1
|
Baú JPT, Carneiro CEA, da Costa ACS, Valezi DF, di Mauro E, Pilau E, Zaia DAM. The Effect of Goethites on the Polymerization of Glycine and Alanine Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2022; 51:299-320. [PMID: 35064872 DOI: 10.1007/s11084-021-09618-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
After pre concentration of monomers, polymerization is the second most important step for molecular evolution. The formation of peptides is an important issue for prebiotic chemistry and consequently for the origin of life. In this work, goethite was synthesized by two different routes, named goethite-I and goethite-II. Although both samples are goethite, Far-FT-IR spectroscopy and EPR spectroscopy showed differences between them, and these differences had an effect on the polymerization of glycine and alanine. For the amino acid polymerization, three protocols were used, that resembled prebiotic Earth conditions: a) amino acid plus goethite were mixed and heated at 90 °C for 10 days in solid state, b) a wet impregnation of the amino acid in the goethite, with subsequent heating at 90 °C for 10 days in solid state, and c) 10 wet/dry cycles each one for 24 h at 90 °C. Experiments with glycine plus goethite-II, using protocols B and C, produced only Gly-Gly. In addition, for the C protocol the amount of Gly-Gly synthesized was 3 times higher than the amount of Ala-Ala. Goethite-I presented a decrease in the EPR signal, when it was submitted to the protocols with and without amino acids. It is probable the decrease in the intensity of the EPR signal was due to a decrease in the imperfections of the mineral. For all protocols the mixture of alanine plus goethite-I or goethite-II produced c(Ala-Ala). However, for wet/dry cycles, protocol C presented higher yields (p < 0.05). In addition, Ala-Ala was produced using protocols A and C. The c(Ala-Ala) formation fitted a zero-order kinetic equation model. The surface areas of goethite-I and goethite-II were 35 m2 g-1 and 37 m2 g-1, respectively. Thermal analysis indicated that the mineral changes the thermal behavior of the amino acids. The main reactions for the thermal decomposition of glycine were deamination and dehydration and for alanine was deamination.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Cristine E A Carneiro
- Centro das Ciências Exatas E Tecnologia, Universidade Federal Do Oeste da Bahia, 47810-059, Barreiras, BA, Brasil
| | | | - Daniel F Valezi
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo di Mauro
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo Pilau
- Departamento de Química-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brasil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil.
| |
Collapse
|
2
|
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.
Collapse
|
3
|
Hansen JS, Tran TH, Cavalera M, Paul S, Chaudhuri A, Lindkvist-Petersson K, Ho JCS, Svanborg C. Peptide-Oleate Complexes Create Novel Membrane-Bound Compartments. Mol Biol Evol 2020; 37:3083-3093. [PMID: 32521018 DOI: 10.1093/molbev/msaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A challenging question in evolutionary theory is the origin of cell division and plausible molecular mechanisms involved. Here, we made the surprising observation that complexes formed by short alpha-helical peptides and oleic acid can create multiple membrane-enclosed spaces from a single lipid vesicle. The findings suggest that such complexes may contain the molecular information necessary to initiate and sustain this process. Based on these observations, we propose a new molecular model to understand protocell division.
Collapse
Affiliation(s)
- Jesper S Hansen
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden.,Experimental Medical Science, Medical Structural Biology, Lund University, Lund, Sweden
| | - Tuan Hiep Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sanchari Paul
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arunima Chaudhuri
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - James C S Ho
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden.,Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
McKee AD, Solano M, Saydjari A, Bennett CJ, Hud NV, Orlando TM. A Possible Path to Prebiotic Peptides Involving Silica and Hydroxy Acid‐Mediated Amide Bond Formation. Chembiochem 2018; 19:1913-1917. [DOI: 10.1002/cbic.201800217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron D. McKee
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Martin Solano
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Andrew Saydjari
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
| | - Christopher J. Bennett
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- Department of Physics University of Central Florida Physical Sciences Bldg. 430 4111 Libra Drive Orlando FL 32816 USA
| | - Nicholas V. Hud
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Thomas M. Orlando
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
5
|
Iqubal MA, Sharma R, Jheeta S, Kamaluddin. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario. Life (Basel) 2017; 7:E15. [PMID: 28346388 PMCID: PMC5492137 DOI: 10.3390/life7020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 11/17/2022] Open
Abstract
The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.
Collapse
Affiliation(s)
- Md Asif Iqubal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Rachana Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Sohan Jheeta
- Network of Researchers on Horizontal Gene Transfer and Last Universal, Common Ancestor Leeds, Leeds LS7 3RB, UK.
| | - Kamaluddin
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
6
|
Abstract
One important question in prebiotic chemistry is the search for simple structures that might have enclosed biological molecules in a cell-like space. Phospholipids, the components of biological membranes, are highly complex. Instead, we looked for molecules that might have been available on prebiotic Earth. Simple peptides with hydrophobic tails and hydrophilic heads that are made up of merely a combination of these robust, abiotically synthesized amino acids and could self-assemble into nanotubes or nanovesicles fulfilled our initial requirements. These molecules could provide a primitive enclosure for the earliest enzymes based on either RNA or peptides and other molecular structures with a variety of functions. We discovered and designed a class of these simple lipid-like peptides, which we describe in this Account. These peptides consist of natural amino acids (glycine, alanine, valine, isoleucine, leucine, aspartic acid, glutamic acid, lysine, and arginine) and exhibit lipid-like dynamic behaviors. These structures further undergo spontaneous assembly to form ordered arrangements including micelles, nanovesicles, and nanotubes with visible openings. Because of their simplicity and stability in water, such assemblies could provide examples of prebiotic molecular evolution that may predate the RNA world. These short and simple peptides have the potential to self-organize to form simple enclosures that stabilize other fragile molecules, to bring low concentration molecules into a local environment, and to enhance higher local concentration. As a result, these structures plausibly could not only accelerate the dehydration process for new chemical bond formation but also facilitate further self-organization and prebiotic evolution in a dynamic manner. We also expect that this class of lipid-like peptides will likely find a wide range of uses in the real world. Because of their favorable interactions with lipids, these lipid-like peptides have been used to solubilize and stabilize membrane proteins, both for scientific studies and for the fabrication of nanobiotechological devices. They can also increase the solubility of other water-insoluble molecules and increase long-term stability of some water-soluble proteins. Likewise, because of their lipophilicity, these structures can deliver molecular cargo, such as small molecules, siRNA, and DNA, in vivo for potential therapeutic applications.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular Design, Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
7
|
Murtas G. Early self-reproduction, the emergence of division mechanisms in protocells. MOLECULAR BIOSYSTEMS 2012; 9:195-204. [PMID: 23232904 DOI: 10.1039/c2mb25375e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic Biology approaches are proposing model systems and providing experimental evidences that life can arise as spontaneous chemical self-assembly process where the ability to reproduce itself is an essential feature of the living system. The appearance of early cells has required an amphiphilic membrane compartment to confine molecular information against diffusion, and the ability to self-replicate the boundary layer and the genetic information. The initial spontaneous self-replication mechanisms based on thermodynamic instability would have evolved in a prebiotic and later biological catalysis. Early studies demonstrate that fatty acids spontaneously assemble into bilayer membranes, building vesicles able to grow by incorporation of free lipid molecules and divide. Early replication mechanisms may have seen inorganic molecules playing a role as the first catalysts. The emergence of a short ribozyme or short catalytic peptide may have initiated the first prebiotic membrane lipid synthesis required for vesicle growth. The evolution of early catalysts towards the simplest translation machine to deliver proteins from RNA sequences was likely to give early birth to one single enzyme controlling protocell membrane division. The cell replication process assisted by complex enzymes for lipid synthesis is the result of evolved pathways in early cells. Evolution from organic molecules to protocells and early cells, thus from chemistry to biology, may have occurred in and out of the boundary layer. Here we review recent experimental work describing membrane and vesicle division mechanisms based on chemico-physical spontaneous processes, inorganic early catalysis and enzyme based mechanisms controlling early protocell division and finally the feedback from minimal genome studies.
Collapse
Affiliation(s)
- Giovanni Murtas
- Istituto di Farmacologia Traslazionale, CNR, via fosso del Cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
8
|
Jia L, Deng R, Song H. Reversible removal of SO2 at low temperature by Bacillus licheniformis immobilized on γ-Al2O3. BIORESOURCE TECHNOLOGY 2011; 102:524-528. [PMID: 20933401 DOI: 10.1016/j.biortech.2010.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/11/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
Bacillus licheniformis R08 biomass was immobilized on γ-Al2O3 and the effects of R08 biomass loading, SO2 concentration, water vapor, oxygen and temperature on removal of SO2 were investigated. The experimental results indicated that SO2 saturation capacity increased with increasing R08 biomass loading and SO2 concentration, but decreased with increasing adsorption temperature. Water vapor activated the adsorbent and promoted SO2 removal. An increase in oxygen concentration from 5 to 10% had little effect on SO2 removal. FTIR analysis revealed that the R08 biomass bound to γ-Al2O3 mainly by forming R-CO-O-Al bonds. X-ray photoelectron spectroscopy analysis indicated that γ-Al2O3 reacted with SO2 and formed aluminum sulfate in the presence of oxygen when R08 biomass loading was 13.8%, but that amido groups of the R08 biomass reacted with SO2 and formed sulfite when biomass loading was 32.4%. Ten continuous adsorption-desorption cycles showed that the adsorbent had an excellent regeneration performance.
Collapse
Affiliation(s)
- Lishan Jia
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | |
Collapse
|
9
|
Lambert JF. Adsorption and polymerization of amino acids on mineral surfaces: a review. ORIGINS LIFE EVOL B 2008; 38:211-42. [PMID: 18344011 DOI: 10.1007/s11084-008-9128-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The present paper offers a review of recent (post-1980) work on amino acid adsorption and thermal reactivity on oxide and sulfide minerals. This review is performed in the general frame of evaluating Bernal's hypothesis of prebiotic polymerization in the adsorbed state, but written from a surface scientist's point of view. After a general discussion of the thermodynamics of the problem and exactly what effects surfaces should have to make adsorbed-state polymerization a viable scenario, we examine some practical difficulties in experimental design and their bearing on the conclusions that can be drawn from extant works, including the relevance of the various available characterization techniques. We then present the state of the art concerning the mechanisms of the interactions of amino acids with mineral surfaces, including results from prebiotic chemistry-oriented studies, but also from several different fields of application, and discuss the likely consequences for adsorption selectivities. Finally, we briefly summarize the data concerning thermally activated amide bond formation of adsorbed amino acids without activating agents. The reality of the phenomenon is established beyond any doubt, but our understanding of its mechanism and therefore of its prebiotic potential is very fragmentary. The review concludes with a discussion of future work needed to fill the most conspicuous gaps in our knowledge of amino acids/mineral surfaces systems and their reactivity.
Collapse
Affiliation(s)
- Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, UPMC Univ Paris 06 and CNRS, Paris, France.
| |
Collapse
|
10
|
Benetoli LOB, de Souza CMD, da Silva KL, de Souza IG, de Santana H, Paesano A, da Costa ACS, Zaia CTBV, Zaia DAM. Amino acid interaction with and adsorption on clays: FT-IR and Mössbauer spectroscopy and X-ray diffractometry investigations. ORIGINS LIFE EVOL B 2007; 37:479-93. [PMID: 17578677 DOI: 10.1007/s11084-007-9072-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/06/2007] [Indexed: 11/28/2022]
Abstract
In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase ( approximately 20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.
Collapse
Affiliation(s)
- Luís O B Benetoli
- Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina-PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Contreras-Torres FF, Basiuk VA. Imidazo[1,2-a]pyrazine-3,6-diones derived from alpha-amino acids: a theoretical mechanistic study of their formation via pyrolysis and silica-catalyzed process. J Phys Chem A 2006; 110:7431-40. [PMID: 16759132 DOI: 10.1021/jp061331m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imidazo[1,2-a]pyrazine-3,6-diones are unusual compounds composed of three alpha-amino acid fragments. These bicyclic amidines (BCAs) form under high temperatures or with the use of strong dehydrating reagents. We gave insight into the mechanisms of BCA formation via gas-phase pyrolytic and silica-catalyzed reactions of glycine (Gly) and alpha-aminoisobutyric acid (AIB) with related diketopiperazines (DKPs), using quantum chemical calculations. The entire process requires four steps: (1) O-acylation of DKP with free or silica-bonded amino acid, (2) acyl transfer from the oxygen to the nitrogen atom, (3) intramolecular condensation of the N-acyl DKP into a cyclol, and (4) elimination of water. To study step (1) at silica surface (modeled by H7Si8O12-OH cluster), we employed two-level ONIOM calculations (AM1:UFF, B3LYP/3-21G:UFF and B3LYP/6-31G(d):UFF); all gas-phase reactions were studied at the AM1, B3LYP/3-21G and B3LYP/6-31G(d) levels. The catalytic effect of silica was observed for both Gly and AIB: the activation energy in the O-acylation at the surface was lower by more than 9 kcal mol(-1) as compared to the gas-phase process. Contrary to the exothermic O-acylation, the gas-phase transfer reaction (step 2) was exothermic in both cases, but more favorable for Gly. The cyclocondensation of N-acylated DKPs into BCAs (steps 3 and 4) is endothermic for Gly and exothermic for AIB.
Collapse
Affiliation(s)
- Flavio F Contreras-Torres
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., A. Postal 70-543, 04510 México D.F., Mexico
| | | |
Collapse
|
12
|
Meng M, Stievano L, Lambert JF. Adsorption and thermal condensation mechanisms of amino acids on oxide supports. 1. Glycine on silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:914-923. [PMID: 15773123 DOI: 10.1021/la035336b] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glycine was adsorbed on the surface of a well-defined silica from aqueous solutions of variable concentrations and pHs. The adsorbed molecules were characterized using middle-IR and UV-vis-NIR spectroscopies. Except at the lowest pH (2.0), they were predominantly present on the surface as zwitterions. Two successive deposition mechanisms were evidenced with increasing glycine concentration. At low concentrations, glycine is specifically adsorbed on silica surface sites, probably through its NH3+ moiety. The pH dependence suggests that these sites may be silanolate groups (approximately equal to Si-O-). At higher concentrations, specific adsorption sites are saturated and surface-induced precipitation of beta-glycine is observed. The thermal reactivity of adsorbed/deposited glycine was then investigated by thermogravimetric analysis, in situ diffuse reflectance IR spectroscopy, and thermoprogrammed desorption coupled with mass spectrometry. Adsorbed glycine molecules react to form peptide bonds at a temperature considerably lower than that for bulk crystalline alpha-glycine. The main reaction product is the cyclic dimer diketopiperazine, with no evidence of the linear dimer. The activation mechanism is not diffusionally limited; the formation of "surface acyls", previously proposed for related systems, has not been evidenced here. These findings are of relevance for the evaluation of prebiotic peptide synthesis scenarios.
Collapse
Affiliation(s)
- Ming Meng
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, Université Pierre et Marie Curie, case courrier 178, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
13
|
Macklin JW, White DH. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals. SPECTROCHIMICA ACTA. PART A: MOLECULAR SPECTROSCOPY 2001; 41:851-9. [PMID: 11540858 DOI: 10.1016/0584-8539(85)80033-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.
Collapse
Affiliation(s)
- J W Macklin
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
14
|
Porter TL, Eastman MP, Bain E, Begay S. Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu(2+) exchanged hectorite. Biophys Chem 2001; 91:115-24. [PMID: 11429201 DOI: 10.1016/s0301-4622(01)00159-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the synthesis of oligopeptides containing glycine and tyrosine in the presence of the clay minerals montmorillonite (non-exchanged, SAz-1) and Cu(2+) exchanged hectorite. In both cases, homopolymers of the two amino acids are formed, as are mixed peptides. In the case of Cu(2+) hectorite, mixed oligopeptides up to trimers are detected in small amounts. For montmorillonite, heterogeneous oligopeptides up to hexamers are detected. Our experiments indicate montmorillonite is more effective in promoting oligopeptide formation than Cu(2+) hectorite. Analysis of the oligopeptide sequences formed on the montmorillonite surfaces indicates preferential synthesis of certain Gly-Tyr sequences over others.
Collapse
Affiliation(s)
- T L Porter
- Northern Arizona University, Department of Physics and Astronomy, Flagstaff, AZ 86011, USA
| | | | | | | |
Collapse
|
15
|
Franzle S, Markert B. The Biological System of the Elements (BSE). Part II: a theoretical model for establishing the essentiality of chemical elements. The application of stoichiometric network analysis to the biological system of the elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2000; 249:223-41. [PMID: 10813456 DOI: 10.1016/s0048-9697(99)00520-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Stoichiometric Network Analysis (SNA), originally developed by the Canadian chemist Bruce L. Clarke during the 1970s, provides a most efficient means of reducing the background topology of complex interaction networks to some skeleton topology around which systems dynamics can be understood without jeopardising insight into complex dynamics by over- or miss-simplification. Since it focuses on the corresponding autocatalytic (AC) features of a feedback system as those which control overall behaviour to some extent, SNA deals with reaction kinetics in and beyond chemistry, e.g. with nuclear reactions. It is therefore quite straightforward to apply this manner of simplification, which in turn is supported by a number of mathematical theorems on systems behaviour and properties of AC cycles, to biological systems although their 'full' complexity may not even be assessed in the yet rare cases of complete genetic sequencing. Assuming there is a relationship between the kinds of metal or metalloid species and key biological/biochemical transformations to be promoted with their aid--this relationship being the subject of bio-inorganic chemistry--and that biochemistry is, in effect, about systems which can reproduce and thus behave autocatalytically, one can expect SNA to yield formally sound statements on basic features of biology and biochemistry too. If we sum up the facts and considerations concerning essentiality or possible essentiality in a biological system of elements (Markert, 1994), this means joining the triangular representation of BSE, including statements on (the degree of biological) evolution and aggregation levels, to SNA treatment of autocatalysis within hierarchical systems from metalloenzymes to entire biocoenoses. Arguments using preferred cluster sizes and aggregation tendencies from coordination chemistry are then employed to circumscribe possible functions within the BSE. They are also extended to metals hitherto not known to be essential, such as tellurium or scandium.
Collapse
Affiliation(s)
- S Franzle
- UFZ-Centre for Environmental Research, Leipzig/Halle, Leipzig, Germany.
| | | |
Collapse
|
16
|
Bujdák J, Rode BM. Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst. ORIGINS LIFE EVOL B 1999; 29:451-61. [PMID: 10573687 DOI: 10.1023/a:1006524703513] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Catalytic efficiencies of clay (hectorite), silica and alumina were tested in peptide bond formation reactions of glycine (Gly), alanine (Ala), proline (Pro), valine (Val) and leucine (Leu). The reactions were performed as drying/wetting (hectorite) and temperature fluctuation (silica and alumina) experiments at 85 degrees C. The reactivity of amino acids decreased in order Gly > Ala > Pro approximately Val approximately Leu. The highest catalytic efficiency was observed for alumina, the only catalyst producing oligopeptides in all investigated reaction systems. The peptide bond formation on alumina is probably catalyzed by the same sites and via similar reaction mechanisms as some alumina-catalyzed dehydration reactions used in industrial chemistry.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
17
|
|
18
|
Murashov VV, Leszczynski J. Adsorption of the Phosphate Groups on Silica Hydroxyls: An ab Initio Study. J Phys Chem A 1999. [DOI: 10.1021/jp981996r] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir V. Murashov
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jerzy Leszczynski
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217-0510
| |
Collapse
|
19
|
Bujdák J, Rode BM. The effect of smectite composition on the catalysis of peptide bond formation. J Mol Evol 1996; 43:326-33. [PMID: 8798338 DOI: 10.1007/bf02339007] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clay-catalyzed glycine and diglycine oligomerizations were performed as drying/wetting cycles at 80 degrees C. Two trioctahedral smectites (hectorite and saponite), three pure montmorillonites, a ferruginous smectite, an Fe(II)-rich smectite, and three smectites containing goethite admixture were used as catalysts. Highest peptide bond formation was found with trioctahedral smectites. About 7% of glycine was converted to diglycine and diketopiperazine on hectorite after 7 days. In the case of dioctahedral smectites, highest yields were achieved using clays with a negative-layer charge localized in the octahedral sheets (up to 2% of converted glycine after 7 days). The presence of Fe(II) in clay is reflected in a higher efficiency in catalyzing amino acid dimerization (about 3.5% of converted glycine after 7 days). The possible significance of the results for prebiotic chemistry is discussed.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
| | | |
Collapse
|
20
|
Bujdák J, Le Son H, Yongyai Y, Rode BM. The effect of reaction conditions on montmorillonite-catalysed peptide formation. Catal Letters 1996. [DOI: 10.1007/bf00807765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Bujdák J, Eder A, Yongyai Y, Faybíková K, Rode BM. Investigation on the mechanism of peptide chain prolongation on montmorillonite. J Inorg Biochem 1996; 61:69-78. [PMID: 8558134 DOI: 10.1016/0162-0134(95)00035-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experiments with reduced-charge montmorillonites with gradually collapsed interlayer space prove that peptide formation processes occur mainly at the edges of the clay mineral. Activation of peptides and amino acids and the intermediate formation of cyclic anhydrides are found to be the two dominant processes determining the formation of higher peptides on the mineral surface.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
22
|
Bujdák J, Faybíková K, Eder A, Yongyai Y, Rode BM. Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors. ORIGINS LIFE EVOL B 1995; 25:431-41. [PMID: 7644185 DOI: 10.1007/bf01581994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several studies have proven the ability of montmorillonite to catalyse amino acid condensation under assumed prebiotic conditions, simulating wetting-drying cycles. In this work, the oligomerization of short peptides gly2, gly3, gly4 and ala2 on Ca- and Cu-montmorillonite in drying-wetting cycles at 80 degrees C was studied. The catalytic effect of montmorillonite was found to be much higher than in the case of glycine oligomerization. From gly2 after 3 weeks, 10% oligomers (up to gly6, with gly3 as main products) are formed. Gly3 and gly4 give higher oligomers even after 1 cycle. Ala2 produces both ala3 and ala4, whereas ala does not produce any oligomers under these conditions. Heteroologomerization was observed: ala-gly-gly is formed from ala and gly2. Much higher yields are obtained using Ca-montmorillonite, because copper (II) oxidizes organic molecules. The influence of the reaction mechanism on the preferential oligomerization of oligopeptides is discussed.
Collapse
Affiliation(s)
- J Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava
| | | | | | | | | |
Collapse
|
23
|
Collins JR, Loew GH, Luke BT, White DH. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. II. Structures and thermodynamics of the activated complex species. ORIGINS LIFE EVOL B 1988; 18:107-19. [PMID: 3368213 DOI: 10.1007/bf01808785] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amino acid activation by anhydride formation in model tetrahedral silicate and aluminate sites in clays and neutral phosphates have been studied by semi-empirical molecular orbital calculations. The results have been compared to previous ab initio studies on the reactant species and were found to be in good agreement. The geometries of all species were totally optimized and heats of formation obtained. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be A1 greater than Si greater than P which is the same order as the stability of hydrolysis. The relative efficacy of the anhydrides in promoting peptide bond formation has been evaluated using both thermodynamic and chemical reactivity criteria. Heats of reaction for model reactions were calculated from calculated enthalpies of formation of the products and reactants. The electrophilicity of the carbonyl carbon and the nucleophilicity of the oxygen were specifically used as indicators of chemical reactivity towards dipeptide formation by the activated amino acids. Our results indicate that if the reaction mechanism is dominated by the nucleophilic character of the oxygen, tetrahedral A1 sites should be more active than Si, and if the electrophilic character dominates, the order would be reversed.
Collapse
Affiliation(s)
- J R Collins
- Molecular Research Institute, Palo Alto, CA 94303
| | | | | | | |
Collapse
|
24
|
Loew GH, Collins JR, Luke BT, Lawless JG, White DH. Theoretical investigations of the role of clay edges in prebiotic peptide bond formation 2. Structure and electron distribution of activated amino acid esters. ORIGINS LIFE EVOL B 1986. [DOI: 10.1007/bf02422141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Lehmann U. Chromatographic separation as selection process for prebiotic evolution and the origin of the genetic code. Biosystems 1985; 17:193-208. [PMID: 3995160 DOI: 10.1016/0303-2647(85)90074-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A model for the evolution of a translation apparatus has been suggested where oligonucleotides in a hairpin conformation act as primordial adapters. Specifically activated amino acids are assumed to be attached to these hairpin molecules. For the specific activation, a chromatographic separation of, e.g. ala and CMP from gly and GMP can be accomplished on silica (e.g. of volcanic origin) with aqueous salt solutions. Other adsorbents like clays (kaolin, bentonite, montmorillonite), different silicates (florisil, magnesium trisilicate, calcium silicate, talc), hydroxyapatite, barium sulfate, calcium carbonate, calcium fluoride and titanoxide have been examined as model systems for the separation of nucleotides, nucleosides and amino acids on mineral surfaces. The possible role of chromatographic separation of amino acids for the formation of proteinoids, composed of selected amino acids, is also considered.
Collapse
|
26
|
Luke BT, Gupta AG, Loew GH, Lawless JG, White DH. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. I. Structures of acetic acid, glycine, H2SO4, H3PO4, Si(OH)4, Al(OH)4-. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY. QUANTUM BIOLOGY SYMPOSIUM : PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON QUANTUM BIOLOGY AND QUANTUM PHARMACOLOGY. INTERNATIONAL SYMPOSIUM ON QUANTUM BIOLOGY AND QUANTUM PHARMACOLOGY 1984; 11:117-35. [PMID: 11540814 DOI: 10.1002/qua.560260715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Activation of amino acids appears to have played a crucial role in prebiotic peptide bond formation. As a model of this process in living systems, phosphates have been used as amino acid activators. The possible role of clay and other minerals has also been investigated. We are presently using ab initio methods to investigate the activation of amino acids by these agents, as an initial step in peptide bond formation. A model of this activation process is described by the reaction: ZCH2COOH + XO4Hn+1 --> ZCH2COOXO3Hn + H2O. The first step in such an investigation, reported here, was to determine the lowest energy structures of a suitable set of reactions. As initial models of amino acids, Z was chosen to be H and NH2, corresponding to acetic acid and glycine, respectively, XO4Hn+1 = H3PO4 represents a phosphate group, while Si(OH)4 describes an edge tetrahedral site of a clay mineral. Al(OH)4- was also included to represent tetrahedral edge site where the silicon is replaced by an aluminum. Finally, to complete the series XO4Hn+1, H2SO4 was added to the set of reactants. All species were optimized using the STO-3G and STO-3G* basis sets. For H3PO4 and Al(OH)4-, STO-3G* full optimizations were not possible. In these cases, certain torsional angles were optimized separately, then held at the optimized value, while the rest of the bond lengths and angles were optimized. All structures were compared to other calculations and to experimental geometries when available.
Collapse
Affiliation(s)
- B T Luke
- Molecular Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|