1
|
Abstract
Glutamate release activates signaling pathways important for learning and memory, and over-stimulation of these pathways during seizures leads to aberrant synaptic plasticity associated with hyper-excitable, seizure-prone states. Seizures induce rapid accumulation of membrane lipid-derived fatty acids at the synapses which, evidence suggests, regulate maladaptive connectivity. Here we give an overview of the significance of the arachidonyl- and inositol-derived messengers, prostaglandins (PGs) and diacylglycerol (DAG), in experimental models of epilepsy. We use studies conducted in our own laboratory to highlight the pro-epileptogenic role of cyclooxygenase-2 (COX-2) and its products, the PGs, and we discuss the possible mechanisms by which PGs may regulate membrane excitability and synaptic transmission at the cellular level. We conclude with a discussion of AA-DAG signaling in synaptic plasticity and seizure susceptibility with an emphasis on recent studies in our laboratory involving DAG kinase epsilon (DGKepsilon)-knockout mice.
Collapse
Affiliation(s)
- Kasie K Cole-Edwards
- LSU Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA
| | | |
Collapse
|
2
|
Abstract
The extensive networking of the cells of the nervous system results in large cell membrane surface areas. We now know that neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. Prostaglandins are synthesized as a result of cyclooxygenase activity. In the first step of the arachidonic acid cascade, the short-lived precursor, prostaglandin H2, is synthesized. Additional steps in the cascade result in the synthesis of an array of prostaglandins, which participate in numerous physiological and neurological processes. Our laboratory recently reported that the membrane polyunsaturated fatty acid, docosahexaenoic acid, is the precursor of oxygenation products now known as the docosanoids, some of which are powerful counter-proinflammatory mediators. The mediator 10,17S-docosatriene (neuroprotectin D1, NPD1) counteracts leukocyte infiltration, NF-kappa activation, and proinflammatory gene expression in brain ischemia-reperfusion and is an apoptostatic mediator, potently counteracting oxidative stress-triggered apoptotic DNA damage in retinal pigment epithelial cells. NPD1 also upregulates the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreases pro-apoptotic Bax and Bad expression. Another biologically active messenger derived from membrane phospholipids in response to synaptic activity is platelet-activating factor (PAF). The tight regulation of the balance between synthesis (via phospholipases) and degradation (via acetylhydrolases) of PAF modulates the functions of this lipid messenger. Under pathological conditions, this balance is tipped, and PAF becomes a proinflammatory mediator and neurotoxic agent. The newly discovered docosahexaenoic acid signaling pathways, as well as other lipid messengers related to synaptic activation, may lead to the clarification of clinical issues relevant to stroke, age-related macular degeneration, spinal cord injury, Alzheimer's disease, and other diseases that include neuroinflammatory components.
Collapse
Affiliation(s)
- Nicolas G Bazan
- LSU Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
3
|
Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 2003; 44:2221-33. [PMID: 13130128 DOI: 10.1194/jlr.r300013-jlr200] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuronal cellular and intracellular membranes are rich in specialized phospholipids that are reservoirs of lipid messengers released by specific phospholipases and stimulated by neurotransmitters, neurotrophic factors, cytokines, membrane depolarization, ion channel activation, etc. Secretory phospholipases A2 may be both intercellular messengers and generators of lipid messengers. The highly networked nervous system includes cells (e.g., astrocytes, oligodendrocytes, microglial cells, endothelial microvascular cells) that extensively interact with neurons; several lipid messengers participate in these interactions. This review highlights modulation of postsynaptic membrane excitability and long-term synaptic plasticity by cyclooxygenase-2-generated prostaglandin E2, arachidonoyldiacylcylglycerol, and arachidonic acid-containing endocannabinoids. The peroxidation of docosahexaenoic acid (DHA), a critical component of excitable membranes in brain and retina, is promoted by oxidative stress. DHA is also the precursor of enzyme-derived, neuroprotective docosanoids. The phospholipid platelet-activating factor is a retrograde messenger of long-term potentiation, a modulator of glutamate release, and an upregulator of memory formation. Lipid messengers modulate signaling cascades and contribute to cellular differentiation, function, protection, and repair in the nervous system. Lipidomic neurobiology will advance our knowledge of the brain, spinal cord, retina, and peripheral nerve function and diseases that affect them, and new discoveries on networks of signaling in health and disease will likely lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
4
|
Rodriguez de Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG. Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci U S A 2001; 98:4740-5. [PMID: 11287665 PMCID: PMC31904 DOI: 10.1073/pnas.081536298] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Indexed: 11/18/2022] Open
Abstract
Arachidonoyldiacylglycerol (20:4-DAG) is a second messenger derived from phosphatidylinositol 4,5-bisphosphate and generated by stimulation of glutamate metabotropic receptors linked to G proteins and activation of phospholipase C. 20:4-DAG signaling is terminated by its phosphorylation to phosphatidic acid, catalyzed by diacylglycerol kinase (DGK). We have cloned the murine DGKepsilon gene that showed, when expressed in COS-7 cells, selectivity for 20:4-DAG. The significance of DGKepsilon in synaptic function was investigated in mice with targeted disruption of the DGKepsilon. DGKepsilon(-/-) mice showed a higher resistance to electroconvulsive shock with shorter tonic seizures and faster recovery than DGKepsilon(+/+) mice. The phosphatidylinositol 4,5-bisphosphate-signaling pathway in cerebral cortex was greatly affected, leading to lower accumulation of 20:4-DAG and free 20:4. Also, long-term potentiation was attenuated in perforant path-dentate granular cell synapses. We propose that DGKepsilon contributes to modulate neuronal signaling pathways linked to synaptic activity, neuronal plasticity, and epileptogenesis.
Collapse
Affiliation(s)
- E B Rodriguez de Turco
- Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci 1997. [PMID: 9006968 DOI: 10.1523/jneurosci.17-04-01226.1997] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been suggested that anandamide (N-arachidonoylethanolamine), an endogenous cannabinoid substance, may be produced through Ca2+-stimulated hydrolysis of the phosphatidylethanolamine (PE) derivative N-arachidonoyl PE. The presence of N-arachidonoyl PE in adult brain tissue and the enzyme pathways that underlie its biosynthesis are, however, still undetermined. We report here that rat brain tissue contains both anandamide (11 +/- 7 pmol/gm wet tissue) and N-arachidonoyl PE (22 +/- 16 pmol/gm), as assessed by gas chromatography/mass spectrometry. We describe a N-acyltransferase activity in brain that catalyzes the biosynthesis of N-arachidonoyl PE by transferring an arachidonate group from the sn-1 carbon of phospholipids to the amino group of PE. We also show that sn-1 arachidonoyl phospholipids are present in brain, where they constitute approximately 0.5% of total phospholipids. N-acyltransferase activity is Ca2+ dependent and is enriched in brain and testis. Within the brain, N-acyltransferase activity is highest in brainstem; intermediate in cortex, striatum, hippocampus, medulla, and cerebellum; and lowest in thalamus, hypothalamus, and olfactory bulb. Pharmacological inhibition of N-acyltransferase activity in primary cultures of cortical neurons prevents Ca2+-stimulated N-arachidonoyl PE biosynthesis. Our results demonstrate, therefore, that rat brain tissue contains the complement of enzymatic activity and lipid substrates necessary for the biosynthesis of the anandamide precursor N-arachidonoyl PE. They also suggest that biosynthesis of N-arachidonoyl PE and formation of anandamide are tightly coupled processes, which may concomitantly be stimulated by elevations in intracellular Ca2+ occurring during neural activity.
Collapse
|
6
|
Kragh J, Jørgensen MB, Diemer NH, Bolwig TG. Long-term decrease in the hippocampal [3H]inositoltriphosphate binding following repeated electroshock in the rat. Biol Psychiatry 1995; 38:471-4. [PMID: 8672608 DOI: 10.1016/0006-3223(94)00322-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A quantitative autoradiographic study was made on the binding of the phosphatidylinositol system ligand [3H]inositol(1,4,5)-triphosphate (IP3) to forebrain sections from electroconvulsive shock (ECS)-treated rats. One group of rats was sacrificed 1 day and 1 month, respectively, after 12 ECSs administered three times weekly for 4 weeks. SHAM-stimulated rats served as controls. A single ECS did not change the [3H]IP3 binding in any of the brain regions examined. One day after the last of 12 ECSs, a decrease in [3H]IP3 binding (21%) was found within the CA1 region of the hippocampus and the piriform cortex (39%). In rats sacrificed 1 month after the last of 12 ECSs, the [3H]IP3 binding in piriform cortex had returned to control level. In the CA1 region of the hippocampus, the binding was still decreased (24%). It is possible that changes in the phosphatidylinositol system may play a part in the neurobiological events responsible for the therapeutic effect of electroconvulsive therapy.
Collapse
Affiliation(s)
- J Kragh
- Laboratory for Experimental Neuropsychiatry, State University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
7
|
Chen CC. Alterations of protein kinase C isozyme and substrate proteins in mouse brain after electroconvulsive seizures. Brain Res 1994; 648:65-72. [PMID: 7922528 DOI: 10.1016/0006-8993(94)91906-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein kinase C (PKC) activity, Western blot analysis of PKC alpha, beta, gamma, epsilon and zeta with isozyme-specific antibodies, endogenous substrate protein phosphorylation, and Western blot analysis of neuromodulin, were studied in mouse brain after repeated electroconvulsive shock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified on DE-52 columns eluted with buffer containing 100 or 200 mM KCl. The kinase activity assayed by phosphorylation of exogenous histone was increased in the 200 mM KCl eluates of both the cytosol and membrane fractions from electroshocked mice. Further analysis by immunoblotting demonstrated that this increased activity was due to an increase in the PKC gamma isozyme. The level of the novel type isozymes, epsilon and zeta, was not altered in electroshocked mice. An in vitro phosphorylation study showed that the endogenous substrate, 17 kDa neurogranin, was mostly eluted by 100 mM KCl. In contrast, the 43 kDa neuromodulin only appeared in the 200 mM KCl eluate, according to autoradiography, SDS-PAGE and Western blot analysis; its level was found to be increased in the membrane fraction of electroshocked mice, as demonstrated by in vitro phosphorylation studies. Therefore, an increase in both PKC gamma and neuromodulin contributed to the increased phosphorylation of neuromodulin during electroshock seizure.
Collapse
Affiliation(s)
- C C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, ROC
| |
Collapse
|
8
|
Chen CC. Pentylenetetrazole-induced chemoshock affects protein kinase C and substrate proteins in mouse brain. J Neurochem 1994; 62:2308-15. [PMID: 8189236 DOI: 10.1046/j.1471-4159.1994.62062308.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein kinase C (PKC) activity, western blot analysis of PKC alpha, beta, gamma, epsilon, and zeta by isozyme-specific antibodies, and in vitro phosphorylation of endogenous substrate proteins were studied in the mice brain after pentylenetetrazole-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified by DE-52 columns eluted with buffer A containing 100 or 200 mM KCl. This method consistently separates cytosolic and membrane proteins and various PKC isoforms. The 100 mM KCl eluates from DE-52 columns contain more PKC alpha and beta in both cytosol and membrane than the 200 mM KCl eluates, whereas PKC gamma, epsilon, and zeta appear in equal amounts in these two eluates. The kinase activity assayed by phosphorylation of exogenous histone was increased in the chemoshocked mice in both the cytosol and membrane of 200 mM KCl eluates. In further analysis by immunoblotting, this increased activity was found to be due to the increase in content of PKC gamma isozyme. As for novel-type epsilon and zeta isozymes, they were not altered in the chemoshocked mice. From autoradiography, the endogenous substrate 17-kDa neurogranin, which was shown below 21 kDa, was mostly eluted by 100 mM KCl from the DE-52 column, whereas 43-kDa neuromodulin, which was also demonstrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, only appeared in the 200 mM KCl eluates. The in vitro phosphorylation of neuromodulin was found to be increased in the chemoshocked mice. Therefore, the increased phosphorylation of neuromodulin and increased content of the PKC gamma isoform were involved in the pentylenetetrazole-induced chemoshock.
Collapse
Affiliation(s)
- C C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| |
Collapse
|
9
|
Birkle DL. Regional and temporal variations in the accumulation of unesterified fatty acids and diacylglycerols in the rat brain during kainic acid induced limbic seizures. Brain Res 1993; 613:115-22. [PMID: 8348294 DOI: 10.1016/0006-8993(93)90461-u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
These experiments tested the hypothesis that limbic seizures induced by kainic acid (KA) activate mechanisms (e.g. phospholipase) that degrade the cell membrane, causing a release and accumulation of free fatty acids (FFAs) and diacylglycerols (DGs) in brain areas susceptible to seizure-related damage. The possible link between these effects on lipids and the subsequent development of seizure-related brain damage was investigated by studying the temporal and regional relationship between alterations in lipids in the hippocampus, frontal cerebral cortex, amygdala, striatum and cerebellum, and the development and severity of seizures. Rats were treated with 10 mg/kg KA (s.c.) and sacrificed by head focused microwave irradiation at 1 h, 2 h, 24 h, or 7 days. Levels of FFAs and DGs were determined by gas liquid chromatography (GLC). Brain regions from control rats differed markedly in the content and composition of both FFA and DG pools. Changes in FFAs and DGs during KA-induced limbic seizures also varied from region to region and over time after drug treatment. The largest increases in FFAs in amygdala, striatum, cortex and hippocampus occurred during the peak of seizure activity. Although DG levels were altered in some areas at some time points, there was no apparent correlation between changes in DGs and seizure severity. However, increases in DGs occurred at later time points, coincident with the occurrence of neuronal cell loss in amygdala, cortex, hippocampus and striatum. These data indicate that limbic seizures activate the accumulation of FFAs through increased neuronal activity, while accumulation of DGs may be related to the development of seizure-related brain damage.
Collapse
Affiliation(s)
- D L Birkle
- Department of Pharmacology & Toxicology, West Virginia University, Morgantown 26506-9223
| |
Collapse
|
10
|
Pratt JS, Kang I, Bazan NG, Miller LG. Electroconvulsive shock alters GABAA receptor subunit mRNAs: use of quantitative PCR methodology. Brain Res Bull 1993; 30:691-3. [PMID: 7681357 DOI: 10.1016/0361-9230(93)90101-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electroconvulsive shock (ECS) may affect several neurotransmitter systems in brain, including the GABAergic inhibitory system. We used a quantitative PCR-based assay to evaluate mRNAs for five GABAa receptor subunits at 2 to 24 h after ECS. mRNAs for the alpha 1 and beta 2 subunits were significantly increased in cerebellum at 4 and 8 h after ECS, and returned to control levels at 24 h. No changes were observed in alpha 2, beta 3, gamma 1, or gamma 2 subunits, and no changes in any subunit evaluated were observed in cortex or hippocampus. These data corroborate prior results obtained for the alpha 1 subunit using Northern hybridization, and illustrate the utility of the PCR assay in quantitating low-abundance mRNAs.
Collapse
Affiliation(s)
- J S Pratt
- Tufts University School of Medicine, Boston, MA 02111
| | | | | | | |
Collapse
|
11
|
Doucet JP, Bazan NG. Excitable membranes, lipid messengers, and immediate-early genes. Alteration of signal transduction in neuromodulation and neurotrauma. Mol Neurobiol 1992; 6:407-24. [PMID: 1337456 DOI: 10.1007/bf02757944] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The physical nature of neuronal cells, particularly in the functional and morphological segregation of synapse, soma, and dendrites, imparts special importance on the integrity of their cell membranes for the localization of function, generation of intrinsic second messengers, and plasticity required for adaptation and repair. The component phospholipids of neural membranes are important sources of bioactive mediators that participate in such diverse phenomena as memory formation and cellular damage following trauma. A common role for PAF in these processes is established through the suppressive effects of its antagonists. Furthermore, being both an extracellular and intracellular agonist of phospholipase activation, in addition to being a product of phospholipase activity, PAF assumes a centralized role in the cellular metabolism following neural stimulation. The linkage of PAF to neural immediate-early gene expression, both in vitro and in vivo, suggests that its effects are initiating to long-term formative and reparative processes. Such a common link between destructive and plastic responses provides an important view of cellular and tissue maintenance in the nervous system.
Collapse
Affiliation(s)
- J P Doucet
- LSU Eye Center, Louisiana State University Medical Center, School of Medicine, New Orleans 70112-2234
| | | |
Collapse
|
12
|
Weidenfeld J, Kahbha K, Reches A, Shohami E. Role of the central adrenergic system in the regulation of prostaglandin biosynthesis in rat brain. J Neurochem 1992; 58:694-9. [PMID: 1345941 DOI: 10.1111/j.1471-4159.1992.tb09773.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The role of endogenous catecholamines in the regulation of brain prostaglandin (PG) synthesis was studied in the rat. Male rats were injected in the brain lateral ventricle or in the ventral noradrenergic bundle with either the catecholaminergic neurotoxin 6-hydroxydopamine or vehicle. Other groups of rats were injected intraperitoneally with the tyrosine hydroxylase inhibitor, alpha-methyl-p-tyrosine, or with the inhibitor of dopamine-beta-hydroxylase, FLA-63. All these drugs produced a significant depletion of norepinephrine (NE) content in the cortex and hypothalamus. The rats that had lower levels of NE exhibited reduced capacity to synthesize PGE2 but not thromboxane B2 and 6-keto-PGE1 alpha in the cortex and hypothalamus. However, induced production of PG, stimulated by the bacterial endotoxin lipopolysaccharide (LPS), remained unchanged, namely, a similar (2- to 2.5-fold) increase of PG synthesis was noted in control and in NE-depleted rats. We suggest that the regulation of PG synthesis under basal condition requires intact adrenergic input, whereas LPS-induced production of PG is independent of the adrenergic innervation.
Collapse
Affiliation(s)
- J Weidenfeld
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
13
|
Bazan NG, Squinto SP, Braquet P, Panetta T, Marcheselli VL. Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional signaling system. Lipids 1991; 26:1236-42. [PMID: 1668121 DOI: 10.1007/bf02536539] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-activating factor (PAF) is a lipid mediator formed in the early response of the central nervous system to ischemia or convulsions. Free polyunsaturated fatty acids and arachidonic and docosahexaenoic acids are accumulated along with PAF. Antagonists of PAF have been found to improve cerebral blood flow and partially block the rise in free fatty acids, an effect that may arise by way of inhibition of PAF receptors or stimulation of the reacylation of free fatty acids released upon insult. Three intracellular PAF-binding sites have been identified in rat cerebral cortex. These very high-affinity binding sites are inhibited by PAF antagonists, with certain antagonists exhibiting specificity for a particular binding site. This specificity indicates heterogeneity in these binding sites. Ischemia or stimulation also leads to protooncogene transcriptional activation. Here, we discuss studies with cells in culture showing that PAF promotes transcriptional activation of immediate-early genes. PAF activates the transcription of the immediate-early genes fos and jun, whose gene products are regulators of the transcription of other genes. Transcription of fos is also activated by convulsion or ischemia in the central nervous system. The activation of these genes by PAF can be inhibited by PAF antagonists, and is apparently accomplished by way of an AP-1 transcription regulatory sequence in the promoter region of the target genes. Studies with deletion mutants show that PAF can also exert its activating properties by way of cyclic adenosine-3',5'-monophosphate-(cAMP) and Ca(2+)-responsive elements, and suggest that PAF is involved in an interconnected network of cell signaling that may coordinate short-term and long-term responses of cells to stimulus and injury.
Collapse
Affiliation(s)
- N G Bazan
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center School of Medicine, New Orleans 70112
| | | | | | | | | |
Collapse
|
14
|
Feuerstein G. Eicosanoids in deteriorating stroke. Review of studies on the rabbit spinal cord ischemia and reperfusion model. Ann N Y Acad Sci 1989; 559:313-22. [PMID: 2774403 DOI: 10.1111/j.1749-6632.1989.tb22618.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G Feuerstein
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
15
|
Bazan NG. Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann N Y Acad Sci 1989; 559:1-16. [PMID: 2672938 DOI: 10.1111/j.1749-6632.1989.tb22594.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- N G Bazan
- Louisiana State University Medical School, Louisiana State University, Eye Center and Neuroscience Center, New Orleans 70112
| |
Collapse
|
16
|
Affiliation(s)
- B K Siesjö
- Laboratory for Experimental Brain Research, University of Lund, Sweden
| | | | | | | |
Collapse
|
17
|
Gleiter CH, Deckert J, Nutt DJ, Marangos PJ. The effect of acute and chronic electroconvulsive shock on [3H]phorbol-dibutyrate binding to rat brain membranes. Neurochem Res 1988; 13:1023-6. [PMID: 2853305 DOI: 10.1007/bf00973145] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study investigated the effect of single and repeated electroconvulsive shock (ECS) on proteinkinase C in rat cerebral cortex, cerebellum, hippocampus and striatum using [3H]Phorbol-12,13-butyrate binding. In the postictal period and 24 hr after a single ECS there was no alteration in any brain region. Twenty four hr after 10 once-daily ECS there was a significant decrease the number of binding sites in cerebral cortex (30%) and in cerebellum (20%) without a change in the affinity constant. These findings are discussed with regard to earlier reports on phosphoinositide turnover following chemically and electrically induced seizures.
Collapse
Affiliation(s)
- C H Gleiter
- Laboratory of Clinical Studies, DICBR, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | | | | | | |
Collapse
|
18
|
Vadnal RE, Bazan NG. Carbamazepine inhibits electroconvulsive shock-induced inositol trisphosphate (IP3) accumulation in rat cerebral cortex and hippocampus. Biochem Biophys Res Commun 1988; 153:128-34. [PMID: 3259878 DOI: 10.1016/s0006-291x(88)81198-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbamazepine is used to treat manic-depressive disorder, and is also an anticonvulsant. Rats were injected with this drug 90 min prior to this experiment, when mild inhibition of convulsions took place. Intraventricular injections of 14 muCi [3H]myoinositol were made 20-24 hrs prior to the experiment. Ninety min after intraperitoneal injection of carbamazepine or vehicle, rats were given electroconvulsive shock or sham procedure and sacrificed 30 sec later. Incorporation of radiolabel into inositol lipids and inositol phosphates was analyzed in cerebral cortex and hippocampus. Carbamazepine's effects on the brain inositol lipid cycle, studied here for the first time, showed 1) enhanced labeling in the polyphosphoinositides (carbamazepine-ECS groups showed increases of about 40% in PIP2); 2) decreased [H]IP1 levels; and 3) inhibition of ECS-induced [3H]-IP3 accumulation.
Collapse
Affiliation(s)
- R E Vadnal
- LSU Eye Center, School of Medicine, New Orleans 70112
| | | |
Collapse
|
19
|
Vadnal RE, Bazan NG. Electroconvulsive shock stimulates polyphosphoinositide degradation and inositol trisphosphate accumulation in rat cerebrum: lithium pretreatment does not potentiate these changes. Neurosci Lett 1987; 80:75-9. [PMID: 2821459 DOI: 10.1016/0304-3940(87)90498-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using an in vivo model, we explored the acute effects of electroconvulsive shock (ECS) and lithium on rat cerebral polyphosphoinositides and inositol phosphates. ECS was shown to increase the [3H]inositol trisphosphate ([3H]IP3) by 75%, decrease the endogenous mass of phosphatidylinositol 4,5-bisphosphate (PIP2) by 23%, and enhance [3H]myo-inositol labeling into the polyphosphoinositides. In contrast, lithium pretreatment 20-24 h prior to ECS appeared to attenuate the ECS-induced [3H]IP3 increase and the decrease in mass of PIP2; [3H]inositol monophosphate ([3H]IP1) levels demonstrated no differences between the lithium ECS and lithium-alone groups. These results indicate that ECS stimulates the inositol lipid cycle in brain possibly due to neurotransmitter release. Moreover, the effects of lithium suggest other possible sites of action of this cation on inositol lipid metabolism in addition to an inhibition of inositol-1-phosphatase.
Collapse
Affiliation(s)
- R E Vadnal
- Department of Psychiatry, Louisiana State University School of Medicine, New Orleans
| | | |
Collapse
|
20
|
Bazan NG, Birkle DL. Polyunsaturated fatty acids and inositol phospholipids at the synapse in neuronal responsiveness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 221:45-68. [PMID: 3324694 DOI: 10.1007/978-1-4684-7618-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- N G Bazan
- Louisiana State University Medical School, LSU Eye Center, New Orleans 70112
| | | |
Collapse
|
21
|
Reddy TS, Bazan NG. Arachidonic acid, stearic acid, and diacylglycerol accumulation correlates with the loss of phosphatidylinositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock: complete reversion of changes 5 minutes after stimulation. J Neurosci Res 1987; 18:449-55. [PMID: 2830409 DOI: 10.1002/jnr.490180311] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of electroconvulsive shock (750 msec, 130 V, 150 pps) on the endogenous content of rat cerebral lipids were studied 2, 5, 10, 20, 30, 60, and 300 sec after stimulation. Rapid enzyme inactivation in situ was attained by high-power head-focused microwave irradiation (6.5 kW, 2450 MHz). At 10 sec, phosphatidylinositol 4,5-bisphosphate (PIP2) mass had decreased by 249 nmol per g wet wt, mainly due to loss of arachidonate and stearate. At the same time, the stearoyl-arachidonoyl glycerol accumulated, although to a lesser extent than the loss exhibited in PIP2. Changes in phosphatidylinositol and in phosphatidylinositol 4-phosphate mass were not statistically significant. Free fatty acids and diacylglycerols accumulated to 395 nmol per g wet wt; arachidonic and stearic acids composed 322 nmol of these lipids. Hence, the reduction in content of PIP2 is sufficient to account for 80% of the increases in free fatty acid and diacylglycerol mass. Thirty-three and 12 nmol of accumulated free palmitic and docosahexaenoic acids, respectively, are not accounted for by the loss of PIP2. Sixty seconds after stimulation, PIP2 content returned to 90% of control levels, while diacylglycerol tended to remain below control levels. Free fatty acids had not returned to control levels by 60 sec, with the exception of docosahexaenoic acid. At 300 sec, PIP2, diacylglycerol, and free fatty acids had all returned to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T S Reddy
- Louisiana State University Eye Center, New Orleans 70112
| | | |
Collapse
|
22
|
Ginóbili de Martínez MS, Rodríguez de Turco EB, Barrantes FJ. Asymmetry of diacylglycerol metabolism in rat cerebral hemispheres. J Neurochem 1986; 46:1382-6. [PMID: 3083043 DOI: 10.1111/j.1471-4159.1986.tb01751.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diacylglycerols (DGs) were found to be asymmetrically distributed between the two cerebral hemispheres of rat brain. The left cerebral hemisphere (LCH) contained 100% more DG than the right cerebral hemisphere (RCH). The lateralization was enhanced in animals subjected to depolarization induced by a single electroconvulsive shock (ECS). During the acute phase of the convulsion, the DG pool increased in both hemispheres, with the LCH attaining a concentration 180% higher than the RCH. Stearate and arachidonate were the principal DG-acyl groups accumulated in the RCH, whereas in the LCH stearate and palmitate were mainly involved. After the last of a series of five shocks (one per day) the lateralization of the "DG response" was less accentuated during the acute phase of the ECS. Whereas DG release was drastically reduced in the LCH, in the RCH it was minimally affected. The DG sidedness after five shocks was nevertheless maintained at the level of arachidonate-containing DGs, which showed a higher accumulation in the LCH than in the RCH. The kinetics of DG removal showed a rapid phase during the first minute following a single or five ECSs. Total DG levels returned to basal values in the RCH, whereas in the LCH they remained slightly increased with respect to the initial levels 1 min after the convulsive episode. Minimal changes occurred in the subsequent 4 min. Chronic ECS altered the endogenous DG content and composition. Thus, 24 h after the last of four ECSs, total levels of DGs diminished by 40% in the RCH, whereas they remained unchanged in the LCH.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
23
|
Pediconi MF, Rodriguez de Turco EB, Bazan NG. Reduced labeling of brain phosphatidylinositol, triacylglycerols, and diacylglycerols by [1-14C]arachidonic acid after electroconvulsive shock: potentiation of the effect by adrenergic drugs and comparison with palmitic acid labeling. Neurochem Res 1986; 11:217-30. [PMID: 3703102 DOI: 10.1007/bf00967970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.
Collapse
|
24
|
Ginóbili de Martínez MS, Rodríguez de Turco EB, Barrantes FJ. Endogenous asymmetry of rat brain lipids and dominance of the right cerebral hemisphere in free fatty acid response to electroconvulsive shock. Brain Res 1985; 339:315-21. [PMID: 4027629 DOI: 10.1016/0006-8993(85)90097-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An asymmetric distribution of free fatty acids (FFA) is shown to occur between right and left cerebral hemispheres (RCH, LCH) of the rat. The RCH contains 35% less FFA than the LCH, the difference being mainly accounted for by saturated and monoenoic fatty acids. Acute and chronic electroconvulsive shock (ECS) affects the distribution and apparent rate of fatty acid production differently in each hemisphere. Taking into consideration the basal content of each hemisphere, RCH produces significantly higher amounts of FFA during the acute tonic phase of the convulsion evoked by a single ECS. The largest increases correspond to arachidonic and stearic acids (1800% and 420% in RCH, 1200% and 330% in LCH, respectively). The hemispheric sidedness is evened out after successive ECSs. The removal of the released fatty acids is also faster in the RCH, as suggested by its lower FFA levels 5 min after a single shock (the acute condition) or after the last of a series of 5 daily shocks (the chronic condition). The endogenous FFA content and composition is altered by chronic ECSs. Thus, 24 h after the last of a series of 4 daily ECSs, total FFAs remain about 40% higher than in the controls for both hemispheres. Arachidonic acid increase amounts to 150%, doubling its percentage contribution to the FFA pool. The lower endogenous FFA content in RCH, its higher responsiveness to ECS, and its ability to more rapidly recover the pre-convulsive levels, suggest that the deacylation and reacylation of complex lipids are more active in this hemisphere.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
25
|
Blomqvist P, Lindvall O, Stenevi U, Wieloch T. Cyclic AMP concentrations in rat neocortex and hippocampus during and following incomplete ischemia: effects of central noradrenergic neurons, prostaglandins, and adenosine. J Neurochem 1985; 44:1345-53. [PMID: 2985751 DOI: 10.1111/j.1471-4159.1985.tb08768.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The concentrations of cyclic AMP, noradrenaline, glycogen, glucose, lactate, pyruvate, labile phosphate compounds, and free fatty acids were investigated in the rat neocortex and hippocampus during and following cerebral ischemia. An incomplete ischemia of 5 and 15 min duration was induced by bilateral carotid clamping combined with hypotension. The postischemic events were studied after 5, 15, and 60 min of recirculation. Five minutes of ischemia did not significantly alter the neocortical or hippocampal concentrations of cyclic AMP. After 15 min of ischemia the neocortical levels decreased significantly below control values. In the recirculation period following ischemia a significant elevation of the cyclic AMP concentrations was observed. Following 5 min of recirculation after 5 min of ischemia the levels increased from 2.53 +/- 0.21 nmol X g-1 to 5.18 +/- 0.09 nmol X g-1 in the neocortex and from 2.14 +/- 0.16 nmol X g-1 to 3.52 +/- 0.35 nmol X g-1 in the hippocampus. Five minutes of recirculation following 15 min of ischemia led to a significant increase in the levels of cyclic AMP, to 12.86 +/- 1.43 nmol X g-1 in the neocortex to 5.58 +/- 0.57 nmol X g-1 in the hippocampus. With longer recirculation periods the cyclic AMP levels progressively decreased and were similar to control values after 60 min. Depletion of cortical noradrenaline by at least 95% was performed by injections of 6-hydroxydopamine into the ascending axon bundles from the locus ceruleus. The lesion did not significantly change the ischemic or post-ischemic neocortical and hippocampal levels of cyclic AMP, glycogen, or free fatty acids including arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
26
|
Pediconi MF, Rodríguez de Turco EB. Free fatty acid content and release kinetics as manifestations of cerebral lateralization in mouse brain. J Neurochem 1984; 43:1-7. [PMID: 6726237 DOI: 10.1111/j.1471-4159.1984.tb06671.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Free fatty acid (FFA) content was analyzed in mouse cerebral hemispheres and cerebellum under basal and postdecapitative ischemic conditions. Total FFA content immediately after decapitation (2 s) was about two-fold higher in the left hemisphere than in the right. Marked dissimilarities between hemispheres were also apparent when FFA levels were measured during short periods of ischemia. Whereas in the right side a significant FFA release took place as early as 10 s, no accumulation was detected in the left in the 2-20 s interval. The highest rates of total fatty acid release occurred in the 20-30 s interval in both hemispheres and decreased afterwards (3 min). Individual FFA, especially stearate and arachidonate, differed in their rates of production, the right cerebral hemisphere being more active in releasing arachidonic acid. In cerebellum, FFA levels were lower and accumulation was slower than in cerebrum in both intervals. When subjected to 3 min ischemia, the same difference in FFA levels between right and left hemispheres (50%) was observed in heads kept at 20 or 30 degrees C. The differences between hemispheres are interpreted as manifestations of an inherent lateralization in the regulation of acylation-deacylation reactions of complex lipids.
Collapse
|
27
|
Rodriguez de Turco EB, Bazan NG. Changes in free fatty acids and diglycerides in mouse brain at birth and during anoxia. J Neurochem 1983; 41:794-800. [PMID: 6875565 DOI: 10.1111/j.1471-4159.1983.tb04810.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Shiu GK, Nemmer JP, Nemoto EM. Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia. J Neurochem 1983; 40:880-4. [PMID: 6827283 DOI: 10.1111/j.1471-4159.1983.tb08062.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously reported that whole-brain free fatty acids (FFA) rose almost linearly for up to 1 h after decapitation of unanesthetized rats and was significantly attenuated by pentobarbital anesthesia. However, our values for total FFA and arachidonic, stearic, oleic, and palmitic acids were severalfold higher than those obtained by previous investigators. Based upon the suggestion that this may be due to FFAs released from di- and triglycerides in the quantitation of FFAs, we have now analyzed and improved our procedures for TLC separation of FFA and reassessed the accumulation of FFA in whole brain during decapitation ischemia in unanesthetized and pentobarbital-anesthetized rats. FFA levels in whole brain after 0.5 min of ischemia were one-half to one-fourth the levels previously reported after 1 min of ischemia. The rise in FFA between 0.5 and 60 min of ischemia was 9-fold for total FFA, and between 7 and 12-fold for each of the FFAs quantitated. Pentobarbital significantly attenuated the rise of all FFAs with, however, greater effects on oleic and palmitic acids than previously reported.
Collapse
|
29
|
Rodriguez de Turco EB, Morelli de Liberti S, Bazan NG. Stimulation of free fatty acid and diacylglycerol accumulation in cerebrum and cerebellum during bicuculline-induced status epilepticus. Effect of pretreatment with alpha-methyl-p-tyrosine and p-chlorophenylalamine. J Neurochem 1983; 40:252-9. [PMID: 6217297 DOI: 10.1111/j.1471-4159.1983.tb12679.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pool size and composition of free fatty acids (FFA) and diglycerides (DG) from the cerebrum and cerebellum of rats undergoing bicuculline-induced seizures were studied. A fourfold increase in cerebral FFA occurred 3-4 min after bicuculline injection; arachidonic and stearic acids were the principal fatty acids accumulated. Cerebellar FFA also increased, but to a lesser extent. An increased production of arachidonic acid took place in the cerebrum as a function of time after bicuculline injection. Other fatty acids produced were oleic, palmitic, and docosahexaenoic acids. A twofold increase in cerebral arachidonic acid was seen at the time of the first generalized tonic-clonic convulsion. However, a 13- to 17-fold increase in arachidonic acid was seen approximately 5-6 min after bicuculline injection. The rise in other FFA was much smaller. Stearoyl- and arachidonoyl-DG were also accumulated. The drug alpha-methyl-p-tyrosine was found to (a) potentiate the bicuculline-stimulated release of cerebellar FFA, and (b) inhibit by 70% the production of stearoyl- and arachidonoyl-DG in the cerebrum and cerebellum. Basal production of FFA was stimulated by p-chlorophenylalanine, but the drug had no effect on the bicuculline-induced changes. Hydrolysis of phospholipids enriched in stearoyl-arachidonoyl groups, such as phosphatidylinositol of excitable membranes, may be stimulated during seizures.
Collapse
|
30
|
Bazan NG, Morelli de Liberti SA, Rodriguez de Turco EB. Arachidonic acid and arachidonoyl-diglycerols increase in rat cerebrum during bicuculline-induced status epilepticus. Neurochem Res 1982; 7:839-43. [PMID: 6811964 DOI: 10.1007/bf00965677] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bicuculline-induced status epilepticus was found to be associated with increased amounts of free fatty acids and diacylglycerols in the rat cerebrum. The predominant fatty acid in both lipid pools was arachidonic acid. The accumulation of arachidonoyl-diglycerols decreased at the time of and during behavioral seizures induced by bicuculline, while the amount of free arachidonic acid appeared to increase. We propose a metabolic relationship between these lipids to explain the described changes. The similarities between the composition of the lipid pools and the fatty acid composition of phosphatidylinositol support the hypothesis that these changes may be a result of a convulsion-activated degradation of this phospholipid from excitable membranes.
Collapse
|
31
|
|
32
|
Seregi A, Folly G, Antal M, Serfözö P, Schaefer A. Studies on prostaglandin F2 alpha formation caused by pentametylenetetrazol-induced convulsions in rat brain. PROSTAGLANDINS 1981; 21:217-26. [PMID: 7221012 DOI: 10.1016/0090-6980(81)90139-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prostaglandin F2 alpha formation caused by pentametylenetetrazol convulsions was studied as a function of the duration, the doses of the convulsant and the intensity of the seizures. It was shown by the statistical analysis of the results in the case of clonic convulsions that the amount of synthetized PGF2 alpha did not depend on the doses of convulsant, while close relation existed between the duration and the PGF2 alpha production. At the same time, during tonic convulsions lasting longer than 50 sec, no more increase in the PGF2 alpha content of the brain was observed. An experimental model is suggested to study in vivo the mechanisms regulating the brain's prostaglandin biosynthesis. Pretreatment of the animals with reserpine did not affect the rate of convulsion-induced PGF2 alpha-formation.
Collapse
|
33
|
Bazán NG, Aveldaño de Caldironi MI, Rodríguez de Turco EB. Rapid release of free arachidonic acid in the central nervous system due to stimulation. Prog Lipid Res 1981; 20:523-9. [PMID: 6804977 DOI: 10.1016/0163-7827(81)90092-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|