1
|
Decoux-Poullot AG, Bannwarth S, Procaccio V, Lebre AS, Jardel C, Vialettes B, Paquis-Flucklinger V, Chevalier N. Clinical phenotype of mitochondrial diabetes due to rare mitochondrial DNA mutations. ANNALES D'ENDOCRINOLOGIE 2020; 81:68-77. [PMID: 32409007 DOI: 10.1016/j.ando.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE While the most frequent mutation responsible for mitochondrial diabetes is the point mutation m.3243 A>G of mitochondrial DNA (mtDNA), few data are available about the role of rare mtDNA mutations in the pathophysiology of diabetes. The main objective of our study was to describe the phenotypic characteristics of patients suffering from diabetes linked to rare mtDNA mutations. RESEARCH DESIGN AND METHODS We performed a post-hoc analysis of a prospective multicenter cohort of 743 patients with mitochondrial disorder (previously published by the French Network of Mitochondrial Diseases), associated to a literature review of the PubMed database from 1992 to May 2016. We extracted all reported patients with diabetes and identified rare mtDNA mutations and described their clinical and metabolic phenotypes. RESULTS The 50 identified patients (10 from the princeps study; 40 from the review of the literature) showed a heterogeneous metabolic phenotype in terms of age, symptoms prior to diagnosis, treatments, and associated clinical and biological signs. However, neurological symptoms were more frequent in case of rare mtDNA mutations compared to the classical m.3243 A>G mutation (P=0.024). In contrast, deafness (65% vs. 95%, P=3.7E-5), macular pattern dystrophy (20% vs. 86%, P=1.6E-10) and nephropathy (8% vs. 28%, P=0.018) were significantly less frequent than in case of the classical m.3243 A>G mutation. CONCLUSION Although no specific metabolic phenotype could be identified suggesting or eliminating implication of rare mtDNA mutations in diabetes, clinical phenotypes featured more frequent neurological signs.
Collapse
Affiliation(s)
- Anne-Gaëlle Decoux-Poullot
- Service d'endocrinologie, diabétologie et médecine de la reproduction, hôpital de l'Archet 2, université Côte d'Azur, CHU de Nice, Nice, France
| | - Sylvie Bannwarth
- Inserm, CNRS, IRCAN, Université Côte d'Azur, CHU de Nice, Nice, France
| | | | - Anne-Sophie Lebre
- Inserm U781, Service de génétique, Hôpital Necker-Enfants-Malades, Université Paris-Descartes, Paris, France
| | - Claude Jardel
- Biochimie métabolique, Centre de génétique moléculaire et chromosomique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bernard Vialettes
- Service d'endocrinologie, diabète, maladies métaboliques, Hôpital de la Conception, CHU de Marseille, 13385 Marseille Cedex 5, France
| | | | - Nicolas Chevalier
- Service d'endocrinologie, diabétologie et médecine de la reproduction, hôpital de l'Archet 2, université Côte d'Azur, CHU de Nice, Nice, France; Institut national de la santé et de la recherche médicale (Inserm), UMR U1065/UNS, Centre méditerranéen de médecine moléculaire (C3M), équipe 5 « Cellular Basis and Signaling of Tumor Metabolism », Université Côte d'Azur, CHU de Nice, Nice, France.
| |
Collapse
|
2
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Abstract
BACKGROUND Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. METHODS Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. RESULTS Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. CONCLUSIONS MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design.
Collapse
|
4
|
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial vasculopathy. World J Cardiol 2016; 8:333-339. [PMID: 27231520 PMCID: PMC4877362 DOI: 10.4330/wjc.v8.i5.333] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.
Collapse
|
5
|
Liu K, Zhao H, Ji K, Yan C. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation. Metab Brain Dis 2014; 29:139-44. [PMID: 24338029 DOI: 10.1007/s11011-013-9464-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
We report the case of a 19-year-old Chinese female harboring the m.3291T>C mutation in the MT-TL1 gene encoding the mitochondrial transfer RNA for leucine. She presented with a complex phenotype characterized by progressive cerebellar ataxia, frequent myoclonus seizures, recurrent stroke-like episodes, migraine-like headaches with nausea and vomiting, and elevated resting lactate blood level. It is known that the myoclonus epilepsy with ragged-red fibers (MERRF) is characterized by cerebellar ataxia and myoclonus epilepsy, while that the mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by recurrent stroke-like episodes, migraine-like headaches, and elevated resting lactate blood level. So the patient's clinical manifestations suggest the presence of a MERRF/MELAS overlap syndrome. Muscle biopsy of the patient showed the presence of numerous scattered ragged-red fibers, some cytochrome c oxidase-deficient fibers, and several strongly succinate dehygrogenase-reactive vessels, suggestive of a mitochondrial disorder. Direct sequencing of the complete mitochondrial genome of the proband revealed no mutations other than the T-to-C transition at nucleotide position 3291. Restriction fragment length polymorphism analysis of the proband and her family revealed maternal inheritance of the mutation in a heteroplasmic manner. The analysis of aerobic respiration and glycolysis demonstrated that the fibroblasts from the patient had mitochondrial dysfunction. Our results suggest that the m.3291T>C is pathogenic. This study is the first to describe the m.3291T>C mutation in association with the MERRF/MELAS overlap syndrome.
Collapse
Affiliation(s)
- Kaiming Liu
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | | | | | | |
Collapse
|
6
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
7
|
Finsterer J, Mahjoub SZ. Primary mitochondrial arteriopathy. Nutr Metab Cardiovasc Dis 2012; 22:393-399. [PMID: 22520486 DOI: 10.1016/j.numecd.2012.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/27/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022]
Abstract
AIM Whether arteries are affected in mitochondrial disorders (MIDs) was under debate for years but meanwhile there are strong indications that large and small arteries are primarily or secondarily affected in MIDs. DATA SYNTHESIS When reviewing the literature for appropriate studies it turned out that vascular involvement in MIDs includes primary or secondary micro- or macroangiopathy of the cerebral, cervical, and retinal arteries, the aorta, the iliac arteries, the brachial arteries, or the muscular arteries. Arteriopathy in MIDs manifests as atherosclerosis, stenosis, occlusion, dissection, ectasia, aneurysm formation, or arteriovenous malformation. Direct evidence for primary cerebral microangiopathy comes from histological studies and indirect evidence from imaging and perfusion studies of the brain. Microangiopathy of the retina is highly prevalent in Leber's hereditary optic neuropathy. Macroangiopathy of the carotid arteries may be complicated by stroke. Arteriopathy of the aorta may result in ectasia, aneurysm formation, or even rupture. Further evidence for arteriopathy in MIDs comes from the frequent association of migraine with MIDs and the occurrence of premature atherosclerosis in MID patients without classical risk factors. CONCLUSIONS Mitochondrial arteriopathy most frequently concerns the cerebral arteries and may result from the underlying metabolic defect or secondary from associated vascular risk factors. Vascular involvement in MIDs has a strong impact on the prognosis and outcome of these patients.
Collapse
Affiliation(s)
- J Finsterer
- Danube University Krems, Krems, Postfach 20, 1180 Vienna, Austria.
| | | |
Collapse
|
8
|
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25:383-99. [PMID: 18294221 DOI: 10.1111/j.1464-5491.2008.02359.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families.
Collapse
Affiliation(s)
- R Murphy
- Institute of Biomedical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | |
Collapse
|
9
|
Kato H, Uchigata M, Iijima M, Shimizu S, Nonaka I, Goto Y. Fatal cerebral hemorrhage in mitochondrial encephalomyopathy. J Neurol 2005; 253:529-30. [PMID: 16283102 DOI: 10.1007/s00415-005-0010-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/14/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
|
10
|
Abstract
Mitochondria provide cells with most of the energy in the form of adenosine triphosphate (ATP). Mitochondria are complex organelles encoded both by nuclear and mtDNA. Only a few mitochondrial components are encoded by mtDNA, most of the mt-proteins are nuclear DNA encoded. Remarkably, the majority of the known mutations leading to a mitochondrial disease have been identified in mtDNA rather than in nuclear DNA. In general, the idea is that these pathogenic mutations in mtDNA affect energy supply leading to a disease state. Remarkably, different mtDNA mutations can associate with distinct disease states, a situation that is difficult to reconcile with the idea that a reduced ATP production is the sole pathogenic factor. This review deals with emerging insight into the mechanism by which the A3243G mutation in the mitochondrial tRNA (Leu, UUR) gene associates with diabetes as major clinical expression. A decrease in glucose-induced insulin secretion by pancreatic beta-cells and a premature aging of these cells seem to be the main process by which this mutation causes diabetes. The underlying mechanisms and variability in clinical presentation are discussed.
Collapse
Affiliation(s)
- Johannes A Maassen
- Department of Molecular Cell Biology LUMC, Leiden University Medical Centre, The Netherlands.
| | | | | |
Collapse
|
11
|
Abstract
This review discusses the current insight by which mutations in mitochondrial DNA (mtDNA) contribute to the development of particular disease states with emphasis on diabetes mellitus. Mitochondria are the power factories of the cells and produce ATP by oxidizing reducing equivalents via the respiratory chain. These reducing equivalents originate mainly from the citric acid cycle that also occurs within the mitochondria. Human mitochondria contain their own genetic material in the form of circular DNA that encodes for only a fraction of the mitochondrial components. The other mitochondrial components are nuclear encoded. Pathogenic mutations in mtDNA can affect the activity of the respiratory chain, thereby leading to the reduced generation of ATP. However, mitochondria not only produce ATP but they also regulate cytosolic concentrations of signaling molecules such as calcium and iron ions. The metabolic processes within mitochondria such as the citric acid cycle determine the concentration of metabolites that can also act as signalling molecules. Furthermore, the respiratory chain and mitochondrion-associated monoamine oxidase are major producers of reactive oxygen radicals. As a result, mutations in mtDNA can deregulate multiple processes within cells and the balance of this deregulation may contribute to the clinical phenotype.
Collapse
Affiliation(s)
- J A Maassen
- Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands.
| | | | | |
Collapse
|
12
|
Sándor PS, Ambrosini A, Agosti RM, Schoenen J. Genetics of migraine: possible links to neurophysiological abnormalities. Headache 2002; 42:365-77. [PMID: 12047339 DOI: 10.1046/j.1526-4610.2002.02110.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Peter S Sándor
- Headache and Pain Unit, Neurology Department, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
Edland SD, Tobe VO, Rieder MJ, Bowen JD, McCormick W, Teri L, Schellenberg GD, Larson EB, Nickerson DA, Kukull WA. Mitochondrial genetic variants and Alzheimer disease: a case-control study of the T4336C and G5460A variants. Alzheimer Dis Assoc Disord 2002; 16:1-7. [PMID: 11882743 DOI: 10.1097/00002093-200201000-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The T4336C mitochondrial genetic variant was associated with Alzheimer disease in several previous studies. Recent investigations, however, failed to confirm this association. We tested this association in newly diagnosed Alzheimer disease cases and controls of similar age and gender recruited from an established HMO serving Seattle, Washington and surrounding areas. In this, the largest case-control study reported to date, the T4336C variant was not associated with Alzheimer disease overall (present in 6 of 236 cases and 7 of 328 controls; odds ratio = 1.20, 95% CI 0.33 to 4.22). There was evidence of effect modification by Apolipoprotein E (APOE) status--among subjects with an APOE epsilon 4 allele, the T4336C variant was associated with disease (present in 5 of 139 cases and none of 82 controls; odds ratio = infinity, 95% CI 0.73 to infinity). APOE may be an important modifier of the T4336C effect, potentially explaining variable findings across previous studies. Alternatively, the positive findings reported to date may simply reflect the problem of "type I" error inherent in genetic association studies. Substantially larger samples than are currently available would be required to resolve this question. G5460(A/T) variants were also investigated and found not to be associated with Alzheimer disease.
Collapse
Affiliation(s)
- Steven D Edland
- Department of Epidemiology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Following the recent discovery of neural calcium channel mutations in familial hemiplegic migraine, genetic linkage and association studies have been performed world-wide in an effort to unveil the genetic basis of the more common types of migraine too. Mutations in neural calcium channels, mitochondrial DNA, serotonin receptors and transporter, dopamine receptors and genetic prothrombotic risk factors have been especially investigated and are discussed here. No unambiguous conclusions have, however, been reached. FHM remains an isolated success story in the quest for the genetic basis of migraine.
Collapse
Affiliation(s)
- P Montagna
- Institute of Clinical Neurology, University of Bologna Medical School, Italy.
| |
Collapse
|
15
|
Morgan-Hughes JA, Hanna MG. Mitochondrial encephalomyopathies: the enigma of genotype versus phenotype. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:125-45. [PMID: 10076022 DOI: 10.1016/s0005-2728(98)00162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade a large body of evidence has accumulated implicating defects of human mitochondrial DNA in the pathogenesis of a group of disorders known collectively as the mitochondrial encephalomyopathies. Although impaired oxidative phosphorylation is likely to represent the final common pathway leading to cellular dysfunction in these diseases, fundamental issues still remain elusive. Perhaps the most challenging of these is to understand the mechanisms which underlie the complex relationship between genotype and phenotype. Here we examine this relationship and discuss some of the factors which are likely to be involved.
Collapse
Affiliation(s)
- J A Morgan-Hughes
- University Department of Clinical Neurology, Institute of Neurology, Queen Square, London WC1H 3BG, UK
| | | |
Collapse
|
16
|
Haan J, Terwindt GM, Maassen JA, Hart LM, Frants RR, Ferrari MD. Search for mitochondrial DNA mutations in migraine subgroups. Cephalalgia 1999; 19:20-2. [PMID: 10099855 DOI: 10.1111/j.1468-2982.1999.1901020.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been suggested that mitochondrial mutations cause migraine(-like) symptoms. The presence of mtDNA mutations (3243, 3271, 11084, and deletions) was investigated in three migraine subgroups (maternally transmitted migraine with and without aura, migrainous infarction, and nonfamilial hemiplegic migraine). No mutations were found. These mutations and deletions probably are not involved in the migraine subgroups studied, although an investigation of other material (e.g., muscle tissue) would have shown this with more certainty.
Collapse
Affiliation(s)
- J Haan
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|