1
|
Mechanism by which immune complexes are deposited in hosts tissue. Inflammopharmacology 2022; 30:349-351. [PMID: 35041118 DOI: 10.1007/s10787-021-00910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 11/05/2022]
Abstract
We offer an explanation how immune complexes are deposited in tissues of auto-immune disorders in humans. These disorders are characterized by the accumulation in tissues of large numbers of neutrophils, which can shed out long extracellular traps (NETs) rich in a nucleosome and in highly opsonic poly cations, histone, LL37, defensins and elastase possessing properties similar to antibodies. These can bind by strong electrostatic forces to negatively charged domains in immune globulins, thus facilitating their deposition and internalization by tissue cells. However, the main cause for tissue damage in auto-immune patients is inflicted by the plethora of toxic pro-inflammatory agents released by activated neutrophils. To ameliorate tissue damage and the cytokine storms, it is recommended to administer to patients highly anionic heparins accompanied by steroids, methotrexate, colchicine, copaxone, and also by additional agents which retarded neutrophil functions.
Collapse
|
2
|
Feldman M, Ginsburg I. A Novel Hypothetical Approach to Explain the Mechanisms of Pathogenicity of Rheumatic Arthritis. Mediterr J Rheumatol 2021; 32:112-117. [PMID: 34447906 PMCID: PMC8369279 DOI: 10.31138/mjr.32.2.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The autoimmune disorder rheumatoid arthritis (RA) is a relapsing and chronic inflammatory disease that affects the synovial cells, cartilage, bone, and muscle. It is characterised by the accumulation of huge numbers of polymorphonuclear neutrophils (PMNs) and macrophages in the synovia. Auto-antibodies are deposited in the joint via the activity of highly cationic histones released from neutrophil extracellular traps (NETs) in a phenomenon termed NETosis. The cationic histones function as opsonic agents that bind to negatively charged domains in autoantibodies and complement compounds via strong electrostatic forces, facilitating their deposition and endocytosis by synovial cells. However, eventually the main cause of tissue damage is the plethora of toxic pro-inflammatory substances released by activated neutrophils recruited by cytokines. Tissue damage in RA can also be accompanied by infections which, upon bacteriolysis, release cell-wall components that are toxic to tissues. Some amelioration of the damaged cells and tissues in RA may be achieved by the use of highly anionic heparins, which can neutralize cationic histone activity, provided that these polyanions are co-administrated with anti-inflammatory drugs such as steroids, colchicine, or methotrexate, low molecular weight antioxidants, proteinase inhibitors, and phospholipase A2 inhibitors.
Collapse
Affiliation(s)
- Mark Feldman
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| | - Isaac Ginsburg
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| |
Collapse
|
3
|
Sackheim AM, Villalba N, Sancho M, Harraz OF, Bonev AD, D’Alessandro A, Nemkov T, Nelson MT, Freeman K. Traumatic Brain Injury Impairs Systemic Vascular Function Through Disruption of Inward-Rectifier Potassium Channels. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab018. [PMID: 34568829 PMCID: PMC8462507 DOI: 10.1093/function/zqab018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trauma can lead to widespread vascular dysfunction, but the underlying mechanisms remain largely unknown. Inward-rectifier potassium channels (Kir2.1) play a critical role in the dynamic regulation of regional perfusion and blood flow. Kir2.1 channel activity requires phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid that is degraded by phospholipase A2 (PLA2) in conditions of oxidative stress or inflammation. We hypothesized that PLA2-induced depletion of PIP2 after trauma impairs Kir2.1 channel function. A fluid percussion injury model of traumatic brain injury (TBI) in rats was used to study mesenteric resistance arteries 24 hours after injury. The functional responses of intact arteries were assessed using pressure myography. We analyzed circulating PLA2, hydrogen peroxide (H2O2), and metabolites to identify alterations in signaling pathways associated with PIP2 in TBI. Electrophysiology analysis of freshly-isolated endothelial and smooth muscle cells revealed a significant reduction of Ba2+-sensitive Kir2.1 currents after TBI. Additionally, dilations to elevated extracellular potassium and BaCl2- or ML 133-induced constrictions in pressurized arteries were significantly decreased following TBI, consistent with an impairment of Kir2.1 channel function. The addition of a PIP2 analog to the patch pipette successfully rescued endothelial Kir2.1 currents after TBI. Both H2O2 and PLA2 activity were increased after injury. Metabolomics analysis demonstrated altered lipid metabolism signaling pathways, including increased arachidonic acid, and fatty acid mobilization after TBI. Our findings support a model in which increased H2O2-induced PLA2 activity after trauma hydrolyzes endothelial PIP2, resulting in impaired Kir2.1 channel function.
Collapse
Affiliation(s)
- Adrian M Sackheim
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Nuria Villalba
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Maria Sancho
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Angelo D’Alessandro
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Address correspondence to K.F. (e-mail: )
| |
Collapse
|
4
|
Munemasa Y. Histone H2B induces retinal ganglion cell death through toll-like receptor 4 in the vitreous of acute primary angle closure patients. J Transl Med 2020; 100:1080-1089. [PMID: 32321985 PMCID: PMC7374083 DOI: 10.1038/s41374-020-0427-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 11/14/2022] Open
Abstract
Acute primary angle closure (APAC) is a disease of ophthalmic urgency; lack of treatment can lead to blindness. Even after adequate treatment for APAC, subsequent elevated acute intraocular pressure induces severe neuronal damage which can result in secondary glaucomatous optic neuropathy (GON). Damage-associated molecular patterns (DAMPs) are released from damaged and dead neuronal cells, which induce secondary inflammatory changes and further tissue damage. Our hypothesis is that histone H2B (H2B), which is one of the DAMPs, is released from damaged cells in the development of GON after APAC treatment. Intravitreal injection of H2B induces neuronal cell death through toll-like receptor 4 (TLR4) expression, following the upregulation of inflammatory cytokine mRNAs and phosphorylation of mitogen activated protein kinases (MAPKs). Knockdown of TLR4 caused a reduction of H2B neurotoxicity in damaged cells through TLR4 signaling. Significantly increased H2B was observed in the vitreous cells of APAC patients. In addition, enhanced H2B protein correlated with decreased ganglion cell analysis and retinal ganglion cell (RGC) layer thinning, which indicates the effect of H2B on RGCs. Our data from clinical and animal studies show the involvement of H2B-TLR4 pathways in the development of GON after APAC treatment providing new insight for the mechanism of RGC degeneration.
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae, Kawasaki, Kanagawa, 2168511, Japan.
| |
Collapse
|
5
|
Ginsburg I, Korem M, Koren E, Varani J. Pro-inflammatory agents released by pathogens, dying host cells, and neutrophils act synergistically to destroy host tissues: a working hypothesis. J Inflamm Res 2019; 12:35-47. [PMID: 30774411 PMCID: PMC6350637 DOI: 10.2147/jir.s190007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We postulate that the extensive cell and tissue damage inflicted by many infectious, inflammatory and post-inflammatory episodes is an enled result of a synergism among the invading microbial agents, host neutrophils and dead and dying cells in the nidus. Microbial toxins and other metabolites along with the plethora of pro-inflammatory agents released from activated neutrophils massively recruited to the infectious sites and high levels of cationic histones, other cationic peptides, proteinases and Th1 cytokines released from activated polymorphonuclear neutrophils (PMNs) and from necrotized tissues may act in concert (synergism) to bring about cell killing and tissue destruction. Multiple, diverse interactions among the many potential pro-inflammatory moieties have been described in these complex lesions. Such infections are often seen in the skin and aerodigestive tract where the tissue is exposed to the environment, but can occur in any tissue. Commonly, the tissue-destructive infections are caused by group A streptococci, pneumococci, Staphylococcus aureus, meningococci, Escherichia coli and Shigella, although many other microbial species are seen on occasion. All these microbial agents are characterized by their ability to recruit large numbers of PMNs. Given the complex nature of the disease process, it is proposed that, to treat these multifactorial disorders, a "cocktail" of anti-inflammatory agents combined with non-bacteriolytic antibiotics and measures to counteract the critical toxic role of cationic moieties might prove more effective than a strategy based on attacking the bacteria alone.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel,
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,
| | - Erez Koren
- Research and Development Department, Clexio Biosciences Ltd, Petah Tikva, Israel
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Abstract
The role of bacteriolysis in the pathophysiology of microbial infections dates back to 1893 when Buchner and Pfeiffer reported for the first time the lysis of bacteria by immune serum and related this phenomenon to the immune response. Later on, basic anti-microbial peptides and certain beta-lactam antibiotics have been shown not only to kill microorganisms but also to induce bacteriolysis and the release of cell-wall components. In 2009, a novel paradigm was offered suggesting that the main cause of death in sepsis is due to the exclusive release from activated human phagocytic neutrophils (PMNs) traps adhering upon endothelial cells of highly toxic nuclear histone. Since activated PMNs also release a plethora of pro-inflammatory agonists, it stands to reason that these may act in synergy with histone to damage cells. Since certain beta lactam antibiotics may induce bacteriolysis, it is questioned whether these may aggravate sepsis patient's condition. Enigmatically, since the term bacteriolysis and its possible involvement in sepsis is hardly ever mentioned in the extensive clinical articles and reviews dealing with critical care, we hereby aim to refresh the concept of bacteriolysis and its possible role in the pathogenesis of post infectious sequelae.
Collapse
Affiliation(s)
- Isaac Ginsburg
- a Institute for Dental sciences, The Hebrew University Hadassah Faculty of Dental Medicine, Ein Kerem Campus , Jerusalem , Israel
| | - Erez Koren
- b Teva Pharmaceutical Industries Ltd. , Kfar Saba , Israel
| |
Collapse
|
7
|
Affiliation(s)
- Isaac Ginsburg
- Institute for Dental Research, The Hebrew University - Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Erez Koren
- Teva Pharmaceutical Industries Ltd, Kfar Saba, Israel
| |
Collapse
|
8
|
Blotnick E, Sol A, Muhlrad A. Histones bundle F-actin filaments and affect actin structure. PLoS One 2017; 12:e0183760. [PMID: 28846729 PMCID: PMC5573295 DOI: 10.1371/journal.pone.0183760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300–400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.
Collapse
Affiliation(s)
- Edna Blotnick
- Department of Medical Neurobiology, Institute for Medical Research-Israel–Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Sol
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Andras Muhlrad
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
9
|
Ginsburg I, van Heerden PV, Koren E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective. J Inflamm Res 2017; 10:7-15. [PMID: 28203100 PMCID: PMC5293372 DOI: 10.2147/jir.s126150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| | | | - Erez Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
10
|
Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure. Cell Death Dis 2016; 7:e2391. [PMID: 27685635 PMCID: PMC5059889 DOI: 10.1038/cddis.2016.303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) is a life-threatening systemic disorder. Here we investigated the impact of circulating histones, recently identified inflammatory mediators, on systemic inflammation and liver injury in murine models and patients with ALF. We analyzed histone levels in blood samples from 62 patients with ALF, 60 patients with chronic liver disease, and 30 healthy volunteers. We incubated patients' sera with human L02 hepatocytes and monocytic U937 cells to assess cellular damage and cytokine production. d-galactosamine plus lipopolysaccharide (GalN/LPS), concanavalin A (ConA), and acetaminophen (APAP) were given to C57BL/6N mice to induce liver injury, respectively, and the pathogenic role of circulating histones was studied. Besides, the protective effect of nonanticoagulant heparin, which can bind histones, was evaluated with in vivo and ex vivo investigations. We observed that circulating histones were significantly increased in patients with ALF, and correlated with disease severity and mortality. Significant systemic inflammation was also pronounced in ALF patients, which were associated with histone levels. ALF patients' sera induced significant L02 cell death and stimulated U937 cells to produce cytokines, which were abrogated by nonanticoagulant heparin. Furthermore, circulating histones were all released remarkably in GalN/LPS, ConA, and APAP-treated mice, and associated with high levels of inflammatory cytokines. Heparin reduced systemic inflammation and liver damage in mice, suggesting that it could interfere with histone-associated liver injury. Collectively, these findings demonstrate that circulating histones are critical mediators of systemic inflammation and cellular damage in ALF, which may be potentially translatable for clinical use.
Collapse
|
11
|
Ginsburg I, Koren E, Varani J, Kohen R. Nuclear histones: major virulence factors or just additional early sepsis markers? A comment. Inflammopharmacology 2016; 24:287-289. [DOI: 10.1007/s10787-016-0279-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023]
|
12
|
Sol A, Skvirsky Y, Blotnick E, Bachrach G, Muhlrad A. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity. Front Microbiol 2016; 7:1248. [PMID: 27555840 PMCID: PMC4977296 DOI: 10.3389/fmicb.2016.01248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects.
Collapse
Affiliation(s)
- Asaf Sol
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Yaniv Skvirsky
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Edna Blotnick
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel
| | - Gilad Bachrach
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Andras Muhlrad
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| |
Collapse
|
13
|
Shimizu T, Tanaka K, Nakamura K, Taniuchi K, Yokotani K. Brain phospholipase C, diacylglycerol lipase and monoacylglycerol lipase are involved in (±)-epibatidine-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol 2012; 691:93-102. [PMID: 22796670 DOI: 10.1016/j.ejphar.2012.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023]
Abstract
We previously reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a potent agonist of nicotinic acetylcholine receptors) (1, 5 and 10 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline and that this response was reduced by i.c.v. administered indomethacin (cyclooxygenase inhibitor) and abolished by bilateral adrenalectomy, indicating the involvement of brain arachidonic acid, as a substrate of cyclooxygenase, in this alkaloid-induced secretion of both catecholamines from the adrenal medulla in rats. Arachidonic acid is mainly released by the action of phospholipase A(2), but is also released by a phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway. In the present study, (±)-epibatidine (5 nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was not influenced by pretreatment with mepacrine (phospholipase A(2) inhibitor) (1.1 and 2.2 μmol/animal, i.c.v.), but was effectively reduced by pretreatment with U-73122 (1-[6-[[(17 β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (phospholipase C inhibitor) (10 and 30 nmol/animal, i.c.v.), RHC-80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] (diacylglycerol lipase inhibitor) (1.3 and 2.6 μmol/animal, i.c.v.), MAFP (methyl arachidonoyl fluorophosphonate) (monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.) or JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (selective monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.). Immunohistochemical studies demonstrated that (±)-epibatidine (10 nmol/animal, i.c.v.) activates spinally projecting neurons expressing monoacylglycerol lipase in the rat hypothalamic paraventricular nucleus, a control center of central sympatho-adrenomedullary outflow. Taken together, the brain phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway seems to be involved in the centrally administered (±)-epibatidine-induced activation of central adrenomedullary outflow in rats.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
14
|
Dalli E, Colomer E, Tormos MC, Cosín-Sales J, Milara J, Esteban E, Sáez G. Crataegus laevigata decreases neutrophil elastase and has hypolipidemic effect: a randomized, double-blind, placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:769-775. [PMID: 21242072 DOI: 10.1016/j.phymed.2010.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 10/14/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Crataegus laevigata is a medicinal plant most commonly used for the treatment of heart failure and psychosomatic disorders. Based on previous experimental findings, this double-blind placebo-controlled study was aimed at finding beneficial effects of C. laevigata on biomarkers of coronary heart disease (CHD). The study included 49 diabetic subjects with chronic CHD who were randomly assigned to the treatment for 6 months with either a micronized flower and leaf preparation of C. laevigata (400 mg three times a day) or a matching placebo. Blood cell count, lipid profile, C-reactive protein, neutrophil elastase (NE) and malondialdehyde were analyzed in plasma at baseline, at one month and six months. The main results were that NE decreased in the C. laevigata group compared to the placebo group. In the C. laevigata group, baseline figures (median and interquartile range) were 35.8 (4.5) and in the placebo group 31 (5.9). At the end of the study, values were 33.2 (4.7) ng/ml and 36.7 (2.2) ng/ml, respectively; p<0.0001. C. laevigata, added to statins, decreased LDL cholesterol (LDL-C) (mean±SD) from 105±28.5 mg/dl at baseline to 92.7±25.1 mg/dl at 6 months (p=0.03), and non-HDL cholesterol from 131±37.5 mg/dl to 119.6±33 mg/dl (p<0.001). Differences between groups did not reach statistical significance at 6 months. No significant changes were observed in the rest of parameters. In conclusion, C. laevigata decreased NE and showed a trend to lower LDL-C compared to placebo as add-on-treatment for diabetic subjects with chronic CHD.
Collapse
Affiliation(s)
- E Dalli
- Department of Cardiology, Associated University Hospital Arnau de Vilanova, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ginsburg I, Sadovnik M, Sallon S, Milo-Goldzweig I, Mechoulam R, Breuer A, Gibbs D, Varani J, Roberts S, Cleator E, Singh N. PADMA-28, a traditional tibetan herbal preparation inhibits the respiratory burst in human neutrophils, the killing of epithelial cells by mixtures of oxidants and pro-inflammatory agonists and peroxidation of lipids. Inflammopharmacology 2010; 7:47-62. [PMID: 17657446 DOI: 10.1007/s10787-999-0025-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1998] [Revised: 01/06/1999] [Accepted: 01/07/1999] [Indexed: 10/23/2022]
Abstract
Both aqueous and methanolic fractions derived from the Tibetan preparation PADMA-28 (a mixture of 22 plants) used as an anti-atherosclerotic agent, and which is non-cytolytic to a variety of mammalian cells, were found to strongly inhibit (1) the killing of epithelial cells in culture induced by 'cocktails' comprising oxidants, membrane perforating agents and proteinases; (2) the generation of luminol-dependent chemiluminescence in human neutrophils stimulated by opsonized bacteria; (3) the peroxidation of intralipid (a preparation rich in phopholipids) induced in the presence of copper; and (4) the activity of neutrophil elastase. It is proposed that PADMA-28 might prove beneficial for the prevention of cell damage induced by synergism among pro-inflammatory agonists which is central in the initiation of tissue destruction in inflammatory and infectious conditions.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental medicine, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2006; 7:1251-62. [PMID: 16098213 PMCID: PMC1388267 DOI: 10.1111/j.1462-5822.2005.00549.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs), in addition to their antibacterial properties, are also chemotactic and signalling molecules that connect the innate and adaptive immune responses. The role of AMP [alpha defensins, LL-37, a cathepsin G-derived peptide (CG117-136), protegrins (PG-1), polymyxin B (PMX) and LLP1] in modulating the respiratory burst response in human and murine macrophages in the presence of bacterial endotoxin [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] was investigated. AMP were found to neutralize endotoxin induction of nitric oxide and TNFalpha release in macrophages in a dose-dependent manner. In contrast, macrophages primed overnight with AMP and LOS or LPS significantly enhanced reactive oxygen species (ROS) release compared with cells primed with endotoxin or AMP alone, while no responses were seen in unprimed cells. This enhanced ROS release by macrophages was seen in all cell lines including those obtained from C3H/HeJ (TLR4-/-) mice. Similar effects were also seen when AMP and endotoxin were added directly with zymosan to trigger phagocytosis and the respiratory burst in unprimed RAW 264.7 and C3H/HeJ macrophages. Amplification of ROS release was also demonstrated in a cell-free system of xanthine and xanthine oxidase. Although AMP inhibited cytokine and nitric oxide induction by endotoxin in a TLR4-dependent manner, AMP and endotoxin amplified ROS release in a TLR4-independent manner possibly by exerting a prolonged catalytic effect on the ROS generating enzymes such as the NADPH-oxidase complex.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, and Laboratories of Microbial Pathogenesis, Atlanta, GA, USA.
| | | | | |
Collapse
|
17
|
Freudenstein-Dan A, Gold D, Fishelson Z. Killing of schistosomes by elastase and hydrogen peroxide: implications for leukocyte-mediated schistosome killing. J Parasitol 2004; 89:1129-35. [PMID: 14740899 DOI: 10.1645/ge-96r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Activated leukocytes participate in immunity to infection by the parasitic blood fluke Schistosoma mansoni. They attach to the surface of schistosomes and secrete schistosomicidal substances. Cationic proteins, hydrolytic enzymes, and oxidants, produced by the leukocytes, have been implicated in the damage to the schistosomes. To examine the possible involvement of elastase in the killing of schistosomes by leukocytes, young and adult stages of S. mansoni were treated in vitro with pancreatic elastase (PE) and neutrophil elastase (NE). Schistosomula, lung-stage schistosomula (LSS), and adult worms (AW) have been found to be sensitive to both PE and NE. Male AW were more sensitive to PE than female AW. The enzymatic activity of elastase is essential for its toxic effect because heat-inactivation and specific elastase inhibitors prevented elastase-mediated schistosome killing. Thus, alpha1-antitrypsin and the chloromethyl ketone (CMK)-derived tetrapeptides Ala-Ala-Pro-Val-CMK and Ala-Ala-Pro-Ala-CMK but not Ala-Ala-Pro-Phe-CMK and Ala-Ala-Pro-Leu-CMK blocked PE caseinolytic and schistosomulicidal activities. As shown previously, schistosomes are also efficiently killed by hydrogen peroxide. LSS appear to be more resistant than AW and early-stage schistosomula to the lytic effects of hydrogen peroxide. Cotreatment experiments with both elastase and hydrogen peroxide indicated that they exert an additive toxic effect and that hydrogen peroxide sensitizes schistosomula to the toxic effect of elastase but not vice versa. These results demonstrate, for the first time, that elastases may be toxic molecules used by neutrophils, eosinophils, and macrophages to kill various developmental stages of S. mansoni.
Collapse
Affiliation(s)
- Ariela Freudenstein-Dan
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
18
|
Lueken A, Juhl-Strauss U, Krieger G, Witte I. Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol Lett 2004; 147:35-43. [PMID: 14700526 DOI: 10.1016/j.toxlet.2003.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genotoxic combination effects of oxidative stress (induced by H2O2) and eight nongenotoxic environmental chemicals (4-chloroaniline, 2,3,4,6-tetrachlorophenol, lindane, 2,4-dichloroacetic acid (2,4-D), m-xylene, glyphosate, nitrilotriacetic acid and n-hexanol) were determined in human fibroblasts. Genotoxicity was measured quantitatively by the single cell gel electrophoresis assay. The nongenotoxic chemicals were used in non cytotoxic concentrations. H2O2 was used in concentrations producing low (50 microM) and no cytotoxicity (40 microM). All environmental chemicals acted in a synergistic way with H2O2 except DMSO which effectively inhibited H2O(2)-induced DNA damage. The most effective enhancers were 4-chloroaniline, 2,3,4,6-tetrachlorophenol, m-xylene, and n-hexanol. Synergistic effects of hexanol/H2O2 were still evident at a concentration of 0.09 noec (no observed effect concentration). In contrast to synergistic DNA damage in the cell antagonism was found measuring DNA breakage in isolated PM2 DNA. From the results we concluded that synergisms between H2O2 and nongenotoxic chemicals may be a general phenomenon which is not observed on the level of isolated DNA.
Collapse
Affiliation(s)
- A Lueken
- Carl von Ossietzky Universität Oldenburg, Fak. V, Institute of Biology and Environm. Sciences, Postfach 2503, D-26111, Oldenburg, Germany
| | | | | | | |
Collapse
|
19
|
Lu XR, Ong WY, Halliwell B, Horrocks LA, Farooqui AA. Differential effects of calcium-dependent and calcium-independent phospholipase A(2) inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radic Biol Med 2001; 30:1263-73. [PMID: 11368924 DOI: 10.1016/s0891-5849(01)00528-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain tissue contains multiple forms of intracellular phospholipase A(2) (PLA(2)) activity that differ from each other in many ways including their response to specific inhibitors. The systemic administration of kainic acid to rats produces a marked increase in cPLA(2) activity in neurons and astrocytes. This is associated with increased lipid peroxidation as evidenced by accumulation of 4-hydroxynonenal (4-HNE) modified proteins. The present study describes the effect of specific inhibitors of Ca(2+)-dependent or Ca(2+)-independent PLA(2) on kainite-induced excitotoxic injury in rat hippocampal slices. Specific inhibitors of Ca(2+)-dependent PLA(2) prevented the decrease of a neuronal marker, GluR1, and increase in cPLA(2) and 4-HNE immunoreactivities in slices treated with kainate. This shows that cPLA(2) plays an important role in kainite-induced neurotoxicity and that cPLA(2) inhibitors can be used to protect hippocampal slices from damage induced by kainate.
Collapse
Affiliation(s)
- X R Lu
- Department of Anatomy, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
20
|
Yang LL, Wang CC, Yen KY, Yoshida T, Hatano T, Okuda T. Antitumor activities of ellagitannins on tumor cell lines. BASIC LIFE SCIENCES 2000; 66:615-28. [PMID: 10800466 DOI: 10.1007/978-1-4615-4139-4_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L L Yang
- Graduate Institute of Pharmacognosy Science, Taipei Medical College, Taiwan, R.O.C
| | | | | | | | | | | |
Collapse
|
21
|
Van Molle W, Vanden Berghe J, Brouckaert P, Libert C. Tumor necrosis factor-induced lethal hepatitis: pharmacological intervention with verapamil, tannic acid, picotamide and K76COOH. FEBS Lett 2000; 467:201-5. [PMID: 10675538 DOI: 10.1016/s0014-5793(00)01152-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor (TNF) induces hepatitis when injected in human beings or in rodents. The molecular mechanism by which TNF induces hepatic distress remains largely unknown, although induction of apoptosis of hepatocytes appears to be an essential step. In order to increase the therapeutic value of TNF, we have studied the protective activity of several molecules and found that four chemically totally different substances confer significant protection in the model of TNF-induced lethal hepatitis in mice sensitized with D-(+)-galactosamine (GalN), but not in mice sensitized with actinomycin-D (ActD) or against anti-Fas-induced lethal hepatitis. Verapamil, a calcium-channel blocker, tannic acid, picotamide, a thromboxane A(2) receptor antagonist, and K76COOH, an inhibitor, amongst others, of complement, protected significantly against induction of lethality, release of the liver-specific enzyme alanine aminotransferase (ALT) and induction of apoptosis in the liver after TNF/GalN, except for K76COOH, which paradoxically increased ALT values after challenge, and which also protected against TNF/GalN in complement-deficient mice. The data suggest that activation of platelets and neutrophils, as well as induction of inflammation occur in the TNF/GalN model, but not in the TNF/ActD or anti-Fas models, in which direct induction of apoptosis of hepatocytes may be more relevant. The protective activity of the drugs may lead to an increase in therapeutic value of TNF.
Collapse
Affiliation(s)
- W Van Molle
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, University of Gent, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | | | | | | |
Collapse
|
22
|
Abstract
The possible role played by streptolysin S (SLS) of group A streptococci in the pathophysiology of streptococcal infections and in post-streptococcal sequelae is discussed. The following properties of SLS justify its definition as a distinct virulence factor: 1) its presence on the streptococcus surface in a cell-bound form, 2) its continuous and prolonged synthesis by resting streptococci, 3) its non-immunogenicity, 4) its extractability by serum proteins (albumin, alpha lipoprotein), 5) its ability to become transferred directly to target cells while being protected from inhibitory agents in the milieu of inflammation, 6) its ability to bore holes in the membrane phospholipids in a large variety of mammalian cells, 7) its ability to synergize with oxidants, proteolytic enzymes, and with additional host-derived proinflammatory agonists, and 8) its absence in streptococcal mutants associated with a lower pathogenicity for animals. Because tissue damage in streptococcal and post-streptococcal sequelae might be the end result of a distinct synergism between streptococcal and host-derived proinflammatory agonists it is proposed that only cocktails of anti-inflammatory agents including distinct inhibitors of SLS (phospholipids), gamma globulin, inhibitors of reactive oxygen species, proteinases, cationic proteins cytokines etc., will be effective in inhibiting the multiple synergistic interactions which lead to fasciitis, myositis and the flesh-eating syndromes, and often develop into sepsis, septic shock and multiple organ failure. The creation of mutants deficient in SLS and in proteases will help shed light on the specific role played by SLS in the virulence of group A hemolytic streptococci.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah, Faculty of Dental Medicine founded by the Alpha-Omega Fraternity, Jerusalem, Israel.
| |
Collapse
|
23
|
Ginsburg I, Ward PA, Varani J. Can we learn from the pathogenetic strategies of group A hemolytic streptococci how tissues are injured and organs fail in post-infectious and inflammatory sequelae? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:325-38. [PMID: 10497863 DOI: 10.1111/j.1574-695x.1999.tb01357.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of this review-hypothesis is to discuss the literature which had proposed the concept that the mechanisms by which infectious and inflammatory processes induce cell and tissue injury, in vivo, might paradoxically involve a deleterious synergistic 'cross-talk', among microbial- and host-derived pro-inflammatory agonists. This argument is based on studies of the mechanisms of tissue damage caused by catalase-negative group A hemolytic streptococci and also on a large body of evidence describing synergistic interactions among a multiplicity of agonists leading to cell and tissue damage in inflammatory and infectious processes. A very rapid cell damage (necrosis), accompanied by the release of large amounts of arachidonic acid and metabolites, could be induced when subtoxic amounts of oxidants (superoxide, oxidants generated by xanthine-xanthine oxidase, HOCl, NO), synergized with subtoxic amounts of a large series of membrane-perforating agents (streptococcal and other bacterial-derived hemolysins, phospholipases A2 and C, lysophosphatides, cationic proteins, fatty acids, xenobiotics, the attack complex of complement and certain cytokines). Subtoxic amounts of proteinases (elastase, cathepsin G, plasmin, trypsin) very dramatically further enhanced cell damage induced by combinations between oxidants and the membrane perforators. Thus, irrespective of the source of agonists, whether derived from microorganisms or from the hosts, a triad comprised of an oxidant, a membrane perforator, and a proteinase constitutes a potent cytolytic cocktail the activity of which may be further enhanced by certain cytokines. The role played by non-biodegradable microbial cell wall components (lipopolysaccharide, lipoteichoic acid, peptidoglycan) released following polycation- and antibiotic-induced bacteriolysis in the activation of macrophages to release oxidants, cytolytic cytokines and NO is also discussed in relation to the pathophysiology of granulomatous inflammation and sepsis. The recent failures to prevent septic shock by the administration of only single antagonists is disconcerting. It suggests, however, that since tissue damage in post-infectious syndromes is caused by synergistic interactions among a multiplicity of agents, only cocktails of appropriate antagonists, if administered at the early phase of infection and to patients at high risk, might prevent the development of post-infectious syndromes.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine Founded by the Alpha Omega Fraternity, Jerusalem, Israel.
| | | | | |
Collapse
|
24
|
Farooqui AA, Litsky ML, Farooqui T, Horrocks LA. Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res Bull 1999; 49:139-53. [PMID: 10435777 DOI: 10.1016/s0361-9230(99)00027-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intracellular phospholipases A2 (PLA2) are a diverse group of enzymes with a growing number of members. These enzymes hydrolyze membrane phospholipids into fatty acid and lysophospholipids. These lipid products may serve as intracellular second messengers or can be further metabolized to potent inflammatory mediators, such as eicosanoids and platelet-activating factors. Several inhibitors of nonneural intracellular PLA2 have been recently discovered. However, nothing is known about their neurochemical effects, mechanism of action or toxicity in human or animal models of neurological disorders. Elevated intracellular PLA2 activities, found in neurological disorders strongly associated with inflammation and oxidative stress (ischemia, spinal cord injury, and Alzheimer's disease), can be treated with specific, potent and nontoxic inhibitors of PLA2 that can cross blood-brain barrier without harm. Currently, potent intracellular PLA2 inhibitors are not available for clinical use in human or animal models of neurological disorders, but studies on this interesting topic are beginning to emerge. The use of nonspecific intracellular PLA2 inhibitors (quinacrine, heparin, gangliosides, vitamin E) in animal model studies of neurological disorders in vivo has provided some useful information on tolerance, toxicity, and effectiveness of these compounds.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Medical Biochemistry, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
25
|
Benita S. Prevention of topical and ocular oxidative stress by positively charged submicron emulsion. Biomed Pharmacother 1999; 53:193-206. [PMID: 10392291 DOI: 10.1016/s0753-3322(99)80088-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A positively charged submicron emulsion with zeta potential values ranging from 35 to 45 mV and mean droplet size around 150-250 nm has recently been developed and characterized. This formulation is based on three surface-active agents, an egg yolk phospholipid mixture, poloxamer 188, and stearylamine, a cationic lipid with a pKa of 10.6. The emulsion toxicity was evaluated in three animal studies. The results of the ocular tolerance study in the rabbit eye indicated that hourly administration of one droplet of the positively charged emulsion vehicle was well tolerated without any toxic or inflammatory response to the ocular surface during the five days of the study. No marked acute toxicity was observed when 0.6 mL of positively charged emulsion was injected intravenously to BALB/c mice. Furthermore, no difference was noted between this group of animals and the group injected with the marketed and clinically well accepted negatively charged Intralipid emulsion. These observations were further confirmed in a four week toxicity study following intravenous administration to rats of 1 mL/kg of the positively charged emulsion as compared to Intralipid. No toxic effect was noted in any of the various organs examined, whereas the results of the hematological and blood chemistry tests remained in the normal range for both emulsions, confirming the preliminary safety study findings. In addition, it was demonstrated by means of a non-invasive technique that alpha-tocopherol positively charged emulsions prevented oxidative damage in rat skin subjected to UVA irradiation. The intrinsic ability of positively charged emulsified oil droplets to protect against reactive oxygen species cannot be excluded, and could act synergistically with the antioxidant alpha-tocopherol itself. The effect of blank and piroxicam positively charged emulsions on rabbit eye following alkali burn was also evaluated. The blank emulsion showed a very rapid healing rate during the first three days with a breakdown in day 14. Complete re-epithelialization was observed in day 28. The same behavior (albeit less pronounced), was noted in piroxicam emulsion, although piroxicam is known to inhibit the epithelial healing process. It can therefore be deduced that the positively charged emulsion vehicle prevented piroxicam from interfering with the epithelial healing process due to the intrinsic free radical scavenger ability of the positively charged submicron emulsion previously demonstrated. Finally, the efficacy of this promising emulsion vehicle containing effective cosmetic ingredients in preventing skin damage and aging following oxidative stress is evaluated.
Collapse
Affiliation(s)
- S Benita
- School of Pharmacy, Hebrew University of Jerusalem, Israel
| |
Collapse
|
26
|
Ginsburg I, Sadovnic M. Gamma globulin, Evan's blue, aprotinin A PLA2 inhibitor, tetracycline and antioxidants protect epithelial cells against damage induced by synergism among streptococcal hemolysins, oxidants and proteinases: relation to the prevention of post-streptococcal sequelae and septic shock. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:247-56. [PMID: 9848686 DOI: 10.1111/j.1574-695x.1998.tb01213.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An in vitro model was employed to study the potential role of streptococcal extra-cellular products, rich in streptolysin O, in cellular injury as related to streptococcal infections and post-streptococcal sequelae. Extra-cellular products (EXPA) rich in streptolysin O were isolated from type 4, group A hemolytic streptococci grown in a chemostat, in a synthetic medium. EXPA induced moderate cytopathogenic changes in monkey kidney epithelial cells and in rat heart cells pre-labeled with 3H-arachidonate. However very strong toxic effects were induced when EXP was combined with oxidants (glucose oxides generated H2O2, AAPH-induced peroxyl radical (ROO.), NO generated by sodium nitroprusside) and proteinases (plasmin, trypsin). Cell killing was distinctly synergistic in nature. Cell damage induced by the multi-component cocktails was strongly inhibited either by micromolar amounts of gamma globulin, and Evan's blue which neutralized SLO activity, by tetracycline, trasylol (aprotinin), epsilon amino caproic acid and by soybean trypsin inhibitor, all proteinase inhibitors as well as by a non-penetrating PLA2 inhibitor A. The results suggest that fasciitis, myositis and sepsis resulting from infections with hemolytic streptococci might be caused by a coordinated 'cross-talk' among microbial, leukocyte and additional host-derived pro-inflammatory agents. Since attempts to prolong lives of septic patients by the exclusive administration of single antagonists invariably failed, it is proposed that the administration of 'cocktails' of putative inhibitors against major pro-inflammatory agonizes generated in inflammation and infection might protect against the deleterious effects caused by the biochemical and pharmacological cascades which are known to be activated in sepsis.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah, School of Dental Medicine, Jerusalem, Israel.
| | | |
Collapse
|
27
|
Ginsburg I. Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions? Med Hypotheses 1998; 51:337-46. [PMID: 9824842 DOI: 10.1016/s0306-9877(98)90059-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms of cellular damage caused by infectious and inflammatory processes are complex and are still not fully understood. There is, however, a consensus that reactive oxygen species (ROS) generated by phagocytes migrating to injured tissues might be the main agents responsible for cellular damage in inflammatory processes. However, because both activated phagocytes and catalase-negative, peroxide-producing, toxigenic bacteria (Streptococci, Clostridiae) secrete a near-identical array of proinflammatory agonists, including reactive oxygen species (ROS), and because these microbial species might kill their targets by a synergism among several of their secreted enzymes (a multicomponent system), we postulated that activated phagocytes might also function in the same way. Using radiolabeled targets, in culture, we demonstrated that subtoxic amounts of a variety of oxidants (H2O2, radicals produced by xanthine-xanthine-oxidase, peroxyl radical, NO) acted synergistically with subtoxic amounts of a large series of membrane-perforating agents (microbial hemolysins, phospholipases, fatty acids, cationic proteins, proteinases, bile salts, the attack complex of complement, the xenobiotics, lindane, ethanol, methanol) to kill cells in culture and to release large amounts of arachidonic acid and metabolites. Membrane perforators might act primarily to overcome the potent antioxidant systems present in all mammalian cells and scavengers of ROS and inhibitors of the additional agonists might act to abolish the synergism among ROS and the membrane-damaging agents. It is also proposed that protection against tissue damage in vivo should also include 'cocktails' of appropriate antagonists. It is enigmatic that those publications which do describe both in-vitro and in-vivo models proposing that a synergism among a multiplicity of agonists might truly represent the mechanisms by which tissues are injured, in vivo, are hardly ever quoted in the current literature.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
| |
Collapse
|
28
|
|
29
|
Ginsburg I, Yedgar S, Varani J. Diethyldithiocarbamate and nitric oxide synergize with oxidants and with membrane-damaging agents to injure mammalian cells. Free Radic Res 1997; 27:143-64. [PMID: 9350419 DOI: 10.3109/10715769709097847] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of diethyldithiocarbamate (DDC) and sodium nitroprusside (SNP) on the killing of endothelial cells and on the release of arachidonate by mixtures of oxidants and membrane-damaging agents was studied in a tissue culture model employing bovine aortic endothelial cells labeled either with 51Chromium or 3arachidonic acid. While exposure to low, subtoxic concentrations of oxidants (reagent H2O2, glucose-oxidase generated peroxide, xanthine xanthine oxidase, AAPH-generated peroxyl radical, menadione-generated oxidants) did not result either in cell death or in the loss of membrane-associated arachidonic acid, the addition of subtoxic amounts of a variety of membrane-damaging agents (streptolysin S, PLA2, histone, taurocholate, wheatgerm agglutinin) resulted in a synergistic cell death. However, no significant amounts of arachidonate were released unless proteinases were also present. The addition to these reaction mixtures of subtoxic amounts of DDC (an SOD inhibitor and a copper chelator) not only very markedly enhanced cell death but also resulted in the release of large amounts of arachidonate (in the complete absence of added proteinases). Furthermore, the inclusion in DDC-containing reaction mixtures of subtoxic amounts of SNP, a generator of NO, further enhanced, in a synergistic manner, both cell killing and the release of arachidonate. Cell killing and the release of arachidonate induced by the DDC and SNP-containing mixtures of agonists were strongly inhibited by catalase, glutathione, N-acetyl cysteine, vitamin A, and by a nonpenetrating PLA2 inhibitor as well as by tetracyclines. A partial inhibition of cell killing was also obtained by 1,10-phenanthroline and by antimycin. It is suggested that DDC might amplify cell damage by forming intracellular, loosely-bound complexes with copper and probably also by depleting antioxidant thiols. It is also suggested that "cocktails" containing oxidants, membrane-damaging agents, DDC, and SNP might be beneficial for killing of tumor cells in vivo and for the assessment of the toxicity of xenobiotics in vitro.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | |
Collapse
|
30
|
Shapira L, Schatzker Y, Gedalia I, Borinski R, Sela MN. Effect of amine and stannous fluoride on human neutrophil functions in vitro. J Dent Res 1997; 76:1381-6. [PMID: 9207771 DOI: 10.1177/00220345970760070801] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Amine fluoride (AmF)- and stannous fluoride (SnF2)-containing products were found to have a therapeutic effect on gingivitis and periodontitis. This effect was suggested to correlate with the antibacterial activity of the fluoride compounds. However, their effect on inflammatory cell function can also play a role in the therapeutic effect on gingival inflammation. The present study was designed to test the effects of AmF, SnF2, and an AmF/SnF2 combination on the function of human peripheral blood neutrophils, as compared with effects of chlorhexidine and salicylic acid. Neutrophils were isolated from human blood by ficoll centrifugation followed by dextran sedimentation. The neutrophils were pre-incubated with AmF, SnF2, or AmF/SnF2, followed by stimulation with fMLP. Cell vitality was verified by trypan-blue exclusion (> 95% vitality at all tested concentrations). Superoxide production was measured by cytochrome C reduction and the enzymatic activity of lysozyme and beta-glucoronidase by optical density measurement of substrate conversion. The results showed that AmF, SnF2, or AmF/SnF2 enhanced by two- to three-fold the superoxide release from fMLP-stimulated human neutrophils. Furthermore, the effective concentration of the AmF/SnF2 combination was several-fold lower than that of AmF or SnF2 alone (10 nM for AmF, 0.5 microM for SnF2, and 3 pM for SnF2/AmF). On the other hand, chlorhexidine and salicylic acid were found to reduce superoxide production by the cells. All the tested compounds had no effect on granular enzyme release by the stimulated neutrophils. The results suggest that AmF and SnF2 enhance the oxygen-dependent antibacterial activity of neutrophils. This effect may contribute to a more efficient elimination of bacteria from the periodontal environment, resulting in improvement in gingival health.
Collapse
Affiliation(s)
- L Shapira
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
31
|
Dan P, Nitzan DW, Dagan A, Ginsburg I, Yedgar S. H2O2 renders cells accessible to lysis by exogenous phospholipase A2: a novel mechanism for cell damage in inflammatory processes. FEBS Lett 1996; 383:75-8. [PMID: 8612796 DOI: 10.1016/0014-5793(96)00227-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phospholipase A2 (PLA2) and H2O2, secreted from activated inflammatory cells, play a central role in the tissue damage occurring in inflammatory processes. However, while exogenous PLA2 alone does not cause cell lysis, it readily does so when acting with H2O2. We have found that H2O2 degrades cell surface proteoglycans, thus rendering the membrane PL accessible to hydrolysis by exogenous PLA2. This novel mechanism introduces a role for cell surface proteoglycans in protection of cells from damage by pro-inflammatory agents, and may assign a central role for the combined action of H2O2 and PLA2 in inflammatory and bacteriocidal processes.
Collapse
Affiliation(s)
- P Dan
- Department of Biochemistry, Hebrew-University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
32
|
Shaw S, Naegeli P, Etter JD, Weidmann P. Role of intracellular signalling pathways in hydrogen peroxide-induced injury to rat glomerular mesangial cells. Clin Exp Pharmacol Physiol 1995; 22:924-33. [PMID: 8846514 DOI: 10.1111/j.1440-1681.1995.tb02328.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Brief exposure of cultured rat glomerular mesangial cells (GMC) to H2O2 in nominally bicarbonate-free solution induced a rapid dose dependent, dantrolene-inhibitable increase in intracellular free Ca2+ from 65 +/- 6 to 203 +/- 14 nmol/L and a prolonged release of [14C]-arachidonic acid [14C]-AA which preceded the onset of cell membrane damage assessed by trypan-blue uptake. 2. Ca2+ responses were potentiated in HCO3-/CO2 containing buffers and reached values of 1145 +/- 100 nmol/L at 1 mmol/L H2O2. In HCO3-/CO2 solutions, but not HEPES buffer, H2O2-induced Ca2+ increases were markedly attenuated by verapamil (100 mumol/L) or removal of extracellular calcium. 3. Enhanced release of [14C]-AA was partially attenuated by inhibitors of key intracellular signalling mechanisms including the phospholipase-A2 (PLA2) inhibitor mepacrine (100 mumol/L), the NADPH oxidase inhibitor diphenyliodonium (10 mumol/L), the mitochondrial calcium-cycling inhibitor ruthenium red (10 mumol/L) and the iron chelator dipyridyl (100 mumol/L). Release was unaffected by protein kinase C inhibition with H7 (100 mumol/L), inositol triphosphate antagonism with neomycin (1 mmol/L) or overnight treatment with the G-protein antagonist pertussis toxin (5 micrograms/mL). 4. Several structurally diverse lipoxygenase inhibitors, including esculetin, baicalein and phenidone, over the dose range 1-100 mumol/L, also prevented [14C]-AA release and markedly protected against cell membrane damage. No drug directly scavenged H2O2 assessed by UV absorption. 5. These results indicate that H2O2 activates in GMC a complex series of interrelated pathological mechanisms which in turn contribute to a prolongation of oxidative damage beyond the time of the initial exposure. These include an increase in intracellular calcium which, depending upon conditions, appears to be mediated by release from intracellular stores as well as Ca2+ entry from the extracellular space. In turn there is a sustained release of arachidonic acid, which may partly depend on prolonged activation of PLA2 but not phospholipase C. 6. Release of [14C]-AA could be attenuated by inhibitors of NADPH oxidase, mitochondrial calcium-cycling, iron chelators and a structurally diverse range of lipoxygenase inhibitors in association with protection from H2O2-mediated cell membrane damage.
Collapse
Affiliation(s)
- S Shaw
- Medizinische Universitäts, Poliklinik, Bern, Switzerland
| | | | | | | |
Collapse
|
33
|
Ginsburg I, Kohen R. Cell damage in inflammatory and infectious sites might involve a coordinated "cross-talk" among oxidants, microbial haemolysins and ampiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free Radic Res 1995; 22:489-517. [PMID: 7633573 DOI: 10.3109/10715769509150323] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
34
|
Ginsburg I, Kohen R. Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases, and xenobiotics: killing of epithelial cells and release of arachidonic acid. Inflammation 1995; 19:101-18. [PMID: 7705882 DOI: 10.1007/bf01534384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The assumption that cellular injury induced in infectious and in inflammatory sites might be the result of a well-orchestrated, synergistic "cross-talk" among oxidants, membrane-damaging agents, proteinases, and xenobiotics was further investigated in a tissue culture model employing monkey kidney epithelial cells (BGM) labeled either with 51 chromium or [3H]arachidonate. The cells could be killed in a synergistic manner following exposure to combinations among H2O2 and the following membrane-damaging agents: streptolysins S (SLS) and O (SLO), poly-D-lysine, arachidonic acid, eicosapentanoic acid, arachidic acid, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylglycerol, ethanol, and sodium taurocholate. Peroxyl radical (ROO) generated by azobisdiamidinopropane dihydrochloride (AAPH) further enhanced cell killing induced by SLS, SLO, and nitroprusside when combined with H2O2 and trypsin. BGM cells labeled either with chromium or with tritiated arachidonate, which had been treated with increasing concentrations of sodium nitroprusside (a donor of NO) and with subtoxic amounts of SLS and H2O2, were also killed in a synergistic manner and also lost a substantial amounts of their arachidonate label. Both cell killing and the release of membrane lipids were totally inhibited by hemoglobin (an NO scavenger) but not by methylene blue, an antagonist of NO2-BGM cells that had been treated with increasing concentrations of taurocholic acid were killed in a synergistic manner by a mixture of subtoxic amounts of ethanol, H2O2, and crystalline trypsin (quadruple synergism). Normal human serum possessing IgM complement-dependent cytotoxic antibodies against Ehrlich ascites tumor cells were killed in a dose-dependent fashion. Cell killing was doubled by the addition of H2O2. Cell killing and the release of membrane lipids by all the mixture of agonists tested were both strongly inhibited by the antioxidants catalase, Mn2+, vitamin A, and by fresh carrot juice. It appears that in order to overcome the antioxidant capacities of the epithelial cells, a variety of membrane-damaging agents had to be present in the reaction mixtures. Taken together, it might be speculated that the killing of mammalian cells in infectious and in inflammatory sites is a synergistic phenomenon that might be inhibited by antagonizing the cross-talk among the various proinflammatory agonists generated by microorganisms by activated phagocytes or by combinations among these agents. Our studies might also open up new approaches to the assessment of the toxicity of xenobiotics and of safe drugs to mammalian cells by employing tissue culture techniques.
Collapse
Affiliation(s)
- I Ginsburg
- Department of Oral Biology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | |
Collapse
|
35
|
Yedgar S, Dan P, Dagan A, Ginsburg I, Lossos IS, Breuer R. Control of inflammatory processes by cell-impermeable inhibitors of phospholipase A2. AGENTS AND ACTIONS. SUPPLEMENTS 1995; 46:77-84. [PMID: 7610993 DOI: 10.1007/978-3-0348-7276-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell-impermeable inhibitors of phospholipase A2 were prepared by linking inhibiting molecules to macromolecular carriers which prevent the inhibitor's internalization. These preparations inhibit the release of oxygen reactive species from neutrophils and cell death induced by inflammatory agents, as well as bleomycin-induced lung injury.
Collapse
Affiliation(s)
- S Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Ginsburg I. Can hemolytic streptococci be considered “forefathers” of modern phagocytes? Both cell types freely migrate in tissues and destroy host cells by a “synergistic cross-talk” among their secreted agonists. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0742-8413(94)00051-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Abstract
Defensins are widely distributed and abundant 3-4 kDa antimicrobial peptides that are variable cationic and contain six disulfide-paired cysteines. Three structurally distinct peptide families have been identified: 'classical' defensins, beta-defensins and insect defensins. In many animal species, defensin genes are found in clusters with substantial sequence variability outside the core disulfide-linked cysteines. Defensin peptides have been found in the granules of phagocytes and intestinal Paneth cells, on epithelial surfaces of the intestine and the trachea, and in the hemolymph of insects. They are produced from larger precursors by stepwise, tissue-specific, proteolytic processing, a production resembling that of peptide hormones. Microbes in the phagocytic vacuoles of granulocytes and certain macrophages encounter high concentrations of defensins. Increased transcription of defensin genes and stimulus-dependent release of pre-synthesized defensin-containing cytoplasmic granules contribute to the local antimicrobial response.
Collapse
Affiliation(s)
- T Ganz
- Department of Medicine, UCLA School of Medicine 90024
| | | |
Collapse
|