriko Hayami
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Kenmei Takaichi
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Kenichi Ohashi
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.,Department of Pathology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan. .,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| |
Collapse
|
5
|
Dillard KJ, Hytönen MK, Fischer D, Tanhuanpää K, Lehti MS, Vainio-Siukola K, Sironen A, Anttila M. A splice site variant in INPP5E causes diffuse cystic renal dysplasia and hepatic fibrosis in dogs. PLoS One 2018; 13:e0204073. [PMID: 30235266 PMCID: PMC6147468 DOI: 10.1371/journal.pone.0204073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023] Open
Abstract
Ciliopathies presenting as inherited hepatorenal fibrocystic disorders are rare in humans and in dogs. We describe here a novel lethal ciliopathy in Norwich Terrier puppies that was diagnosed at necropsy and characterized as diffuse cystic renal disease and hepatic fibrosis. The histopathological findings were typical for cystic renal dysplasia in which the cysts were located in the straight portion of the proximal tubule, and thin descending and ascending limbs of Henle’s loop. The pedigree of the affected puppies was suggestive of an autosomal recessive inheritance and therefore, whole exome sequencing and homozygosity mapping were used for identification of the causative variant. The analyses revealed a case-specific homozygous splice donor site variant in a cilia related gene, INPP5E: c.1572+5G>A. Association of the variant with the defect was validated in a large cohort of Norwich Terriers with 3 cases and 480 controls, the carrier frequency being 6%. We observed that the identified variant introduces a novel splice site in INPP5E causing a frameshift and formation of a premature stop codon. In conclusion, our results suggest that the INPP5E: c.1572+5G>A variant is causal for the ciliopathy in Norwich Terriers. Therefore, genetic testing can be carried out in the future for the eradication of the disease from the breed.
Collapse
Affiliation(s)
- Kati J. Dillard
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Kimmo Tanhuanpää
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mari S. Lehti
- Natural Resources Institute, LUKE, Jokioinen, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Katri Vainio-Siukola
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Anu Sironen
- Natural Resources Institute, LUKE, Jokioinen, Finland
| | - Marjukka Anttila
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
- * E-mail:
| |
Collapse
|
6
|
Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, Miyajima M, Nozu K, Nagao S, Takahashi H, Sako M, Iijima K, Yoshikawa N, Suzuki H. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 2017; 313:F1223-F1231. [DOI: 10.1152/ajprenal.00697.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masashi Sato
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | - Hiroko Togawa
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shizuko Nagao
- Education and Research Center of Animal Model for Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Hisahide Takahashi
- Education and Research Center of Animal Model for Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Mayumi Sako
- Division for Clinical Trials, Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | - Hiroyuki Suzuki
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Evidence for a "Pathogenic Triumvirate" in Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918798. [PMID: 27891514 PMCID: PMC5116503 DOI: 10.1155/2016/4918798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe monogenic disorder that occurs due to mutations in the PKHD1 gene. Congenital hepatic fibrosis (CHF) associated with ARPKD is characterized by the presence of hepatic cysts derived from dilated bile ducts and a robust, pericystic fibrosis. Cyst growth, due to cyst wall epithelial cell hyperproliferation and fluid secretion, is thought to be the driving force behind disease progression. Liver fibrosis is a wound healing response in which collagen accumulates in the liver due to an imbalance between extracellular matrix synthesis and degradation. Whereas both hyperproliferation and pericystic fibrosis are hallmarks of CHF/ARPKD, whether or not these two processes influence one another remains unclear. Additionally, recent studies demonstrate that inflammation is a common feature of CHF/ARPKD. Therefore, we propose a "pathogenic triumvirate" consisting of hyperproliferation of cyst wall growth, pericystic fibrosis, and inflammation which drives CHF/ARPKD progression. This review will summarize what is known regarding the mechanisms of cyst growth, fibrosis, and inflammation in CHF/ARPKD. Further, we will discuss the potential advantage of identifying a core pathogenic feature in CHF/ARPKD to aid in the development of novel therapeutic approaches. If a core pathogenic feature does not exist, then developing multimodality therapeutic approaches to target each member of the "pathogenic triumvirate" individually may be a better strategy to manage this debilitating disease.
Collapse
|
8
|
Zhou J, Ouyang X, Schoeb TR, Bolisetty S, Cui X, Mrug S, Yoder BK, Johnson MR, Szalai AJ, Mrug M. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement. J Am Soc Nephrol 2012; 23:1161-71. [PMID: 22518005 DOI: 10.1681/asn.2011050442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AKI accelerates cystogenesis. Because cystogenic mutations induce strong transcriptional responses similar to those seen after AKI, these responses may accelerate the progression of cystic renal disease. Here, we modulated the severity of the AKI-like response in Cys1(cpk/cpk) mice, a model that mimics autosomal recessive polycystic kidney disease. Specifically, we induced or inhibited activity of the renoprotective enzyme heme oxygenase (HO) and determined the effects on renal cystogenesis. We found that induction of HO attenuated both renal injury and the rate of cystogenesis, whereas inhibition of HO promoted cystogenesis. HO activity mediated the response of NFκB, which is a hallmark transcriptional feature common to both cystogenesis and AKI. Among the HO-modulated effects we measured, expression of complement component 3 (C3) strongly correlated with cystogenesis, a functionally relevant association as suggested by Cys1(cpk/cpk) mice with genetically induced C3 deficiency. Because both C3 deficiency and HO induction reduce cyst number and cyst areas, these two factors define an injury-stimulated cystogenic pathway that may provide therapeutic targets to slow the formation of new renal cysts and the growth of existing cysts.
Collapse
Affiliation(s)
- Juling Zhou
- Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stroope A, Radtke B, Huang B, Masyuk T, Torres V, Ritman E, LaRusso N. Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1282-91. [PMID: 20093497 DOI: 10.2353/ajpath.2010.090658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic liver diseases, the most important of which are autosomal dominant and autosomal recessive polycystic kidney diseases, are incurable pathological conditions. Animal models that resemble human pathology in these diseases provide an opportunity to study the mechanisms of cystogenesis and to test potential treatments. Here we demonstrate that Pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease, developed hepatic cysts. As assessed by micro-computed tomography scanning of intact livers and by light microscopy of hepatic tissue, hepatic cystic volumes increased from 12.82+/-3.16% (5- to 8-month-old mice) to 21.58+/-4.81% (9- to 12-month-old mice). Renal cystogenesis was more severe at early stages of disease: in 5- to 7-month-old mice, cystic volumes represented 40.67+/-5.48% of kidney parenchyma, whereas in older mice cysts occupied 31.04+/-1.88% of kidney parenchyma. Mild fibrosis occurred only in liver, and its degree was unchanged with age. Hepatic cysts were lined by single or multiple layers of squamous cholangiocytes. Cystic cholangiocyte cilia were short and malformed, whereas in renal cysts they appeared normal. In Pkd2ws25/- mice, mitotic and apoptotic indices in both kidney and liver were increased compared with wild-type mice. In conclusion, Pkd2ws25/- mice exhibit hepatorenal pathology resembling human autosomal dominant polycystic kidney disease and represent a useful model to study mechanisms of cystogenesis and to evaluate treatment options.
Collapse
Affiliation(s)
- Angela Stroope
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int 2009; 77:350-8. [PMID: 19940839 DOI: 10.1038/ki.2009.440] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prognosis of autosomal recessive polycystic kidney disease is known to correlate with genotype. The presence of two truncating mutations in the PKHD1 gene encoding the fibrocystin protein is associated with neonatal death while patients who survive have at least one missense mutation. To determine relationships between genotype and renal and hepatic abnormalities we correlated the severity of renal and hepatic histological lesions to the type of PKHD1 mutations in 54 fetuses (medical pregnancy termination) and 20 neonates who died shortly after birth. Within this cohort, 55.5% of the mutations truncated fibrocystin. The severity of cortical collecting duct dilatations, cortical tubule and glomerular lesions, and renal cortical and hepatic portal fibrosis increased with gestational age. Severe genotypes, defined by two truncating mutations, were more frequent in patients of less than 30 weeks gestation compared to older fetuses and neonates. When adjusted to gestational age, the extension of collecting duct dilatation into the cortex and cortical tubule lesions, but not portal fibrosis, was more prevalent in patients with severe than in those with a non-severe genotype. Our results show the presence of two truncating mutations of the PKHD1 gene is associated with the most severe renal forms of prenatally detected autosomal recessive polycystic kidney disease. Their absence, however, does not guarantee survival to the neonatal period.
Collapse
|
11
|
Woollard JR, Punyashtiti R, Richardson S, Masyuk TV, Whelan S, Huang BQ, Lager DJ, vanDeursen J, Torres VE, Gattone VH, LaRusso NF, Harris PC, Ward CJ. A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation. Kidney Int 2007; 72:328-36. [PMID: 17519956 DOI: 10.1038/sj.ki.5002294] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the polycystic kidney and hepatic disease (PKHD1) gene encoding the protein fibrocystin/polyductin. The aim of our study was to produce a mouse model of ARPKD in which there was no functional fibrocystin/polyductin to study the pathophysiology of cystic and fibrocystic disease in renal and non-renal tissues. Exon 2 of the gene was deleted and replaced with a neomycin resistance cassette flanked by loxP sites, which could be subsequently removed by Cre-lox recombinase. Homozygous Pkhd1(del2/del2) mice were viable, fertile and exhibited hepatic, pancreatic, and renal abnormalities. The biliary phenotype displayed progressive bile duct dilatation, resulting in grossly cystic and fibrotic livers in all animals. The primary cilia in the bile ducts of these mutant mice had structural abnormalities and were significantly shorter than those of wild-type (WT) animals. The Pkhd1(del2/del2) mice often developed pancreatic cysts and some exhibited gross pancreatic enlargement. In the kidneys of affected female mice, there was tubular dilatation of the S3 segment of the proximal tubule (PT) starting at about 9 months of age, whereas male mice had normal kidneys up to 18 months of age. Inbreeding the mutation onto BALBc/J or C57BL/6J background mice resulted in females developing PT dilatation by 3 months of age. These inbred mice will be useful resources for studying the mechanisms underlying the pathogenesis of ARPKD.
Collapse
Affiliation(s)
- J R Woollard
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu Y, Dai XQ, Li Q, Chen CX, Mai W, Hussain Z, Long W, Montalbetti N, Li G, Glynne R, Wang S, Cantiello HF, Wu G, Chen XZ. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 2006; 15:3280-92. [PMID: 17008358 DOI: 10.1093/hmg/ddl404] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1, encoding polycystin-1 (PC1), or PKD2 (polycystin-2, PC2). Autosomal recessive PKD (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). No molecular link between ADPKD and ARPKD has been determined. Here, we demonstrated, by yeast two-hybrid and biochemical assays, that KIF3B, a motor subunit of kinesin-2, associates with PC2 and FPC. Co-immunoprecipitation experiments using Madin-Darby canine kidney (MDCK) and inner medullary collecting duct (IMCD) cells and human kidney revealed that PC2 and KIF3B, FPC and KIF3B and, furthermore, PC2 and FPC are endogenously in the same complex(es), though no direct association between the PC2 and FPC intracellular termini was detected. In vitro binding and Far Western blot experiments demonstrated that PC2 and FPC are in the same complex only if KIF3B is present, presumably by forming a PC2-KIF3B-FPC complex. This was supported by our observation that altering KIF3B level in IMCD cells by over-expression or siRNA significantly affected complexing between PC2 and FPC. Immunofluorescence experiments showed that PC2, FPC and KIF3B partially co-localized in primary cilia of over-confluent and perinuclear regions of sub-confluent cells. Furthermore, KIF3B mediated functional modulation of purified PC2 channels by FPC in a planer lipid bilayer electrophysiology system. The FPC C-terminus substantially stimulated PC2 channel activity in the presence of KIF3B, whereas FPC or KIF3B alone had no effect. Taken together, we discovered that kinesin-2 is a linker between PC2 and FPC and mediates the regulation of PC2 channel function by FPC. Our study may be important for elucidating common molecular pathways for PKD of different genotypes.
Collapse
Affiliation(s)
- Yuliang Wu
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R. A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 2006; 17:2719-30. [PMID: 16943309 DOI: 10.1681/asn.2005090979] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The cloning of the PKD1 and PKD2 genes has led to promising new insight into the mechanisms that are responsible for cyst development in patients with autosomal dominant polycystic kidney disease. Although the dominant pattern of inheritance would argue for haploinsufficiency, a gain of function, or a dominant negative mechanism, there is good evidence that autosomal dominant polycystic kidney disease behaves like a recessive disease on a cellular level (two-hit mechanism of cystogenesis). For testing of whether other pathomechanisms in addition to the two-hit hypothesis can explain cyst formation, two transgenic rat lines that contain a truncated human polycystin-2 cDNA were generated. The protein product lacks almost the entire COOH-terminus and mimics mutations that frequently are found in patients. The transgene-encoded mRNA could be detected in multiple tissues of both transgenic lines, with the highest expression in the kidney. Both lines present with renal cysts that originate predominantly from the proximal tubule; in the tubular epithelial cells, the epitope-tagged mutant protein was detected in the brush border and in primary cilia. Further evidence of the involvement of primary cilia stems from the finding of retinal degeneration in the transgenic rats and from the fact that stably transfected LLC-PK(1) cells that inducibly produced the truncated polycystin-2 protein elaborated shorter cilia. Other experimental approaches, such as a knock-in strategy, will be necessary to validate these results, but this is the first preliminary evidence that cyst formation is due not only to somatic mutations.
Collapse
Affiliation(s)
- Anna Rachel Gallagher
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cystic kidney disorders are one of the leading causes of end-stage renal disease. Numerous experimental animal models have been used to understand the disease pathogenesis. Recent advancements in this field have provided a surprising finding: that many of the proteins associated with cystic kidney disease localize to a nearly forgotten organelle, the primary cilium.
Collapse
Affiliation(s)
- Qihong Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
15
|
Sweeney WE, Hamahira K, Sweeney J, Garcia-Gatrell M, Frost P, Avner ED. Combination treatment of PKD utilizing dual inhibition of EGF-receptor activity and ligand bioavailability. Kidney Int 2003; 64:1310-9. [PMID: 12969149 DOI: 10.1046/j.1523-1755.2003.00232.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have previously demonstrated an essential role for increased epidermal growth factor receptor (EGFR) activity in mediating renal cyst formation and biliary ductal ectasia (BDE) in murine models of autosomal-recessive polycystic kidney disease (ARPKD) such as the BPK mouse. The current study was designed to determine (1). if treatment with a second-generation inhibitor of EGFR tyrosine kinase activity, EKB-569, was effective in treatment of ARPKD; (2). if tyrosine kinase inhibitor therapy used in combination with pharmacologic reduction of the availability of transforming growth factor-alpha (TGF-alpha), using WTACE2, could provide improved therapeutic efficacy and/or decrease potential toxicity; and (3). if effectiveness of treatment could be monitored noninvasively in murine ARPKD models by use of serial ultrasonography. METHODS BPK litters were treated with EKB-569 by intraperitoneal injection from postnatal day 7 to postnatal day 21. EKB-569's effectiveness alone or in combination with WTACE2 was measured by reduction in kidney weight/body weight ratios, morphometric renal cystic index, and evaluation of renal function. Renal ultrasound was performed on normal and cystic animals, under different therapeutic regimens, utilizing a 15 mHz linear array transducer, and ultrasound data were compared with histology and renal functional data. RESULTS Treatment of BPK mice with EKB-569 alone resulted in a marked reduction of kidney weight/body weight ratios, dramatically reduced collecting tubule cystic index, as well as BDE, and improved renal function. The combined treatment with EKB-569 and WTACE2 permitted a 67% reduction in EKB-569 dosage necessary to achieve results equivalent to those produced with EKB-569 alone. Untreated cystic animals died of renal failure, on average, at postnatal day 24 with a collecting tubule cystic index of 4.8, significant BDE, and maximal urine osmolarity of 361 mOsm. Cystic animals treated with EKB-569 and WTACE2 to postnatal day 21 were alive and well with normal renal function, a reduced collecting tubule cystic index of 1.7 (P < 0.02), improvement in BDE, and a threefold increase in maximum urinary concentrating ability (P < 0.01). Renal ultrasound could reliably detect cystic kidneys as early as postnatal day 7 and the natural history as well as effects of therapeutic intervention were clearly delineated by ultrasound evaluation. CONCLUSION This study demonstrates that in murine ARPKD (1). EKB-569 is as effective as first-generation EGFR tyrosine kinase inhibitors in reducing cyst formation and preserving renal function; (2). combination therapy with EKB-569 and WTACE2 provides maximum efficacy in improving renal and biliary abnormalities, at lower doses, thereby minimizing potential toxicity; and (3). renal ultrasound provides a simple, reliable, noninvasive method of following natural history and effect of treatment regimens.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6003, USA
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Peter Igarashi
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
17
|
Zagar I, Anderson PJ, Gordon I. The value of radionuclide studies in children with autosomal recessive polycystic kidney disease. Clin Nucl Med 2002; 27:339-44. [PMID: 11953567 DOI: 10.1097/00003072-200205000-00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To describe and analyze the appearances of autosomal recessive polycystic kidney disease (ARPKD) on Tc-99m DMSA and Tc-99m HIDA scintigraphy. MATERIALS AND METHODS The authors evaluated scintigraphic findings for 13 boys and 9 girls (age range, 2 months to 22.75 years; mean, 7.5 years) with ARPKD. Fourteen children underwent Tc-99m DMSA and 20 underwent Tc-99m HIDA scintigraphy according to European guidelines. Kidney outline, internal structure, tracer uptake, and differential function were analyzed on Tc-99m DMSA images, whereas relative liver lobe sizes, hepatocyte tracer uptake, time to peak, and excretion into the biliary tree and gut were evaluated on Tc-99m HIDA scans. RESULTS On Tc-99m DMSA images, loss of kidney outline and internal structure was seen in 75% of the scans, and patchy tracer uptake with focal defects throughout the kidneys, particularly at the poles, was evident in 93%. In 85% of the cases, the Tc-99m DMSA changes did not correlate with the ultrasonographic findings where the kidneys are uniformly affected. Characteristic findings on Tc-99m HIDA scans were enlarged left liver lobe in 80%, a delay in maximal hepatocyte uptake in 68%, delayed tracer excretion into the biliary tree in 32% (with stasis in the prominent intrahepatic biliary ducts in 50% or pooling into the segmentally dilated biliary ducts in 25%), and delayed excretion into the gut in 40% of patients. CONCLUSIONS In a child with clinically enlarged kidneys that appear diffusely hyperechoic on ultrasound, the appearances on Tc-99m DMSA imaging strongly support the diagnosis of ARPKD. The Tc-99m HIDA findings, especially of an enlarged left lobe of the liver with bile stasis or dilatation, further support the diagnosis.
Collapse
Affiliation(s)
- Ivana Zagar
- Department of Radiology, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom
| | | | | |
Collapse
|
18
|
Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D'Eustachio P, Beier DR, Guay-Woodford LM. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002. [PMID: 11854326 DOI: 10.1172/jci0214099] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145-amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.
Collapse
Affiliation(s)
- Xiaoying Hou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE, Schafer JA, Balkovetz DF. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 2002; 282:F541-52. [PMID: 11832437 DOI: 10.1152/ajprenal.00273.2001] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cilia are organelles that play diverse roles, from fluid movement to sensory reception. Polaris, a protein associated with cystic kidney disease in Tg737(o)(rpk) mice, functions in a ciliogenic pathway. Here, we explore the role of polaris in primary cilia on Madin-Darby canine kidney cells. The results indicate that polaris localization and solubility change dramatically during cilia formation. These changes correlate with the formation of basal bodies and large protein rafts at the apical surface of the epithelia. A cortical collecting duct cell line has been derived from mice with a mutation in the Tg737 gene. These cells do not develop normal cilia, which can be corrected by reexpression of the wild-type Tg737 gene. These data suggest that the primary cilia are important for normal renal function and/or development and that the ciliary defect may be a contributing factor to the cystic disease in Tg737(o)(rpk) mice. Further characterization of these cells will be important in elucidating the physiological role of renal cilia and in determining their relationship to cystic disease.
Collapse
Affiliation(s)
- Bradley K Yoder
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D'Eustachio P, Beier DR, Guay-Woodford LM. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002; 109:533-40. [PMID: 11854326 PMCID: PMC150876 DOI: 10.1172/jci14099] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Accepted: 01/07/2002] [Indexed: 11/17/2022] Open
Abstract
The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145-amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Cilia/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- Disease Models, Animal
- Gene Expression
- Homozygote
- Humans
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Mutant Strains
- Molecular Sequence Data
- Mutation
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Xiaoying Hou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakanishi K, Sweeney WE, Avner ED. Segment-specific c-ErbB2 expression in human autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2001; 12:379-384. [PMID: 11158230 DOI: 10.1681/asn.v122379] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
c-ErbB2 (also referred to as Neu or HER2), a transmembrane glycoprotein with intrinsic tyrosine kinase activity, is structurally related to epidermal growth factor receptor (EGFR) and forms active heterodimers with EGFR as well as other members of the EGFR family. c-ErbB2 is reported to mediate differentiation and proliferation in epithelial cells and is expressed in a tissue-specific and developmental stage-specific manner. Given the role of EGFR in cystic renal epithelial hyperplasia and the immature phenotype of cystic renal epithelial cells, the segment-specific expression pattern of c-ErbB2 in human autosomal recessive polycystic kidney disease (ARPKD) was examined in nine ARPKD kidney specimens ranging from gestational age 17 wk through postnatal age 4 wk. c-ErbB2 staining of human ARPKD samples showed increased expression with increasing gestational age compared with normal human fetal and postnatal kidneys. This increased c-ErbB2 expression was primarily localized to the apical surfaces of cystic collecting tubule cells, similar to the pattern of EGFR expression, and paralleled collecting tubular cyst formation and growth.
Collapse
Affiliation(s)
- Koichi Nakanishi
- Rainbow Center for Childhood PKD, Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - William E Sweeney
- Rainbow Center for Childhood PKD, Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - Ellis D Avner
- Rainbow Center for Childhood PKD, Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
22
|
Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW. Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:49-55. [PMID: 11141478 PMCID: PMC1850252 DOI: 10.1016/s0002-9440(10)63943-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2000] [Indexed: 11/17/2022]
Abstract
Developing mammalian embryonic kidney becomes progressively more elaborate as the ureteric bud branches into undifferentiated mesenchyme. Morphological perturbations of nephrogenesis, such as those seen in inherited renal diseases or induced in transgenic animals, require careful and often tedious documentation by multiple methodologies. We have applied a relatively quick and simple approach combining two-photon microscopy and advanced three-dimensional (3-D) imaging techniques to visualize and evaluate these complex events. As compared with laser confocal microscopy, two-photon microscopy offers superior optical sectioning deep into biological tissues, permitting analysis of large, heterogeneous, 3-D structures such as developing mouse kidney. Embryonic and newborn mouse kidneys were fluorescently labeled with lectins, phalloidin, or antibody. Three-dimensional image volumes were then collected. The resulting volume data sets were processed using a novel 3-D visualization technique. Reconstructed image volumes demonstrate the dichotomous branching of ureteric bud as it progresses from a simple, symmetrical structure into an elaborate, asymmetrical collecting system of multiple branches. Detailed morphology of in situ cysts was elucidated in a transgene-induced mouse model of polycystic kidney disease. We expect this integration of two-photon microscopy with advanced 3-D image analysis will provide a powerful tool for illuminating a variety of complex developmental processes in multiple dimensions.
Collapse
Affiliation(s)
- C L Phillips
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5116, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ricker JL, Gattone VH, Calvet JP, Rankin CA. Development of autosomal recessive polycystic kidney disease in BALB/c-cpk/cpk mice. J Am Soc Nephrol 2000; 11:1837-1847. [PMID: 11004214 DOI: 10.1681/asn.v11101837] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but devastating inherited disease in humans. Various strains of mice that are homozygous for the cpk gene display renal pathology similar to that seen in human ARPKD. The PKD progresses to renal insufficiency, azotemia, and ultimately a uremic death by approximately 3 wk of age. This study characterizes PKD in mice that are homozygous for the cpk gene on a BALB/c inbred mouse background. The BALB/c-cpk/cpk murine model displays renal as well as extrarenal pathology similar to that found in human ARPKD. The renal pathology includes the well-characterized early proximal tubule and, later, massive collecting duct cysts. The extrarenal defects in this murine model include common bile duct dilation, intrahepatic biliary duct cysts with periductal hyperplasia, and pancreatic dysplasia with cysts. Renal mRNA expression of c-myc, a proto-oncogene, and clusterin (SGP-2), a marker associated with immature collecting ducts, decreases during normal development but is upregulated in murine ARPKD. Expression of epidermal growth factor (EGF) mRNA is significantly diminished, whereas EGF receptor mRNA is upregulated in the BALB/c-cpk/cpk kidney compared with phenotypically normal littermates. To determine whether the altered EGF expression contributes to the development of PKD, neonatal mice were treated with exogenous EGF (1 microg/g body wt injected subcutaneously on postnatal days 3 through 9). EGF treatment reduced the relative kidney weight and common bile duct dilation and downregulated renal expression of clusterin and EGF receptor. However, exogenous EGF did not affect the degree of renal failure, the pancreatic pathology, or the misregulated renal expression of c-myc. In summary, the present study characterizes the renal and extrarenal pathology in the BALB/c-cpk/cpk murine model of ARPKD. Renal mRNA expression of EGF is diminished in this mouse model. EGF treatment did not prevent renal failure but ameliorated pathologic changes in the kidney and the biliary ducts of the BALB/c-cpk/cpk mouse.
Collapse
Affiliation(s)
- Justin L Ricker
- Department of Anatomy & Cell Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Vincent H Gattone
- Department of Anatomy & Cell Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - James P Calvet
- Department of Biochemistry & Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn A Rankin
- Department of Biochemistry & Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
24
|
Nakanishi K, Sweeney WE, Zerres K, Guay-Woodford LM, Avner ED. Proximal tubular cysts in fetal human autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2000; 11:760-763. [PMID: 10752536 DOI: 10.1681/asn.v114760] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Standard texts describe human autosomal recessive polycystic kidney disease (ARPKD) as a cystic kidney disease in which lesions are localized to collecting tubules. Murine models of ARPKD consistently demonstrate an early phase of proximal tubular (PT) cystic involvement, which disappears shortly after birth. This is followed by a phase of collecting tubular (CT) cyst formation and progressive enlargement leading to compromise of renal function and death. Because the description of cystic lesions in human ARPKD has been largely based on postnatal specimens, PT cyst formation was hypothesized to be a characteristic feature of fetal human, as well as murine, ARPKD. This study examines nephron segment-specific cyst localization histochemically by lectin binding in 11 human ARPKD specimens obtained at different fetal and postnatal ages. PT cysts were found in human fetal specimens from gestational age 14 wk to 26 wk. The percentage of cysts involving PT segments ranged from 2 to 41%. The cystic index of PT cysts ranged from 2 to 5. In all specimens in which PT cysts were found, both the percentage of CT cysts and their cystic index were equal to or greater than the percentage of PT cysts and the associated PT cystic index. PT cysts were absent in all kidney specimens older than 34 wk gestational age. It is concluded that human ARPKD, like murine ARPKD, has a transient phase of PT cyst formation during early fetal development.
Collapse
Affiliation(s)
- Koichi Nakanishi
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - William E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| | - Klaus Zerres
- Institute for Human Genetics, Technical University of Aachen, Germany
| | - Lisa M Guay-Woodford
- Department of Medicine and Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ellis D Avner
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
Ostrom L, Tang MJ, Gruss P, Dressler GR. Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Dev Biol 2000; 219:250-8. [PMID: 10694420 DOI: 10.1006/dbio.2000.9618] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The murine cpk mouse develops a rapid-onset polycystic kidney disease (PKD) with many similarities to human PKD. During kidney development, the transcription factor Pax2 is required for the specification and differentiation of the renal epithelium. In humans, Pax2 is also expressed in juvenile cystic kidneys where it correlates with cell proliferation. In this report, Pax2 expression is demonstrated in the cystic epithelium of the mouse cpk kidneys. To assess the role of Pax2 during the development of polycystic kidney disease, the progression of renal cysts was examined in cpk mutants carrying one or two alleles of Pax2. Reduced Pax2 gene dosage resulted in a significant inhibition of renal cyst growth while maintaining more normal renal structures. The inhibition of cyst growth was not due to reduced proliferation of the cystic epithelium, rather to increased cell death in the Pax2 heterozygotes. Increased apoptosis with reduced Pax2 gene dosage was also observed in normal developing kidneys. Thus, increased cell death is an integral part of the Pax2 heterozygous phenotype and may be the underlying cause of Pax gene haploinsufficiency. That the cystic epithelium requires Pax2 for continued expansion underscores the embryonic nature of the renal cystic cells and may provide new insights toward growth suppression strategies.
Collapse
Affiliation(s)
- L Ostrom
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | |
Collapse
|
26
|
Sweeney WE, Chen Y, Nakanishi K, Frost P, Avner ED. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 2000; 57:33-40. [PMID: 10620185 DOI: 10.1046/j.1523-1755.2000.00829.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. BACKGROUND We have previously demonstrated an essential role for increased epidermal growth factor receptor (EGFR) activity in mediating renal cyst formation and biliary epithelial hyperplasia in murine models of autosomal recessive polycystic kidney disease (ARPKD). This study was designed to determine whether or not treatment with a newly developed inhibitor of EGFR tyrosine kinase activity (EKI-785) would reduce renal and biliary abnormalities in murine ARPKD. METHODS Balb/c-bpk/bpk (BPK) litters were treated with EKI-785, an EGFR-specific tyrosine kinase inhibitor. Animals were treated by intraperitoneal injection beginning at postnatal day 7 and were treated until postnatal day 24 or 48. EKI-785's effectiveness was measured by a reduction in the renal cystic index, an increased life span, and maintenance of normal renal function. RESULTS Treatment of BPK mice with EKI-785 resulted in a marked reduction of collecting tubule (CT) cystic lesions, improved renal function, decreased biliary epithelial abnormalities, and an increased life span. Untreated cystic animals died of renal failure at postnatal day 24 (P-24) with a CT cystic index of 4.8, a maximal urine osmolarity of 361 mOsm, and moderate to severe biliary abnormalities. Cystic animals treated with EKI-785 to postnatal day 48 (P-48) were alive and well with normal renal function, a reduced CT cystic index of 2.0 (P < 0.02), a threefold increased in maximum urinary concentrating ability (P < 0.01), and a significant decrease in biliary epithelial proliferation/fibrosis (P < 0.01). CONCLUSION This study demonstrates that EKI-785 has therapeutic effectiveness in improving histopathologic abnormalities and decreasing mortality in murine ARPKD.
Collapse
Affiliation(s)
- W E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Clevelnad, Ohio, USA
| | | | | | | | | |
Collapse
|
27
|
Vogler C, Homan S, Pung A, Thorpe C, Barker J, Birkenmeier EH, Upadhya P. Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. J Am Soc Nephrol 1999; 10:2534-9. [PMID: 10589692 DOI: 10.1681/asn.v10122534] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Patients with inherited cystic kidney diseases have progressive cystic dilation of nephrons with concomitant loss of functional renal parenchyma and renal failure. Animal models of inherited cystic kidney disease are useful for study of the pathogenesis and molecular basis of cystic renal diseases. This article describes the clinical and pathologic features in two spontaneously occurring murine models of inherited polycystic kidney disease due to independent allelic mutations on mouse chromosome 8. The mutations, designated kat and kat2J, affect a chromosomal segment homologous to a region of human chromosome 4q35; the altered gene has not yet been identified. An allelism test showed that the mutations are at the same locus. The phenotype, inherited as an autosomal recessive, is more severe in kat2J/kat2J mice. Their kidneys are morphologically normal at birth, but by 3 mo of age, cysts affect all levels of the nephron. Adult males have testicular hypoplasia and they are sterile. A few of the oldest kat2J/kat2J mice have focal portal bile duct proliferation and dilation. kat2J/kat2J mice develop anemia and uremia and die before 1 yr of age. In kat/kat mice, the renal cystic disease progresses more slowly but is morphologically similar to that of kat2J/kat2J mice. The progressive cystic transformation of the kidneys in these allelic murine models resembles that seen in humans with autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- C Vogler
- Department of Pathology, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sweeney WE, Futey L, Frost P, Avner ED. In vitro modulation of cyst formation by a novel tyrosine kinase inhibitor. Kidney Int 1999; 56:406-13. [PMID: 10432378 DOI: 10.1046/j.1523-1755.1999.00577.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recessively transmitted polycystic kidney disease (PKD) in many murine models is characterized by the initial formation of proximal tubular cysts (stage 1), followed by growth and enlargement of renal collecting tubule (CT) cysts (stage 2). Previous studies have reported that stage 1 cyst formation and growth could be manipulated in vitro by using embryonic kidney explants and newborn explant microslices in organ culture. METHODS Microslices of postnatal kidneys cultured on Transwell tissue culture inserts allow experimental manipulation of stage 2 CT cyst development and growth. This system was used to test a potential therapeutic compound for treatment of PKD. This compound, EKI-785, modulates altered epidermal growth factor receptor (EGFR) expression in CT cysts by inhibition of EGFR autophosphorylation. RESULTS These studies demonstrate that: (a) minor modifications of the previously described organ culture system permit successful culture of more mature renal tissue, and (b) cystic explants treated with EGF and EKI-785 demonstrated a marked reduction in CT cystic lesions compared with cystic explants treated with EGF alone. CONCLUSIONS This study suggests that pharmacological strategies can be used to decrease EGFR tyrosine kinase activity and CT cyst formation and enlargement in murine PKD.
Collapse
Affiliation(s)
- W E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6003, USA
| | | | | | | |
Collapse
|
29
|
Rankin CA, Itoh Y, Tian C, Ziemer DM, Calvet JP, Gattone VH. Matrix metalloproteinase-2 in a murine model of infantile-type polycystic kidney disease. J Am Soc Nephrol 1999; 10:210-7. [PMID: 10215319 DOI: 10.1681/asn.v102210] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It was previously found that elevated levels of matrix metalloproteinase (MMP)-2 (gelatinase A) and -9 (gelatinase B) were synthesized and secreted into the medium by cultured kidney tubules derived from cystic C57BL/6J-cpk mice. To determine whether increased synthesis and secretion occur in vivo in this mouse model of polycystic kidney disease, kidney protein extracts, mRNA, and tissue sections were compared for expression and activity of MMP-2 and -9. Although both MMP were detected in tissue extracts, the differences in expression levels and activity in normal and cystic kidneys were far greater for MMP-2. High levels of MMP-2 seemed to result from increased expression by the cystic kidneys predominantly in the second and third postnatal weeks (a time when the kidneys are undergoing rapid cystic enlargement). Much of the increased MMP was present in the inactive zymogen form, although active enzyme was readily detected by sodium dodecyl sulfate-polyacrylamide gel zymography and in situ zymography. MMP-2 was abnormally localized to the interstitium and to foci between cysts, suggesting that MMP-2 may regulate collagen accumulation at those sites, thus allowing cyst enlargement and limiting the severity of interstitial fibrosis.
Collapse
Affiliation(s)
- C A Rankin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sweeney WE, Avner ED. Functional activity of epidermal growth factor receptors in autosomal recessive polycystic kidney disease. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F387-94. [PMID: 9729511 DOI: 10.1152/ajprenal.1998.275.3.f387] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence from a number of laboratories suggests a potential role for the epidermal growth factor (EGF)-transforming growth factor-alpha-epidermal growth factor receptor (EGF-R) axis in promoting epithelial hyperplasia and cyst formation in autosomal recessive polycystic kidney disease (ARPKD). As previously reported, in the C57BL-6Jcpk/cpk (CPK), BALB/c-bpk/bpk (BPK), and C3H-orpk/orpk (ORPK) murine models of ARPKD, as well as in human ARPKD and human ADPKD, the EGF-R is mislocated to the apical surface of cystic collecting tubule (CT) epithelial cells. The present studies demonstrate that cells from cystic and control CTs can be isolated and that these cells maintain their in vivo EGF-R phenotype in vitro. Domain-specific high-affinity ligand binding was assessed by standard Scatchard analysis, and selective ligand stimulation of apical vs. basolateral EGF-R in these cells was followed by measurement of receptor autophosphorylation and determination of cell proliferation. These studies demonstrate that in vitro apically expressed EGF-Rs exhibit high-affinity binding for EGF, autophosphorylate in response to EGF, and transmit a mitogenic signal when stimulated by the appropriate ligand.
Collapse
Affiliation(s)
- W E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital, and Case Western Reserve University, Cleveland, Ohio 44106-6003, USA
| | | |
Collapse
|
31
|
Vanden Heuvel GB, Bodmer R, McConnell KR, Nagami GT, Igarashi P. Expression of a cut-related homeobox gene in developing and polycystic mouse kidney. Kidney Int 1996; 50:453-61. [PMID: 8840273 DOI: 10.1038/ki.1996.336] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cut is a diverged homeobox gene that is essential for normal development of the Malpighian tubules in Drosophila melanogaster. Homologues of Drosophila cut that encode transcriptional repressors have been identified in several mammalian species and cell lineages. We examined the expression of a murine cut homologue (named Cux-1) in the developing mouse using Northern blot analysis and in situ hybridization. At 12.5 d.p.c. and 13.5 d.p.c., Cux-1 was highly expressed in a subset of embryonic tissues, including the developing metanephros. Within the metanephros, Cux-1 was expressed in the nephrogenic zone including both mesenchymal cells (uninduced and condensed mesenchyme) and epithelial cells (ureteric buds, renal vesicles, S-shaped bodies). During later stages of nephrogenesis, Cux-1 was down-regulated such that there was minimal expression in mature glomeruli and tubules. In addition, Cux-1 was detected in the mesonephros, mesonephric duct, and bladder. Expression of Cux-1 was also examined in polycystic kidneys from C57BL/6J-cpk/ cpk mice. At 21 days of age, Cux-1 was highly expressed in cyst epithelium of polycystic kidneys but was minimally expressed in kidneys from phenotypically normal littermates. These results demonstrate that a cut-related homeobox gene is expressed in the developing kidney and urinary tract of the mouse. Expression of Cux-1 in the kidney is inversely related to degree of cellular differentiation. Cux-1 may encode a transcriptional repressor that inhibits terminally differentiated gene expression during early stages of nephrogenesis.
Collapse
Affiliation(s)
- G B Vanden Heuvel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
32
|
Winyard PJ, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, Woolf AS. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int 1996; 49:135-46. [PMID: 8770959 DOI: 10.1038/ki.1996.18] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Various aberrations of cell biology have been reported in polycystic kidney diseases and in cystic renal dysplasias. A common theme in these disorders is failure of maturation of renal cells which superficially resemble embryonic tissue. Apoptosis is a feature of normal murine nephrogenesis, where it has been implicated in morphogenesis, and fulminant apoptosis occurs in the small, cystic kidneys which develop in mice with null mutations of bcl-2. Therefore, we examined the location and extent of apoptosis in pre- and postnatal samples of human polycystic and dysplastic kidney diseases using propidium iodide staining, in situ end-labeling and electron microscopy. In dysplastic kidneys cell death was prominent in undifferentiated cells around dysplastic tubules and was occasionally found in cystic epithelia. The incidence of apoptosis was significantly greater than in normal controls of comparable age both pre- and postnatally. In the polycystic kidneys there was widespread apoptosis in the interstitium around undilated tubules distant from cysts, in undilated tubules between cysts and in cystic epithelia. The level of apoptosis compared to controls was significantly increased postnatally. A similar increase of cell death was also noted in the early and late stages of renal disease in the polycystic cpk/cpk mouse model. We speculate that deregulation of cell survival in these kidneys may reflect incomplete tissue maturation, and may contribute to the progressive destruction of functional kidney tissue in polycystic kidneys and the spontaneous involution reported in cystic dysplastic kidneys.
Collapse
Affiliation(s)
- P J Winyard
- Developmental biology Unit, Institute of Child Health, London, England, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Onuchic LF, Schrick JJ, Ma J, Hudson T, Guay-Woodford LM, Zerres K, Woychik RP, Reeders ST. Sequence analysis of the human hTg737 gene and its polymorphic sites in patients with autosomal recessive polycystic kidney disease. Mamm Genome 1995; 6:805-8. [PMID: 8597639 DOI: 10.1007/bf00539009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA sequence analysis of the human Tg737 gene was performed in 36 patients with the autosomal recessive form of polycystic kidney disease (ARPKD). Coding exons and their adjacent splice sites were screened for mutations. Pathogenic exon or splice region mutations were not identified although one exonic and two intronic polymorphic sites were discovered. These results are in agreement with another study that has recently reported linkage to Chromosome (Chr) 6p21-cen in a set of 16 ARPKD families. STS mapping has localized the gene to a YAC contig that includes D13S175 on chromosome 13q12.1. The polymorphisms found in the htG737 gene will permit its future evaluation as a candidate gene for other recessive cystic renal diseases and as a modifier gene in human PKD.
Collapse
Affiliation(s)
- L F Onuchic
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE, Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 1994; 264:1329-33. [PMID: 8191288 DOI: 10.1126/science.8191288] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.
Collapse
Affiliation(s)
- J H Moyer
- University of Tennessee Graduate School of Biomedical Sciences, Biology Division, Oak Ridge National Laboratory, TN 37831-8077
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Woo DD, Miao SY, Pelayo JC, Woolf AS. Taxol inhibits progression of congenital polycystic kidney disease. Nature 1994; 368:750-3. [PMID: 7908721 DOI: 10.1038/368750a0] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polycystic kidney diseases (PKD) are the most common hereditary diseases of the human kidney and account for ten per cent of patients requiring renal transplantation or dialysis. Renal cyst formation has been attributed to enhanced cell proliferation, unbalanced cell death, abnormal targeting of membrane proteins, aberrant kidney development and tubular obstruction, but there is no treatment that blocks the formation and enlargement of renal cysts. We have now developed an in vitro model of spontaneous cyst formation that distinguishes polycystic kidney epithelium from its normal counterpart. Inhibitors of DNA, RNA and protein synthesis did not prevent in vitro cyst formation, but this was reversibly inhibited by ouabain, amiloride and the microtubule-specific agents colchicine, vinblastine and taxol. The cpk mouse is a well-characterized recessive PKD model and we find that cpk/cpk mice develop PKD and die from uraemia by 4-5 weeks of age, but when treated weekly with taxol they survive for more than 200 days with minimal loss of renal function, show limited collecting-dust cyst enlargement, and attain adult size. Our results indicate that the microtubule cytoskeleton has a central role in the pathogenesis of PKD in cpk mice and that taxol may also be useful in treating human PKD.
Collapse
Affiliation(s)
- D D Woo
- Department of Medicine, UCLA School of Medicine 90024-1689
| | | | | | | |
Collapse
|
36
|
Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993; 75:229-40. [PMID: 8402909 DOI: 10.1016/0092-8674(93)80065-m] [Citation(s) in RCA: 1150] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
bcl-2-/-mice complete embryonic development, but display growth retardation and early mortality postnatally. Hematopoiesis including lymphocyte differentiation is initially normal, but thymus and spleen undergo massive apoptotic involution. Thymocytes require an apoptotic signal to manifest accelerated cell death. Renal failure results from severe polycystic kidney disease characterized by dilated proximal and distal tubular segments and hyperproliferation of epithelium and interstitium. bcl-2-/-mice turn gray with the second hair follicle cycle, implicating a defect in redox-regulated melanin synthesis. The abnormalities in these loss of function mice argue that Bcl-2 is a death repressor molecule functioning in an antioxidant pathway.
Collapse
Affiliation(s)
- D J Veis
- Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
37
|
Nauta J, Ozawa Y, Sweeney WE, Rutledge JC, Avner ED. Renal and biliary abnormalities in a new murine model of autosomal recessive polycystic kidney disease. Pediatr Nephrol 1993; 7:163-72. [PMID: 8476712 DOI: 10.1007/bf00864387] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current models of autosomal recessive polycystic kidney disease (ARPKD) fail to demonstrate biliary abnormalities in association with renal cysts. We therefore studied a new murine model of ARPKD in which dual renal tubular and biliary epithelial abnormalities are present. Affected homozygous animals typically die 1 month postnatally in renal failure with progressively enlarged kidneys. Renal cysts shift in site from inner cortical proximal tubules at birth to collecting tubules 20 days later, as determined by segment-specific lectin binding. Increased numbers of mitosis were demonstrated in proximal and collecting tubular cysts. In addition, epithelial hyperplasia was demonstrated morphometrically in the intra- and extrahepatic biliary tract of affected animals. The number of intrahepatic biliary epithelial cells was increased by 50% on postnatal day 5 and by 100% on postnatal day 25 (P < 0.01). Despite an increased frequency of "chaotic" portal areas in mice with renal cysts, no intrahepatic cysts or shape abnormalities of the biliary lumen were detected using biliary casts and morphometry. Additionally there was nonobstructive hyperplastic dilatation of the extrahepatic biliary tract which was linked in all animals to the presence of renal cysts. The hyperplastic abnormalities in both renal and biliary epithelium make this new mouse strain a good model for the study of the dual organ cellular pathophysiology of ARPKD.
Collapse
Affiliation(s)
- J Nauta
- Department of Pediatrics, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Rahilly MA, Samuel K, Ansell JD, Micklem HS, Fleming S. Polycystic kidney disease in the CBA/N immunodeficient mouse. J Pathol 1992; 168:335-42. [PMID: 1469511 DOI: 10.1002/path.1711680315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe a polycystic lesion of the kidney in the CBA/N mouse with an X-linked recessive immunodeficient syndrome. There is progressive cystic dilatation affecting all parts of the nephron. The cyst lining is composed of a single layered epithelium with focal nuclear crowding and the formation of micropapillary structures. The cystic epithelial cells show subnuclear vacuolation. Focal basement membrane thickening is also a feature. There is no significant inflammatory infiltrate present within these kidneys. Electron microscopic examination reveals that the subnuclear vacuolation is due to loss of the membrane infoldings at the basal pole of the epithelial cell with fluid accumulation within the extracellular space. The basement membrane thickening is due to expansion of the lamina densa. These changes are not present at birth but develop progressively with age. The finding of a polycystic kidney lesion in these mice offers an opportunity to investigate the relationship between the immune system and renal cyst formation.
Collapse
Affiliation(s)
- M A Rahilly
- Department of Pathology, University of Edinburgh, U.K
| | | | | | | | | |
Collapse
|
39
|
Avner ED, Sweeney WE, Nelson WJ. Abnormal sodium pump distribution during renal tubulogenesis in congenital murine polycystic kidney disease. Proc Natl Acad Sci U S A 1992; 89:7447-51. [PMID: 1323837 PMCID: PMC49727 DOI: 10.1073/pnas.89.16.7447] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Congenital polycystic kidney disease is characterized by the formation of large fluid-filled cysts in kidney tubules. It has been postulated that increased epithelial cell proliferation and altered transtubular fluid transport are necessary for cyst formation. To address the latter problem, we have studied the plasma membrane distribution of the alpha 1 and beta 1 subunits of Na+/K(+)-ATPase during progressive stages of proximal and collecting tubular cyst formation in the CPK mouse, a murine model of autosomal recessive polycystic kidney disease. In both control and cystic proximal tubules, Na+/K(+)-ATPase distribution was restricted to the basal-lateral membrane of cells. However, in newborn through day 5 kidney tissue, 16% of control vs. 47% of cystic outer cortical, 6% of control vs. 46% of cystic inner cortical, and 2% of control vs. 63% of cystic medullary collecting tubules demonstrated apical and lateral membrane distribution of Na+/K(+)-ATPase. In all nephrogenic zones, the percentage of control or cystic collecting tubules demonstrating apical membrane distribution of Na+/K(+)-ATPase decreased over time, but the percentage of cystic collecting tubules with apical membrane Na+/K(+)-ATPase remained significantly greater than in developmentally matched controls. No alterations in the normal distributions of other apical or basal-lateral membrane marker proteins were noted at any stage of control or cystic proximal or collecting tubule development. We conclude that apical-lateral membrane Na+/K(+)-ATPase expression is a normal transient feature of early collecting tubule development. However, apical membrane Na+/K(+)-ATPase persists in cystic kidneys, suggesting that such expression may be a manifestation of the relatively undifferentiated phenotype of epithelial cells lining collecting tubule cysts. The persistence of apical membrane Na+/K(+)-ATPase, if the enzyme is functional, may have pathogenic important in abnormal transtubular fluid transport in polycystic kidney disease.
Collapse
Affiliation(s)
- E D Avner
- Department of Pediatrics, University of Washington, Seattle
| | | | | |
Collapse
|
40
|
Affiliation(s)
- P D Wilson
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway
| | | |
Collapse
|
41
|
Taub M, Laurie GW, Martin GR, Kleinman HK. Altered basement membrane protein biosynthesis by primary cultures of cpk/cpk mouse kidney. Kidney Int 1990; 37:1090-7. [PMID: 2160557 DOI: 10.1038/ki.1990.90] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, kidneys from three-week-old cpk/cpk C57/B16 mice were found to contain elevated mRNA levels for the basement membrane components collagen IV and laminin [1]. Here primary cultures of kidney epithelial cells derived from cpk/cpk C57/B16 mice were established and the production of these proteins in culture was studied. Primary cultures of cpk/cpk mouse kidney epithelial cells were observed to have a more polygonal, flattened morphology than cells from unaffected littermate kidneys. The rate of collagen IV and laminin biosynthesis was determined by means of [35S] labelling studies followed by immunoprecipitation. Collagen IV and laminin biosynthesis are elevated by approximately twofold or more in primary cultures derived from 20-day-old cpk/cpk mice, as compared with parallel primary cultures derived from their unaffected littermates. Similarly, laminin B1 chain mRNA is elevated in primary cultures derived from 20-day-old cpk/cpk mice. In primary cultures derived from younger (day 11) mice, similar differences in the rates of both collagen and laminin biosynthesis were not observed between the two culture types. These observations are consistent with the previously reported age-dependent differences observed in laminin and in collagen IV gene expression in both cpk/cpk and wild-type mouse kidneys, and suggest that the regulation of overproduction of these proteins is due to an alteration in the kidney cells and not due to systemic factors.
Collapse
Affiliation(s)
- M Taub
- Department of Biochemistry, State University of New York, Buffalo
| | | | | | | |
Collapse
|
42
|
Avner ED, Sweeney WE, Ellis D. In vitro modulation of tubular cyst regression in murine polycystic kidney disease. Kidney Int 1989; 36:960-8. [PMID: 2557482 DOI: 10.1038/ki.1989.288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies in a murine model of genetically-determined polycystic kidney disease, the CPK mouse, have suggested that alterations in renal Na-K ATPase activity in concert with tubular epithelial hyperplasia have pathogenic import in proximal tubular cyst formation. In the current study, we therefore studied the relative roles of Na-K ATPase activity, tubular epithelial hyperplasia, and basal lamina alterations during in vitro modulation of proximal tubular cyst regression during serum-free organ culture of newborn CPK kidneys. Under basal in vitro conditions, regression of CPK proximal tubular cysts was demonstrated in association with progressive decreases in Na-K ATPase activity and tubular epithelial hyperplasia. The pattern of proximal tubular cyst regression was modified by: a) Na-K ATPase activity induction with triiodothyronine, which promoted proximal tubular cystogenesis; and b) Na-K ATPase activity inhibition with ouabain, which blocked the effects of T3 on the process of cyst formation. Modulation of proximal tubular cystogenesis by Na-K ATPase induction and inhibition were accomplished without significant changes in proximal tubular epithelial hyperplasia or expression of basal lamina components. We conclude that increased Na pump activity may have a significant role in proximal tubular cyst formation and progressive enlargement in the CPK mouse.
Collapse
Affiliation(s)
- E D Avner
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
43
|
Avner ED, Sweeney WE, Young MC, Ellis D. Congenital murine polycystic kidney disease. II. Pathogenesis of tubular cyst formation. Pediatr Nephrol 1988; 2:210-8. [PMID: 2856368 DOI: 10.1007/bf00862593] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the current study, the pathogenesis of proximal tubular cyst formation was studied in an animal model of polycystic kidney disease, the CPK mouse. The specific roles of (a) sodium-potassium adenosine triphosphatase (Na-K ATPase) activity, determined by an enzyme-linked kinetic microassay, (b) proximal tubular epithelial hyperplasia, determined by calculation of mitotic indices, and (c) altered proximal tubular basal lamina formation, determined by immunohistological localization of basal lamina glycoproteins, were investigated at progressive developmental stages of CPK proximal tubular cyst formation. Increases in renal Na-K ATPase were present at the earliest fetal stages of proximal tubular cyst formation, and subsequently paralleled the course of proximal tubular cyst progression. Proximal tubular epithelial hyperplasia, although not present at the earliest stages of cyst formation, was a consistent feature of progressive proximal tubular cystic enlargement. Abnormalities in basal lamina glycoprotein expression were not present at any stage of proximal tubular cyst development. We conclude that increased Na-K ATPase and tubular epithelial hyperplasia are significant features of proximal tubular cyst formation in the CPK mouse.
Collapse
Affiliation(s)
- E D Avner
- Department of Pediatrics (Nephrology), University of Pittsburgh School of Medicine, Pennsylvania
| | | | | | | |
Collapse
|