1
|
Kobelt D, Aumann J, Fichtner I, Stein U, Schlag PM, Walther W. Activation of the CMV-IE promoter by hyperthermia in vitro and in vivo: biphasic heat induction of cytosine deaminase suicide gene expression. Mol Biotechnol 2010; 46:197-205. [PMID: 20512535 DOI: 10.1007/s12033-010-9292-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cytomegalovirus-immediate early (CMV-IE) promoter is widely used as a strong and constitutively active promoter. Although the CMV-IE promoter does not harbor heat-responsive sequences, we determined its heat inducibility. We analyzed in vitro and in vivo heat responsiveness and possible mechanisms of heat induction of the CMV-IE promoter. We used transfected SW480 human colon carcinoma cells (SW480/CMVCD), expressing CMV-IE promoter-driven bacterial cytosine deaminase (CD) gene. These cells were heated at 42 degrees C. The SW480/CMVCD cells were also used for in vivo studies, in which tumor-bearing animals were treated with hyperthermia at 41.5 degrees C. As controls, SW480 (SW480/HSPCD) cells were used, in which CD expression is driven by the HSP70-promoter. In vitro, we observed a biphasic, up to 25-fold heat induction of CMV-IE-driven CD expression after hyperthermia in SW480/CMVCD cells. In vivo, we found a 2.5-fold induction of CD expression after hyperthermia in SW480/CMVCD tumor-bearing animals. The analysis of the CMV-IE promoter sequence revealed several transcription factor-binding sites, which mediate stress responsiveness. YB-1 and C/EBP-beta might mediate heat responsiveness of the CMV-IE promoter. These data point to limitations in heat-induction gene therapy studies, in which the CMV-IE promoter is used as control system. In addition, the CMV-IE promoter itself could well be used for construction of heat-inducible vectors.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Walther W, Stein U. Heat-responsive gene expression for gene therapy. Adv Drug Deliv Rev 2009; 61:641-9. [PMID: 19394378 DOI: 10.1016/j.addr.2009.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/05/2009] [Indexed: 11/28/2022]
Abstract
Therapy-inducible vectors are useful for conditional expression of therapeutic genes in gene therapy, which is based on the control of gene expression by conventional treatment modalities. By this approach, combination of chemotherapy, radiation or hyperthermia with gene therapy can result in considerable, additive or synergistic improvement of therapeutic efficacy. This concept has been successfully tested in particular for gene therapy of cancer. The identification of efficient heat-responsive gene promoters provided the rationale for heat-regulated gene therapy. The objective of this review is to provide insights into the cellular mechanisms of heat-shock response, as prerequisite for therapeutic actions of hyperthermia and into the field of heat-responsive gene therapy. Furthermore, the major strategies of heat-responsive gene therapy systems in particular for cancer treatment are summarized. The developments for heat-responsive vector systems for in vitro and in vivo approaches are discussed. This review will provide an overview for this gene therapy strategy and its potential for multimodal therapeutic concepts in the clinic.
Collapse
Affiliation(s)
- Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Charité, University Medicine Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | |
Collapse
|
3
|
Lee YJ, Lee H, Borrelli MJ. Gene transfer into human prostate adenocarcinoma cells with an adenoviral vector: Hyperthermia enhances a double suicide gene expression, cytotoxicity and radiotoxicity. Cancer Gene Ther 2002; 9:267-74. [PMID: 11896443 DOI: 10.1038/sj.cgt.7700433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 12/07/2001] [Indexed: 01/12/2023]
Abstract
We have previously developed a recombinant adenovirus containing a fusion gene of Escherichia coli cytosine deaminase (CD) and herpes simplex virus type 1 thymidine kinase (HSV-1 TK) controlled by a cytomegalovirus (CMV) enhancer-promoter. This replication-incompetent adenovirus effectively transduced the CD-TK gene into human prostate adenocarcinoma DU-145 or PC-3 cells. Interestingly, heat shock at 41 degrees C for 4 hours elevated the level of CD-TK by approximately 5- to 20-fold at a multiplicity of infection (MOI) of 1. Heat-enhanced expression of CD-TK promoted cytotoxicity by 23-, 9-, or 47-fold in the presence of 50 microg/mL ganciclovir (GCV), 500 microg/mL 5-fluorocytosine (5-FC), or 50 microg/mL GCV+500 microg/mL 5-FC, respectively, at an MOI of 1. Moreover, there was an increase in radiosensitivity when adenovirus-infected cells were heated at 41 degrees C for 4 hours followed by irradiation in the presence of the prodrugs. Virus+heat+1 microg/mL GCV treatment increased radiosensitivity by a dose-modifying factor (DMF) of 2.2, whereas virus+heat+10 microg/mL 5-FC exposure resulted in a DMF of 2.3. Radiosensitization was clearly enhanced as a result of combined prodrug exposure (DMF=4.4). Our results suggest that the efficiency in expression of suicide genes from an adenoviral vector used for cytotoxic anticancer therapy could be improved by combining heat treatment with radiation therapy.
Collapse
Affiliation(s)
- Yong J Lee
- Department of Pharmacology and Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
4
|
Walther UI, Mückter H, Fichtl B, Forth W. Lack of effects of hydrocortisone pretreatment on zinc-induced changes in protein assemble. Hum Exp Toxicol 2000; 19:667-75. [PMID: 11291738 DOI: 10.1191/096032700673727326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhalational zinc intoxication may lead to the development of acute respiratory distress syndrome (ARDS). Pharmacological treatment of ARDS is based on glucocorticoids, while the efficiency of glucocorticoid treatment is discussed controversially. Glucocorticoid pretreatment of lung cell lines is known to cause disparate effects with regard to zinc susceptibility. Both substances are known to each interact with protein metabolism. In the present study, zinc effects were examined on hydrocortisone (HC)-pretreated lung cell lines by detection of content and synthesis of different proteins after two-dimensional (2D) gel electrophoresis. (1) In HC- pretreated fibroblast-like 11Lu and alveolar epithelial L2 cells, no zinc-mediated changes after silver staining of 2D gels were seen. Few differences occurred in HC-pretreated alveolar epithelial A549 cells that might be explained by the appearance of heat shock proteins (hsp) after zinc exposure. (2) In autoradiographs after 35S-Met incorporation only in 11Lu cells, small differences occurred after HC treatment as compared to controls without HC. (3) All cell lines tested demonstrated the same zinc-mediated changes in autoradiographs with a nearly complete loss of synthesized proteins and an appearance of a few new spots. These changes were reversible in all cell lines after washing out of external zinc. The new spots were transiently expressed for a few hours after zinc exposure. (4) The overall effect of HC pretreatment was rather unimpressive. The virtual lack of major effects does not support the hypothesis that a gross interaction between glucocorticoids and zinc at the cellular protein synthesis level would be an important mechanism of influence in zinc-induced lung injury.
Collapse
Affiliation(s)
- U I Walther
- Walther Straub Institut für Pharmakologie und Toxikologie, München, Germany
| | | | | | | |
Collapse
|
5
|
Wiegant FA, Spieker N, van Wijk R. Stressor-specific enhancement of hsp induction by low doses of stressors in conditions of self- and cross-sensitization. Toxicology 1998; 127:107-19. [PMID: 9699798 DOI: 10.1016/s0300-483x(98)00035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this paper, the pattern of induction of heat shock proteins (hsps) was studied in cultured Reuber H35 rat hepatoma cells by sequential application of different stressors. We analyzed whether a specific stress condition is able to induce an enhanced sensitivity to a subsequent application of a low dose of either the same or another stressor (self-sensitization and cross-sensitization, respectively). As a measure of sensitization, the stimulation of hsp induction was employed. Three different stressor conditions (heat shock, sodium arsenite and cadmium chloride) were used in doses which exerted a similar impact on overall protein synthesis. A synergistic effect in induction of the synthesis of various hsps was observed when a high stressor dose was followed by an 8-h incubation in a lower stressor dose in both self- and cross-sensitization experiments. The low-dose conditions used as second treatments did not induce any responses in non-pretreated cells. Studies in cultured cells have demonstrated stressor-specific hsp induction patterns. In this study we analyzed whether the pattern of hsps induced by the low-dose condition is characteristic for the first sensitizing stressor or for the secondary stressor applied in a low dose. The pattern of hsps which was induced above the level of the high-dose effect, due to the incubation with the secondary applied low-dose condition, was found to be characteristic for the secondary stressor and not for the sensitizing primary treatment. These results are of importance for an improved understanding of the regulation of heat shock protein synthesis in conditions of self- and cross-sensitization, as well as for a proper use of hsps as biomarkers of exposure to environmental stress.
Collapse
Affiliation(s)
- F A Wiegant
- Department of Molecular Cell Biology, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
6
|
Blackburn RV, Galoforo SS, Berns CM, Armour EP, McEachern D, Corry PM, Lee YJ. Comparison of tumor growth between hsp25- and hsp27-transfected murine L929 cells in nude mice. Int J Cancer 1997; 72:871-7. [PMID: 9311607 DOI: 10.1002/(sici)1097-0215(19970904)72:5<871::aid-ijc26>3.0.co;2-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a novel system for examining the possible contribution of small heat shock proteins (hsp) to tumor growth. L929 fibrosarcoma cells, which do not express significant levels of endogenous hsp25, were stably transfected with either murine hsp25 or human hsp27. Both transfected genes were over-expressed and the respective proteins were phosphorylated in L929 cells. L929 cells transfected with hsp25 exhibited enhanced tumor growth compared to control transfected L929 cells upon s.c. injection into nude mice. In contrast, cells transfected with hsp27 exhibited delayed tumor progression in comparison to controls. Although these 2 heat shock genes and respective proteins are structurally very similar, they apparently exhibit distinct effects on tumor growth in this system.
Collapse
Affiliation(s)
- R V Blackburn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Blackburn RV, Galoforo SS, Berns CM, Corry PM, Klemenz R, Lee YJ. Examination of the molecular basis for the lack of alphaB-crystallin expression in L929 cells. Mol Cell Biochem 1997; 170:31-42. [PMID: 9144316 DOI: 10.1023/a:1006810005545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously shown that murine L929 cells do not express the small heat shock protein alphaB-crystallin upon exposure to thermal stress (Mol Cell Biochem 155: 51-60, 1996). In these studies, we demonstrate that L929 cells also fail to express alphaB-crystallin upon exposure dexamethasone, whereas NIH 3T3 and Swiss 3T3 murine cells exhibit alphaB-crystallin expression under identical conditions. Mobility shift assays demonstrated heat-inducible binding, presumably by heat shock factor(s), to an alphaB-crystallin heat shock element (HSE) oligomeric sequence in total cellular extracts from L929 cells. Transient transfection of a plasmid containing the alphaB-crystallin promoter linked to a CAT reporter gene exhibited heat-inducible expression in L929 cells. In addition, L929 cells stably transfected with a plasmid containing the complete alphaB-crystallin gene showed expression of this gene following heat shock. The presence of the endogenous alphaB-crystallin gene was detected by Southern blot hybridization of genomic L929 DNA, and sequence analysis revealed identical nucleotide structure to published murine sequences throughout the entire promoter. Treatment of L929 cells with 5-azacytidine enabled heat-inducible expression of alphaB-crystallin from the endogenous gene, however, methylation of the putative heat shock element (HSE) and flanking promoter sequences of L929 cell genomic DNA was not detected. In vivo genomic footprinting demonstrated constitutive binding to the endogenous HSE of the alphaB-crystallin promoter in L929, L929/alphaB-crystallin transfectant cells, and Swiss 3T3 cells during unstressed and heat stressed conditions. Therefore, the genomic alphaB-crystallin HSE region in L929 cells appears to be available for binding of putative transcription factors, but methylation in other regions of the gene or genome repress the expression of alphaB-crystallin in L929 cells. In vitro culture of L929 cells appears to have rendered the alphaB-crystallin gene loci inactive through methylation, thus providing a unique system by which to study the function of transfected small heat shock proteins.
Collapse
Affiliation(s)
- R V Blackburn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | | | | | | | |
Collapse
|
8
|
Transfection of human HSP27 in rodent cells: Absence of compensatory regulation between small heat shock proteins. J Therm Biol 1996. [DOI: 10.1016/s0306-4565(96)00022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Blackburn R, Galoforo S, Berns CM, Ireland M, Cho JM, Corry PM, Lee YJ. Thermal response in murine L929 cells lacking alpha B-crystallin expression and alpha B-crystallin expressing L929 transfectants. Mol Cell Biochem 1996; 155:51-60. [PMID: 8717439 DOI: 10.1007/bf00714333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We investigated the role of alpha B-crystallin expression in the development of thermotolerance in murine L929 cells. An initial heat-shock of 10 min at 45 degrees C induced thermotolerance in these cells to a heat challenge at 45 degrees C administered 24 h later. The thermotolerance ratio at 10(-1) isosurvival was 1.7. Expression of alpha B-crystallin gene was not detected during the 24 h incubation at 37 degrees C following heat shock by either northern or western blots. In contrast, inducible HSP70 synthesis was observed during this time period. Thus, this cell line provided an unique system in which to examine the effects of transfected alpha B-crystallin on thermoresistance and thermotolerance. Cells stably transfected with alpha B-crystallin under the control of an inducible promoter did not show a significant increase in the ability to develop thermotolerance. However, a stably transfected L929 clone expressing high levels of constitutive alpha B-crystallin exhibited an approximately 50% increase in thermal resistance over parental and control cells. Though expression of alpha B-crystallin is not requisite for the development of thermotolerance in L929 cells, overexpression of transfected alpha B-crystallin can contribute to increased thermoresistance.
Collapse
Affiliation(s)
- R Blackburn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee YJ, Berns CM, Galoforo S, Erdos G, Cho JM, Corry PM. Differential effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on alpha B-crystallin and hsp70 gene expression in murine cell lines. Biochem Pharmacol 1995; 50:1149-55. [PMID: 7488228 DOI: 10.1016/0006-2952(95)00250-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the effect of isoquinolinesulfonamide derivatives (H-7, H-8, and HA1004) on the expression of two heat shock genes (alpha beta-crystallin and hsp70) in NIH 3T3 and Swiss 3T3 cells after heat shock at 45 degrees for 10 min. Western blots and northern blots showed that H-7 effectively suppressed the accumulation of HSP70 and alpha B-crystallin mRNA as well as the synthesis of their proteins. The degree of suppression was dependent upon the concentration of the drug. Moreover, the expression of the hsp genes was differentially suppressed by H-7. The expression of the alpha B-crystallin gene was more effectively inhibited than that of the hsp70 gene by H-7. Nuclear run-on assay demonstrates that this difference was due to the differential effect of H-7 on the elongation of transcription of different hsp genes.
Collapse
Affiliation(s)
- Y J Lee
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | | | | | | | | | | |
Collapse
|