1
|
Calderón Guzmán D, Juárez Olguín H, Osnaya Brizuela N, Ortíz Herrera M, Trujillo Jimenez F, Valenzuela Peraza A, Labra Ruiz N, Santamaria Del Angel D, Barragán Mejía G. Oleic acid reduces oxidative stress in rat brain induced by some anticancer drugs. Chem Biol Interact 2024; 398:111086. [PMID: 38825054 DOI: 10.1016/j.cbi.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Oleic acid (OA) is a monounsaturated compound with many health-benefitting properties such as obesity prevention, increased insulin sensitivity, antihypertensive and immune-boosting properties, etc. The aim of this study was to analyze the effect of oleic acid (OA) and some anticancer drugs against oxidative damage induced by nitropropionic acid (NPA) in rat brain. Six groups of Wistar rats were treated as follows: Group 1, (control); group 2, OA; group 3, NPA + OA; group 4, cyclophosphamide (CPP) + OA; group 5, daunorubicin (DRB) + OA; and group 6, dexrazoxane (DXZ) + OA. All compounds were administered intraperitoneally route, every 24 h for 5 days. Their brains were extracted to measure lipoperoxidation (TBARS), H2O2, Ca+2, Mg+2 ATPase activity, glutathione (GSH) and dopamine. Glucose, hemoglobin and triglycerides were measured in blood. In cortex GSH increased in all groups, except in group 2, the group 4 showed the highest increase of this biomarker. TBARS decrease, and dopamine increase in all regions of groups 4, 5 and 6. H2O2 increased only in cerebellum/medulla oblongata of group 5 and 6. ATPase expression decreased in striatum of group 4. Glucose increased in group 6, and hemoglobin increased in groups 4 and 5. These results suggest that the increase of dopamine and the antioxidant effect of oleic acid administration during treatment with oncologic agents could result in less brain injury.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, INP. and Dept of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, CP 04530, Mexico.
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | | | - Francisca Trujillo Jimenez
- Laboratory of Pharmacology, INP. and Dept of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, CP 04530, Mexico
| | | | - Norma Labra Ruiz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), CP 04530, Mexico City, Mexico
| | | | | |
Collapse
|
2
|
Calderón Guzmán D, Osnaya Brizuela N, Ortíz Herrera M, Valenzuela Peraza A, Labra Ruíz N, Juárez Olguín H, Santamaria del Angel D, Barragán Mejía G. N-Acetylcysteine Attenuates Cisplatin Toxicity in the Cerebrum and Lung of Young Rats with Artificially Induced Protein Deficiency. Int J Mol Sci 2024; 25:6239. [PMID: 38892427 PMCID: PMC11172823 DOI: 10.3390/ijms25116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Neurotoxicity is a major obstacle in the effectiveness of Cisplatin in cancer chemotherapy. In this process, oxidative stress and inflammation are considered to be the main mechanisms involved in brain and lung toxicity. The aim of the present work was to study the influence of the amount of protein on some oxidative parameters in the brain and lungs of rats treated with Cisplatin (CP) and N-Acetylcysteine (NAC) as neuroprotectors. Four groups of Wistar rats, each containing six animals, were fed with a protein diet at 7% for 15 days. Thereafter, the groups were given either a unique dose of CP® 5 mg/kg or NAC® 5 mg/kg as follows: group 1 (control), NaCl 0.9% vehicle; group 2, CP; group 3, NAC; and group 4, NAC + CP. The animals were sacrificed immediately after the treatments. Blood samples were collected upon sacrifice and used to measure blood triglycerides and glucose. The brain and lungs of each animal were obtained and used to assay lipid peroxidation (TBARS), glutathione (GSH), serotonin metabolite (5-HIAA), catalase, and the activity of Ca+2, and Mg+2 ATPase using validated methods. TBARS, H2O2, and GSH were found to be significantly decreased in the cortex and cerebellum/medulla oblongata of the groups treated with CP and NAC. The total ATPase showed a significant increase in the lung and cerebellum/medulla oblongata, while 5-HIAA showed the same tendency in the cortex of the same group of animals. The increase in 5-HIAA and ATPase during NAC and CP administration resulted in brain protection. This effect could be even more powerful when membrane fluidity is increased, thus proving the efficacy of combined NAC and CP drug therapy, which appears to be a promising strategy for future chemotherapy in malnourished patients.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| | - Armando Valenzuela Peraza
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Norma Labra Ruíz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, Instituto Nacional de Pediatría, Avenida Imán N° 1, 3rd piso Colonia Cuicuilco, Mexico City 04530, Mexico
| | - Daniel Santamaria del Angel
- Laboratory of Neurosciences, Instituto Nacional de Pediatria (INP), Mexico City 04530, Mexico; (D.C.G.); (N.O.B.); (A.V.P.); (N.L.R.); (D.S.d.A.)
| | - Gerardo Barragán Mejía
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria INP, Mexico City 04530, Mexico; (M.O.H.); (G.B.M.)
| |
Collapse
|
3
|
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Peraza AV, Ruíz NL, Mejía GB. Intake of oligoelements with cytarabine or etoposide alters dopamine levels and oxidative damage in rat brain. Sci Rep 2024; 14:10835. [PMID: 38736022 PMCID: PMC11089036 DOI: 10.1038/s41598-024-61766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.
Collapse
Affiliation(s)
| | | | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology, Instituto Nacional de Pediatria, Av. Iman No.1, 3er piso, Col. Cuicuilco, 04530, Mexico City, CP, Mexico.
- Department of Pharmacology, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| | | | - Norma Labra Ruíz
- Laboratory of Neurosciences, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Gerardo Barragán Mejía
- Laboratory of Experimental Bacteriology, Instituto Nacional de Pediatria, Mexico City, Mexico
| |
Collapse
|
4
|
Guzmán DC, Brizuela NO, Herrera MO, Olguín HJ, Peraza AV, García EH, Jiménez FT, Mejía GB. Cytarabine and Ferric Carboxymaltose (Fe+3) Increase Oxidative Damage and Alter Serotonergic Metabolism in Brain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:149-155. [PMID: 30484410 DOI: 10.2174/1871527318666181128144343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND & OBJECTIVE The purpose of this study was to measure the effect on brain biomarkers after treatment with anticancer compounds - cytarabine (CT) and ferric carboxymaltose (FC) (Fe+3) in Wistar rats. METHODS The Wistar rats were treated as follows: group 1 (control), NaCl 0.9%; group 2, CT (25 mg/k), group 3, FC(Fe+3) (50 mg/k) and group 4, CT + FC(Fe+3). The animals were sacrificed and their brains were obtained and used to measure lipoperoxidation (TBARS), H2O2, Na+, K+ ATPase, glutathione (GSH), serotonin metabolite (5-HIAA) and dopamine. The results indicated an enhancement of lipid peroxidation in the cortex and striatum of groups treated with FC(Fe+3) and CT, while GSH decreased in the cortex of group treated with CT + FC(Fe+3). Dopamine decreased in the cortex of the rats that received CT, while in the striatum, 5HIAA increased in all groups. RESULTS & CONCLUSION These results suggest that the treatment with CT and FC(Fe+3) boosted oxidative stress and led to an alteration in momoamine concentrations in the brain.
Collapse
Affiliation(s)
| | | | - Maribel Ortíz Herrera
- Laboratory of Experimental Bacteriology, National Institute of Pediatrics, Mexico City, Mexico
| | - Hugo Juárez Olguín
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Ernestina Hernández García
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Francisca Trujillo Jiménez
- Laboratory of Pharmacology. National Institute of Pediatrics, and Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
5
|
Koros C, Papalexi E, Anastasopoulos D, Kittas C, Kitraki E. Effects of AraC treatment on motor coordination and cerebellar cytoarchitecture in the adult rat. Neurotoxicology 2007; 28:83-92. [PMID: 16973216 DOI: 10.1016/j.neuro.2006.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/19/2006] [Accepted: 07/27/2006] [Indexed: 11/30/2022]
Abstract
Intact cerebellum cytoarchitecture and cellular communication are indispensable for successful motor coordination and certain forms of memory. Cytosine arabinoside (AraC), often used as an anti-neoplastic agent in humans, can have cerebellum-targeting adverse effects. In order to characterize the nature of AraC-induced cerebellar lesions in an adult rodent model, we have administered AraC (400 mg/kg b.w., i.p.) in adult male Wistar rats for 5 days. The animals' walking pattern, motor coordination, locomotion, spatial navigation and cognition were evaluated, along with neurofilament- and calbindin-like distribution in the cerebellum. AraC-treated rats demonstrated a disturbed walking pattern and a reduced ability of motor learning and coordination, indicative of a mild cerebellar deficit. Although the general locomotion and spatial cognition of AraC-treated rats was not significantly altered, their navigation into the water, in terms of swimming velocity, was irregular, compared to vehicle-treated animals. Neurofilament-like immunostaining was reduced in the molecular cerebellar layer, while calbindin D 28 kDa levels were increased in Purkinje neurons, following AraC treatment. Administration of the antioxidant N-acetylcysteine (NAC) (200 mg/kg b.w., p.o.), for 14 days (prior to and during AraC treatment) largely prevented the AraC-induced behavioral deficits. Our in vivo model of neurotoxicity provides data on the AraC-induced behavioral and cellular alterations concerning the adult rat cerebellum. Furthermore, it provides evidence of a possible neuroprophylactic role of the antioxidant N-acetylcysteine in this model of chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Christos Koros
- Laboratory of Histology and Embryology, Athens University Medical School, Athens, Greece.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The developing brain has a distinctive set of characteristics that make it unusually sensitive to damage by toxic agents. Mechanistic understanding of the vulnerability of the immature nervous system to various chemicals is important from a preventive perspective but has also frequently given us new insights into maturation of neural circuitry. This review examines some of the developmental consequences of contact with various exogenous agents, including metals, solvents, pharmaceuticals, and natural products. This review emphasizes how subtle suboptimal brain function rather than acute toxicity can be a consequence of chemical exposures occurring during ontogenesis. The rate of brain aging may be influenced by events taking place in embryogenesis, following a prolonged asymptomatic period. The potential for appearance of adverse effects after prolonged latent periods is underscored.
Collapse
Affiliation(s)
- Stephen C Bondy
- Department of Community and Environmental Medicine, Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California 92967-1820, USA.
| | | |
Collapse
|
7
|
Bavoux F, Elefant E. [Cancer and pregnancy: risks of exposure to cancer chemotherapy during pregnancy]. ACTA ACUST UNITED AC 2004; 33:S29-32. [PMID: 14968015 DOI: 10.1016/s0368-2315(04)96661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animal studies reveal that almost all antineoplastic agents are teratogenic. But extrapolation to human beings is not simple because of species differences. Few human data are available, most are sporadic case reports. Other toxic effects for the fetus and neonate (intrauterine exposure during second and third trimester) must be taken in consideration when prescribing chemotherapy for pregnant women. Adverse effects observed in adult and children are helpful if data during fetal life are lacking. Long-term studies are needed to evaluate the transplacental effects of chemotherapy during pregnancy; these studies should assess the child's mental and physical development, infertility and the occurrence of second malignancies.
Collapse
Affiliation(s)
- F Bavoux
- Unité de pharmacovigilance, CHU Cochin-Saint-Vincent-de-Paul, Paris.
| | | |
Collapse
|
8
|
Abstract
The Purkinje cells and the granule cells are the most important targets in cerebellum for toxic substances. The Purkinje cells are among the largest neuron in the brain and are very sensitive to ischaemia, bilirubin, ethanol and diphenylhydantoin. The granule cells are small and seem to be sensitive to loss of intracellular glutathione. Granule cells are sensitive to methyl halides, thiophene, methyl mercury, 2-chloropropionic acid and trichlorfon. The Purkinje cells appear in the rat brain on pre-natal day 14-16, whereas the granule cells appear post-natally. Both cells are sensitive to excitotoxic chemicals and also to an effect on DNA or its repair mechanisms.
Collapse
Affiliation(s)
- F Fonnum
- Norwegian Defence Research Establishment, Division for Protection and Material, 2027, Kjeller, Norway.
| | | |
Collapse
|
9
|
Abstract
The presence of developmental cortical malformations is associated with epileptogenesis and other neurological disorders. In recent years, animal models specific to certain malformations have been developed to study the underlying epileptogenic mechanisms. Teratogens (chemical, thermal or radiation) applied during cortical neuroblast division and migration result in lissencephaly and focal cortical dysplasia. Animals with these malformations have a lowered seizure threshold as well as histopathologies typical of those found in human dysgenic brains. Alterations that may promote epileptogenesis have been identified in lissencephalic brains, such as increased numbers of bursting types of neurons, and abnormal connections between hippocampus, subcortical heterotopia, and neocortex. A distinct set of pathological properties is present in animal models of 4-layered microgyria, induced with cortical lesions made during late stages of cortical neuroblast migration. Hyperexcitability has been demonstrated in cortex adjacent to the microgyrus (paramicrogyral zone) in in vitro slice preparations. A number of observations suggest that cellular differentiation is delayed in microgyric brains. Other studies show increases in postsynaptic glutamate receptors and decreases in GABA(A) receptors in microgyric cortex. These alterations could promote epileptogenesis, depending on which cell types have the altered receptors. The microgyrus lacks thalamic afferents from sensory relay nuclei, that instead appear to project to the paramicrogyral region, thereby increasing excitatory connectivity within this epileptogenic zone. These studies have provided a necessary first step in understanding molecular and cellular mechanisms of epileptogenesis associated with cortical malformations.
Collapse
Affiliation(s)
- K M Jacobs
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, CA 94305, USA
| | | | | |
Collapse
|
10
|
Belmadani A, Tramu G, Betbeder AM, Creppy EE. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartame, a sweetener. Hum Exp Toxicol 1998; 17:380-6. [PMID: 9726534 DOI: 10.1177/096032719801700704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1. Ochratoxin A (OTA) is a mycotoxin produced by several fungi, especially Aspergillus and Penicillium species. Many food and foodstuffs can be contaminated by ochratoxin A, which is consequently found in blood of animals and humans. 2. The distribution into the brain of young adult rats fed OTA for 1 to 6 weeks and some consequences have been investigated in the present study. 3. Our results on rats given OTA (289 microg/kg/48 h) indicated that OTA accumulated in the whole brain as function of time according to a regression curve, Y=-8.723 a+16.72 with a correlation coefficient of r=0.989, where Y-axis is the OTA concentration in ng/g of brain and X-axis is the duration of the treatment in weeks. The brain OTA contents was 11.95 +/- 2.2, 23.89 +/- 4.4, 39.9 +/- 4.5, 50.3 +/- 7.3, 78.8 +/- 6.3, 94 +/- 16 ng/g of brain in the mycotoxin-treated animals for respectively 1, 2, 3, 4, 5 and 6-weeks treatment. OTA induced modifications of free amino-acid concentrations in the brain, mainly, Tyrosine (Tyr) and phenylalanine (Phe). Tyr decreased significantly as compared to control (p < 0.05). Phe increased significantly as compared to control (p < 0.05). 4. Aspartame, (25 mg/kg/48 h) a structural analogue of OTA largely modified the distribution and prevented the accumulation of OTA in the brain since the respective brain OTA contents decreased respectively to 9.6 +/- 7.9, 19.2 +/- 3.0, 26.8 +/- 4.2, 19.7 +/- 1.9, 13.7 /- 5.6 and 11.0 +/- 6.0 ng/g of tissue, for the same duration of treatment. It also prevented the modifications of Tyr and Phe levels. 5. The histological investigations showed several necrotic cells with pyknotic nucleus, detected in OTA treated animals with higher frequency as compared to the controls and Aspartame treated ones. Aspartame appeared to significantly prevent this nuclear effect as well, the meaning of which is discussed.
Collapse
Affiliation(s)
- A Belmadani
- Laboratory of Toxicology and Applied Hygiene, Bordeaux, France
| | | | | | | |
Collapse
|
11
|
Luthman J, Eriksdotter-Nilsson M, Jonsson G. Structural and neurochemical effects in mouse cerebellum following neonatal methylazoxymethanol and 6-hydroxydopamine treatment. Int J Dev Neurosci 1990; 8:107-18. [PMID: 1967503 DOI: 10.1016/0736-5748(90)90027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of neonatal treatment with the antimitotic agent methylazoxymethanol and the catecholamine neurotoxin 6-hydroxydopamine on cerebellar morphology and monoamine innervation in the N.M.R.I. mouse has been studied. Methylazoxymethanol (25 mg/kg s.c.) treatment induced a cerebellar weight reduction of 40% as observed in the adult stage, while other CNS regions analysed were unaffected. An obvious atrophy of the cerebellar cortex was found, with an irregular distribution of the Purkinje cells, while Bergmann glia fibers deviated from their normal radial configuration and showed a tendency to form clusters. A 65% increase of tyrosine hydroxylase immunoreactive fiber density was found in the cerebellar cortex and 3H-5-hydroxytryptamine in vitro synaptosomal uptake was increased by 55%. Noradrenaline and 5-hydroxytryptamine concentrations in the cerebellum increased by 50 and 30%, respectively, whereas the total content of both neurotransmitters in cerebellum was approximately unchanged after methylazoxymethanol treatment. A significant reduction in total cerebellar in vitro binding of 3H-WB-4101 and 3H-dihydroalprenolol was also found, indicating compensatory receptor alterations following methylazoxymethanol treatment. The effect of combined treatment of methylazoxymethanol and the neurotoxin 6-hydroxydopamine (50 mg/kg s.c., day 1) showed a very pronounced reduction of noradrenaline concentration in cortex cerebri, while the noradrenaline concentration in cerebellum was increased by 185% and the tyrosine hydroxylase immunoreactive fiber density by 125%, indicating an additional relative hyperinnervation of cerebellar noradrenaline fiber due to a "pruning effect" of the 6-hydroxydopamine treatment. The results imply a relatively rigid development of terminal arborization of central nervous system monoamine neurons, relatively independent of neuronal and glial arrangement in the target area.
Collapse
Affiliation(s)
- J Luthman
- Department of Histology and Neurobiology, Karolinska Institut, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Tamaru M, Hirata Y, Matsutani T. Neurochemical effects of prenatal treatment with ochratoxin A on fetal and adult mouse brain. Neurochem Res 1988; 13:1139-47. [PMID: 2467220 DOI: 10.1007/bf00971631] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OA) is a mycotoxin produced by several storage fungi, such as Aspergillus ochraceus and several Penicillium species. OA (3 mg/kg) was given intraperitoneally to pregnant mice on day 11 of gestation (day 1 = day of insemination), and neurochemical changes in brains of their offspring were examined at fetal and adult stages. OA treatment produced retardation of intrauterine growth as well as microencephaly and reductions in total weight and DNA content of fetal brains. Specific activities of lysosomal enzymes in fetal brains began to increase by the 2nd day after treatment and to reach peak activities by the 3rd or 4th day after injection, indicative of cell death in the developing brains. Examination of brain regions of offspring three months after birth revealed that both tissue weight and DNA content were reduced to 80% of control in cerebral hemispheres (CHs; cerebral cortex and subjacent white matter, hippocampus, and amygdala) and to 90% of control in remainder of the brain (BGDM; basal ganglia, diencephalon, and mesencephalon). Total content of noradrenaline (NA), dopamine (DA) 5-hydroxytryptamine (5-HT) in treated CH showed about 15% reduction, although, expressed on a tissue weight basis, concentrations of these monoamines were increased by about 15%. Total DA content in BGDM was also reduced to 85% of controls, but total content of NA and 5-HT in BGDM and pons-medulla oblongata did not change. These results suggest that synaptogenesis of monoamine neurons in the cerebrum is impaired by prenatal treatment with OA, and that dopaminergic neurons show a slight selective vulnerability to the toxin.
Collapse
Affiliation(s)
- M Tamaru
- Department of Developmental Physiology, Fujita-Gakuen Health University School of Medicine, Aichi, Japan
| | | | | |
Collapse
|
13
|
Tamaru M, Hirata Y, Nagayoshi M, Matsutani T. Brain changes in rats induced by prenatal injection of methylazoxymethanol. TERATOLOGY 1988; 37:149-57. [PMID: 3353865 DOI: 10.1002/tera.1420370208] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various doses (0, 1, 5, 10, 15, 20, or 25 mg/kg) of methylazoxymethanol acetate (MAM), a potent alkylating agent, were injected singly into pregnant rats intraperitoneally on day 15 of gestation. Relationships between brain weights and neurochemical changes in the cerebral hemispheres (CHs; cerebral cortex and subjacent white matter, hippocampus, amygdala) and remainder of the brain (BGDM; basal ganglia, diencephalon, and mesencephalon) were examined at 60 days of age in offspring; varying degrees of microencephaly were observed. Dose-dependent reductions in the weights of CH and BGDM were observed. Reductions in total DNA content positively correlated with decreases in brain weights also observed. Dose-dependent elevations of noradrenaline (NA) and dopamine (DA) were observed in CH at MAM levels 10 mg/kg and above; dose-dependent elevations of 5-hydroxytryptamine (5-HT) were observed at 15 mg/kg and above; and in BGDM at 20 mg/kg and above dose-dependent elevations for NA and 5-HT were observed; dose-dependent elevations at 15 mg/kg and above were observed for DA. Monoamine concentrations were negatively correlated with brain weights or total DNA contents. NA and DA concentrations increased to the extent of approximately 1.3 times of control at a time when an 18% loss of CH weight was noted in animals treated with 10 mg/kg MAM. It is suggested that the above variables might be appropriately sensitive neurochemical markers for detecting minor developmental anomalies in the brain.
Collapse
Affiliation(s)
- M Tamaru
- Department of Developmental Physiology, Fujita-Gakuen Health University School of Medicine, Aichi, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
In recent years, there has been much impetus toward a definition of behavior in terms of underlying biological events. Such correlations have been attempted in several areas ranging from learning and memory to neurological disease. Increased information concerning the relation between behavior and neurobiological mechanisms is especially important in the area of neurotoxicology. It is often abnormal behavior that is a first sign of exposure to a neurotoxic agent and such changes may give clues as to the anatomical or chemical sites of attack on the nervous system. These clues might also lead to the development of a therapeutic treatment as to the development of tests designed to reveal exposure to a toxic agent at levels below those causing gross behavioral change. Unfortunately, there is a relatively small amount of literature reporting on both behavioral and biological disturbances caused by a toxic agent in the same experimental animal. However, a variety of methodological advances combined with a growing interest in neurotoxicology is gradually changing this. Increased information concerning the role of defined nerve pathways and the means of action of their chemical constituents offers an opportunity to bring about a deepening understanding of neurotoxic events. This review will suggest how new pharmacological findings can be applied to neurotoxicology. Examples of human and animal exposure to toxic materials will be used and current problems will be shown to be major determinants of future research directions.
Collapse
|
15
|
Hallman H, Jonsson G. Monoamine neurotransmitter metabolism in microencephalic rat brain after prenatal methylazoxymethanol treatment. Brain Res Bull 1984; 13:383-9. [PMID: 6149797 DOI: 10.1016/0361-9230(84)90088-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Administration of methylazoxymethanol (MAM) in the fetal stage leads to forebrain microencephaly with a severe atrophy in cerebral cortex, striatum, and hippocampus. The concentration of endogenous monoamines was markedly increased in the atrophic regions while total amount was largely unchanged. Striatal dopamine and cortical noradrenaline nerve terminals from MAM treated animals showed unaltered sedimentation properties in a sucrose density gradient and were estimated to have normal transmitter levels. gamma-Butyrolactone induced increase in dopamine levels and its counteraction by apomorphine was essentially unaltered after MAM. These data give further support for the view that the monoamine nerve terminal fields develop to their normal size in the atrophic regions leading to a hyperinnervation. Analysis of monoamine metabolite levels, increase of monoamines after monoamine oxidase inhibition, and disappearance of catecholamines after tyrosine hydroxylase inhibition were conducted to obtain information on monoamine turnover. The results indicated an essentially unaltered, or a small reduction of, monoamine turnover in the atrophic regions when calculated per monoamine nerve terminal, while increased when calculated per unit weight of the tissue.
Collapse
|