1
|
Rafiee Z, García-Serrano AM, Duarte JMN. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022; 14:1292. [PMID: 35334949 PMCID: PMC8952284 DOI: 10.3390/nu14061292] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity, type 2 diabetes, and their associated comorbidities impact brain metabolism and function and constitute risk factors for cognitive impairment. Alterations to taurine homeostasis can impact a number of biological processes, such as osmolarity control, calcium homeostasis, and inhibitory neurotransmission, and have been reported in both metabolic and neurodegenerative disorders. Models of neurodegenerative disorders show reduced brain taurine concentrations. On the other hand, models of insulin-dependent diabetes, insulin resistance, and diet-induced obesity display taurine accumulation in the hippocampus. Given the possible cytoprotective actions of taurine, such cerebral accumulation of taurine might constitute a compensatory mechanism that attempts to prevent neurodegeneration. The present article provides an overview of brain taurine homeostasis and reviews the mechanisms by which taurine can afford neuroprotection in individuals with obesity and diabetes. We conclude that further research is needed for understanding taurine homeostasis in metabolic disorders with an impact on brain function.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Alba M. García-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
2
|
Molchanova SM, Oja SS, Saransaari P. Properties of basal taurine release in the rat striatum in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:365-75. [PMID: 17153622 DOI: 10.1007/978-0-387-33504-9_41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Svetlana M Molchanova
- Medical School, Brain Research Center, FI-33014 University of Tampere, Finland. svetlana.molchanova@-u.ac.jp
| | | | | |
Collapse
|
3
|
Molchanova SM, Oja SS, Saransaari P. Mechanisms of enhanced taurine release under Ca2+ depletion. Neurochem Int 2005; 47:343-9. [PMID: 15982785 DOI: 10.1016/j.neuint.2005.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 11/19/2022]
Abstract
The sulfur-containing amino acid taurine is an inhibitory neuromodulator in the brain of mammals, as well as a key substance in the regulation of cell volumes. The effect of Ca(2+) on extracellular taurine concentrations is of special interest in the context of the regulatory mechanisms of taurine release. The aim of this study was to characterize the basal release of taurine in Ca(2+)-free medium using in vivo microdialysis of the striatum of anesthetized rats. Perfusion of Ca(2+)-free medium via a microdialysis probe evoked a sustained release of taurine (up to 180 % compared to the basal levels). The Ca(2+) chelator EGTA (1mM) potentiated Ca(2+) depletion-evoked taurine release. The substitution of CaCl(2) by choline chloride did not alter the observed effect. Ca(2+)-free solution did not significantly evoke release of taurine from tissue loaded with the competitive inhibitor of taurine transporter guanidinoethanesulfonate (1mM), suggesting that in Ca(2+) depletion taurine is released by the transporter operating in the outward direction. The volume-sensitive chloride channel blocker diisothiocyanostilbene-2,2'-disulfonate (1mM) did not attenuate the taurine release evoked by Ca(2+) depletion. The non-specific blocker of voltage-sensitive Ca(2+) channels NiCl(2) (0.65 mM) enhanced taurine release in the presence of Ca(2+). CdCl(2) (0.25 mM) had no effect under these conditions. However, both CdCl(2) and NiCl(2) attenuated the effect of Ca(2+)-free medium on the release of taurine. The data obtained imply the involvement of both decreased influx of Ca(2+) and increased non-specific influx of Na(+) through voltage-sensitive calcium channels in the regulation of transporter-mediated taurine release in Ca(2+) depletion.
Collapse
|
4
|
Saransaari P, Oja SS. Enhanced taurine release in cultured cerebellar granule cells in cell-damaging conditions. Amino Acids 2000; 17:323-34. [PMID: 10707762 DOI: 10.1007/bf01361658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The release of taurine from cultured cerebellar granule neurons was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and in the presence of free radicals. The effects of both ionotropic and metabotropic glutamate receptor agonists on the release were likewise investigated. The release of [3H]taurine from the glutamatergic granule cells was increased by K+ (50 mM) and veratridine (0.1 mM), the effect of veratridine being the greater. Hypoxia and ischemia produced an initial increase in release compared to normoxia but resulted in a diminished response to K+. Hypoglycemia, oxidative stress and free radicals enhanced taurine release, and subsequent K+ treatment exhibited a correspondingly greater stimulation. A common feature of taurine release in all the above conditions was a slow response to the stimulus evoked by K+ and particularly to that evoked by veratridine. All ionotropic glutamate receptor agonists potentiated taurine release, but only the action of kainate seemed to be receptor-mediated. Metabotropic receptor agonists of group I slightly stimulated the release. The prolonged taurine release seen in both normoxia and cell-damaging conditions may be of importance in maintaining homeostasis in the cerebellum and reducing excitability for a longer period than other neuroprotective mechanisms.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
5
|
Saransaari P, Oja SS. Taurine release is enhanced in cell-damaging conditions in cultured cerebral cortical astrocytes. Neurochem Res 1999; 24:1523-9. [PMID: 10591401 DOI: 10.1023/a:1021195830773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of preloaded [3H]taurine from cultured cerebral cortical astrocytes was studied under various cell-damaging conditions, including hypoxia, ischemia, aglycemia and oxidative stress, and in the presence of free radicals. Astrocytic taurine release was enhanced by K+ (50 mM), veratridine (0.1 mM) and the ionotropic glutamate receptor agonist kainate (1.0 mM). Metabotropic glutamate receptor agonists had only weak effects on taurine release. Similarly to the swelling-induced taurine release the efflux in normoxia seems to be mediated mainly by DIDS-(diisothiocyanostilbene-2,2'-disulphonate) and SITS-(4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate) sensitive CI- channels, since these blockers were able to reduce both basal and K+ -stimulated release. The basal release of taurine was moderately enhanced in hypoxia and ischemia, whereas the potentiation in the presence of free radicals was marked. The small basal release from astrocytes signifies that taurine release from brain tissue in ischemia may originate from neurons rather than glial cells. On the other hand, the release evoked by K+ in hypoxia and ischemia was greater than in normoxia, with a very slow time-course. The enhanced release of the inhibitory amino acid taurine from astrocytes in ischemia may be beneficial to surrounding neurons, outlasting the initial stimulus and counteracting overexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
6
|
Mongin AA, Cai Z, Kimelberg HK. Volume-dependent taurine release from cultured astrocytes requires permissive [Ca(2+)](i) and calmodulin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C823-32. [PMID: 10516112 DOI: 10.1152/ajpcell.1999.277.4.c823] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell swelling results in regulatory activation of multiple conductive anion pathways permeable toward a broad spectrum of intracellular organic osmolytes. Here, we explore the involvement of extracellular and intracellular Ca(2+) in volume-dependent [(3)H]taurine efflux from primary cultured astrocytes and compare the Ca(2+) sensitivity of this efflux in slow (high K(+) medium induced) and fast (hyposmotic medium induced) cell swelling. Neither Ca(2+)-free medium nor Ca(2+)-channel blockers prevented the volume-dependent [(3)H]taurine release. In contrast, loading cells with the membrane-permeable Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM suppressed [(3)H]taurine efflux by 65-70% and 25-30% under high-K(+) and hyposmotic conditions, respectively. Fura 2 measurements confirmed that BAPTA-AM, but not Ca(2+)-free media, significantly reduced resting intracellular Ca(2+) concentration ([Ca(2+)](i)). The calmodulin antagonists trifluoperazine and fluphenazine reversibly and irreversibly, respectively, inhibited the high-K(+)-induced [(3)H]taurine release, consistent with their known actions on calmodulin. In hyposmotic conditions, the effects were less pronounced. These data suggest that volume-dependent taurine release requires minimal basal [Ca(2+)](i) and involves calmodulin-dependent step(s). Quantitative differences in Ca(2+)/calmodulin sensitivity of high-K(+)-induced and hyposmotic medium-induced taurine efflux are due to both the effects of the inhibitors on high-K(+)-induced cell swelling and their effects on transport systems and/or signaling mechanisms determining taurine efflux.
Collapse
Affiliation(s)
- A A Mongin
- Division of Neurosurgery, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
7
|
Diniz C, da Cruz Fresco P, Gonçalves J. Taurine release in the rat vas deferens is modulated by Ca2+ and is independent of contractions. Eur J Pharmacol 1999; 376:273-8. [PMID: 10448887 DOI: 10.1016/s0014-2999(99)00388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Electrical field stimulation induces taurine release in rat vas deferens. In the present study, it was investigated if this release is secondary to contraction. The influence of Ca2+ and of the stimulation conditions was also studied. Contractions evoked by electrical field stimulation (5 Hz/270 pulses, transverse or longitudinal) were recorded and released taurine was quantified by high performance liquid chromatography with fluorimetric detection. Ca2+ removal abolished contractions, but not the overflow of taurine. Overflow elicited by longitudinal electrical field stimulation was higher than that elicited by transverse electrical field stimulation. Increasing the current strength also increased taurine overflow. In Ca2+-free medium, taurine overflow was decreased by caffeine (5 mM) or ryanodine (10 microM) but increased by dantrolene (50 microM). The results indicate that taurine release evoked by electrical field stimulation is (i) independent of contraction, (ii) modulated by Ca2+, (iii) potential dependent, and may be due to a decrease in taurine affinity for the plasma membrane and/or to an increase of Na+-dependent outward transport.
Collapse
Affiliation(s)
- C Diniz
- Laboratório de Farmacologia, CEQOFF/FCT, Faculdade de Farmácia, Universidade do Porto, Portugal
| | | | | |
Collapse
|
8
|
Lelong IH, Rebel G. In vitro taurine uptake into cell culture influenced by using media with or without CO2. J Pharmacol Toxicol Methods 1998; 39:211-20. [PMID: 9845300 DOI: 10.1016/s1056-8719(98)00020-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Buffers used to incubate cells for pharmacological or toxicological studies are usually of very simple composition, far from the composition of biological fluids or cell culture media. Comparative studies on taurine uptake levels by cultured cells show that a new CO2-Independent Medium (CIM) is suitable for incubating cells in place of the Krebs-Ringer buffer (KR) usually used. Basal uptake level of taurine was lower for cells incubated in CIM or in other culture media when compared to those incubated whether in KR or in other "physiological buffers." Isoproterenol depressed similarly the taurine uptake in cells incubated in CIM or KR. The same uptake modulation by beta-alanine, GES, GABA, or HEPES was observed for cells incubated in CIM or KR. C6 cells growth in CIM was dependent on the starting cell density when classically vented T-flasks were used, growth being notably reduced at low density. In tightly closed flasks cells grew in CIM similarly to control cultures maintained in M199 medium or DMEM.
Collapse
Affiliation(s)
- I H Lelong
- UPR 9003 du CNRS-IRCAD-Hôpitaux Universitaires, Strasbourg, France
| | | |
Collapse
|
9
|
Deleuze C, Duvoid A, Hussy N. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 1998; 507 ( Pt 2):463-71. [PMID: 9518705 PMCID: PMC2230788 DOI: 10.1111/j.1469-7793.1998.463bt.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Taurine, prominently concentrated in glial cells in the supraoptic nucleus (SON), is probably involved in the inhibition of SON vasopressin neurones by peripheral hypotonic stimulus, via activation of neuronal glycine receptors. We report here the properties and origin of the osmolarity-dependent release of preloaded [3H]taurine from isolated whole SO nuclei. 2. Hyposmotic medium induced a rapid, reversible and dose-dependent increase in taurine release. Release showed a high sensitivity to osmotic change, with a significant enhancement with less than a 5% decrease in osmolarity. Hyperosmotic stimulus decreased basal release. 3. Evoked release was independent of extracellular Ca2+ and Na+, and was blocked by the Cl- channel blockers DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and DPC (N-phenylanthranilic acid), suggesting a diffusion process through volume-sensitive Cl- channels. 4. Evoked release was transient for large osmotic reductions (> or = 15%), probably reflecting regulatory volume decrease (RVD). However, it was sustained for smaller changes, suggesting that taurine release induced by physiological variations in osmolarity is not linked to RVD. 5. Basal and evoked release were strongly inhibited by an incubation of the tissue with the glia-specific toxin fluorocitrate, but were unaffected by a neurotoxic-treatment with NMDA, demonstrating the glial origin of the release of taurine in the SON. 6. The high osmosensitivity of taurine release suggests an important role in the osmoregulation of the SON function. These results strengthen the notion of an implication of taurine and glial cells in the regulation of the whole-body fluid balance through the modulation of vasopressin release.
Collapse
Affiliation(s)
- C Deleuze
- Biologie des Neurones Endocrines, CNRS-UPR 9055, Montpellier, France
| | | | | |
Collapse
|
10
|
Takuma K, Matsuda T, Kishida Y, Asano S, Azuma J, Baba A. Ca2+ depletion facilitates taurine release in cultured rat astrocytes. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:75-8. [PMID: 8902603 DOI: 10.1254/jjp.72.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Removal of external Ca2+ facilitated endogenous taurine release in cultured rat astrocytes. The stimulated release was not affected by furosemide, sucrose, tetrodotoxin and 3,4-dichlorobenzamil, but partially inhibited by nifedipine. Omission of external Na+ increased basal taurine release, and the effects of Na+ removal and Ca2+ depletion on the release were additive. The Na(+)-free condition did not affect Ca2+ paradox-induced cell death in astrocytes. These findings suggest that Ca2+ depletion facilitates taurine release in a mechanism independent of volume and the Na+ gradient and that the release is not involved in Ca2+ paradox-induced delayed cell toxicity in astrocytes.
Collapse
Affiliation(s)
- K Takuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review summarizes current knowledge relating intracellular calcium and glial function. During steady state, glia maintain a low cytosolic calcium level by pumping calcium into intracellular stores and by extruding calcium across the plasma membrane. Glial Ca2+ increases in response to a variety of physiological stimuli. Some stimuli open membrane calcium channels, others release calcium from intracellular stores, and some do both. The temporal and spatial complexity of glial cytosolic calcium changes suggest that these responses may form the basis of an intracellular or intercellular signaling system. Cytosolic calcium rises effect changes in glial structure and function through protein kinases, phospholipases, and direct interaction with lipid and protein constituents. Ultimately, calcium signaling influence glial gene expression, development, metabolism, and regulation of the extracellular milieu. Disturbances in glial calcium homeostasis may have a role in certain pathological conditions. The discovery of complex calcium-based glial signaling systems, capable of sensing and influencing neural activity, suggest a more integrated neuro-glial model of information processing in the central nervous system.
Collapse
Affiliation(s)
- S M Finkbeiner
- Department of Medicine, University of California, San Francisco 94143-0114
| |
Collapse
|
12
|
Nagelhus EA, Lehmann A, Ottersen OP. Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience 1993; 54:615-31. [PMID: 8332252 DOI: 10.1016/0306-4522(93)90233-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rat cerebellar Purkinje cells show a high level of taurine-like immunoreactivity. Light-microscopic immunocytochemistry indicated that the level of taurine in these cells was substantially decreased in animals that had survived for 4 h after an intraperitoneal injection of distilled water. This treatment resulted in a 15-20% reduction in plasma osmolality. The changes in the Purkinje cells were accompanied by an increased immunolabeling of neighboring glial cells (Golgi epithelial cells). The changes in both cell types were reversed in animals whose plasma osmolality had been normalized by injections of hypertonic saline 4 h after the water loading. Adjacent sections incubated with a GABA antiserum did not exhibit any overt changes in response to the hypo-osmotic stress. Quantitative electron-microscopic analysis of ultrathin sections subjected to postembedding immunogold cytochemistry indicated that the Purkinje cells had lost 50-60% of their taurine contents after water loading and that the loss affected all intracellular compartments, including mitochondria and cytoplasmic matrix. The loss of taurine immunoreactivity from Purkinje cells was accompanied by an estimated 70-80% increase in the contents of immunoreactive taurine in adjacent glial cells. Biochemical recordings of tissue amino acids in a parallel series of animals revealed a 12% reduction in cerebellar taurine contents 4 h after water loading (value corrected for changes in specific gravity). This reduction had progressed to 32% after 8 h and was only partly prevented by normalization of plasma osmolality. The tissue levels of GABA and several other amino acids showed a decrease similar to that of taurine, while glutamine displayed a considerable increase after water loading. Our findings indicate that acute reductions in plasma osmolality cause a flux of taurine from Purkinje cells to glia, and that this flux is reversed upon normalization of plasma osmolality. These changes are superimposed on a decrease in the biochemically recorded tissue level of taurine. Unlike the cellular redistribution, this decrease was not reversible within the time frame of the present study, and it was not specific for taurine. Cellular redistribution of taurine may represent a rapid adjustment to osmotic perturbations in vivo. In addition, it may reflect a higher priority for neuronal compared with glial volume regulation.
Collapse
Affiliation(s)
- E A Nagelhus
- Department of Anatomy, University of Oslo, Norway
| | | | | |
Collapse
|
13
|
Saransaari P, Oja SS. Uptake and release of beta-alanine in cerebellar granule cells in primary culture: regulation of release by glutamatergic and GABAergic receptors. Neuroscience 1993; 53:475-81. [PMID: 8098513 DOI: 10.1016/0306-4522(93)90211-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The uptake and release of beta-[3H]alanine were studied in cultured glutamatergic cerebellar granule cells of the rat. The uptake of beta-alanine was saturable and sodium-dependent, comprising one high-affinity transport component. It was inhibited by hypotaurine, taurine, GABA and homotaurine but not by glycine or glutamate. The release was enhanced by homoexchange, veratridine and high K+ concentrations (50 mM). The K(+)-stimulated release was at least partially Ca(2+)-dependent. The release was shown to be subject to regulation by GABAA receptors and glutamate receptors of the kainate type. The results signify that beta-alanine may have a functional role in cerebellar granule cells.
Collapse
Affiliation(s)
- P Saransaari
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
14
|
Lombardini JB. Spontaneous and evoked release of [3H]taurine from a P2 subcellular fraction of the rat retina. Neurochem Res 1993; 18:193-202. [PMID: 8474561 DOI: 10.1007/bf01474684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of spontaneous and evoked [3H]taurine release from a P2 fraction prepared from rat retinas were studied. The P2 fraction was preloaded with [3H]taurine under conditions of high-affinity uptake and then examined for [3H]taurine efflux utilizing superfusion techniques. Exposure of the P2 fraction to high K+ (56 mM) evoked a Ca(2+)-independent release of [3H]taurine. Li+ (56 mM) and veratridine (100 microM) had significantly less effect (8-15% and 15-30%, respectively) on releasing [3H]taurine compared to the K(+)-evoked release. 4-Aminopyridine (1 mM) had no effect on the release of [3H]taurine. The spontaneous release of [3H]taurine was also Ca(2+)-independent. When Na+ was omitted from the incubation medium K(+)-evoked [3H]taurine release was inhibited by approximately 40% at the first 5 minute depolarization period but was not affected at a second subsequent 5 minute depolarization period. The spontaneous release of [3H]taurine was inhibited by 60% in the absence of Na+. Substitution of Br- for Cl- had no effect on the release of either spontaneous or K(+)-evoked [3H]taurine release. However, substitution of the Cl- with acetate, isethionate, or gluconate decreased K(+)-evoked [3H]taurine release. Addition of taurine to the superfusion medium (homoexchange) resulted in no significant increase in [3H]taurine efflux. The taurine-transport inhibitor guanidinoethanesulfonic acid increased the spontaneous release of [3H]taurine by approximately 40%. These results suggest that the taurine release of [3H]taurine is not simply a reversal of the carrier-mediated uptake system. It also appears that taurine is not released from vesicles within the synaptosomes but does not rule out the possibility that taurine is a neurotransmitter. The data involving chloride substitution with permeant and impermeant anions support the concept that the major portion of [3H]taurine release is due to an osmoregulatory action of taurine while depolarization accounts for only a small portion of [3H]taurine release.
Collapse
Affiliation(s)
- J B Lombardini
- Department of Pharmacology, Texas Tech University Health Sciences Center, Lubbock 79430
| |
Collapse
|
15
|
Müller CM. A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:215-81. [PMID: 1587716 DOI: 10.1016/s0074-7742(08)60099-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activity-dependent plasticity relies on changes in neuronal transmission that are controlled by coincidence or noncoincidence of presynaptic and postsynaptic activity. These changes may rely on modulation of neural transmission or on structural changes in neuronal circuitry. The present overview summarizes experimental data that support the involvement of glial cells in central nervous activity-dependent plasticity. A role for glial cells in plastic changes of synaptic transmission may be based on modulation of transmitter uptake or on regulation of the extracellular ion composition. Both mechanisms can be initiated via neuronal-glial information transfer by potassium ions, transmitters, or other diffusible factor originating from active neurons. In addition, the importance of changes in neuronal circuitry in many model systems of activity-dependent plasticity is summarized. Structural changes in neuronal connectivity can be influenced or mediated by glial cells via release of growth or growth permissive factors on neuronal activation, and by active displacement and subsequent elimination of axonal boutons. A unifying hypothesis that integrates these possibilities into a model of activity-dependent plasticity is proposed. In this model glial cells interact with neurons to establish plastic changes; while glial cells have a global effect on plasticity, neuronal mechanisms underlie the induction and local specificity of the plastic change. The proposed hypothesis not only explains conventional findings on activity-dependent plastic changes, but offers an intriguing possibility to explain several paradoxical findings from studies on CNS plasticity that are not yet fully understood. Although the accumulated data seem to support the proposed role for glial cells in plasticity, it has to be emphasized that several steps in the proposed cascades of events require further detailed investigation, and several "missing links" have to be addressed by experimental work. Because of the increasing evidence for glial heterogeneity (for review see Wilkin et al., 1990) it seems to be of great importance to relate findings on glial populations to the developmental stage and topographical origin of the studied cells. The present overview is intended to serve as a guideline for future studies and to expand the view of "neuro" physiologists interested in activity-dependent plasticity. Key questions that have to be addressed relate to the mechanisms of release of growth and growth-permissive factors from glial cells and neuronal-glial information transfer. It is said that every complex problem has a simple, logical, wrong solution. Future studies will reveal the contribution of the proposed simple and logical solution to the understanding of central nervous plasticity.
Collapse
Affiliation(s)
- C M Müller
- Department of Physical Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
16
|
Abstract
Glia contain, synthesize, or release more than 20 neuroactive compounds including neuropeptides, amino acid transmitters, eicosanoids, steroids, and growth factors. The stimuli that elicit release differ among compounds but include neuropeptides, neurotransmitters, receptor agonists, and elevated external [K+]. The mechanisms of release are poorly understood in most cases. Many of the neuroactive compounds are localized in discrete subpopulations of glia. Thus, glia are equipped to send as well as receive chemical messages and appear to be present as classes of cells with differing abilities to communicate chemically. It is possible that glia are as diverse as neurons in their functional characteristics.
Collapse
Affiliation(s)
- D L Martin
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| |
Collapse
|
17
|
Holopainen I, Kontro P. D-aspartate release from cerebellar astrocytes: modulation of the high K-induced release by neurotransmitter amino acids. Neuroscience 1990; 36:115-20. [PMID: 1977097 DOI: 10.1016/0306-4522(90)90355-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The properties of D-aspartate release were studied in cerebellar astrocytes (14-15 DIV) in primary cultures in the rat. The spontaneous release of D-aspartate from astrocytes was fast, being further enhanced in Na- and Ca-free (EDTA-containing) media. Kainate, quisqualate, D-aspartate and L-glutamate stimulated the release, whereas L-glutamatediethylester was inhibitory. The release was enhanced by veratridine and high K (50 mM). Substitution of chloride by acetate in the experimental medium did not change the basal release but slightly decreased the potassium-induced release, indicating that the high K-induced D-aspartate release is primarily due to depolarization of cells. The K-stimulated release was independent of extracellular Ca2+ and potentiated by kainate and quisqualate. The effect of kainate was reduced by kynurenate, and that of quisqualate by L-glutamatediethylester. Glycine, taurine and GABA were equally effective in depressing the stimulated release of D-aspartate. The inhibition of GABA could be blocked by GABA antagonists. The results suggest that inhibitory amino acids may be involved in the regulation of glutamate release from cerebellar astrocytes. A further implication is that cerebellar astrocytes possess functional glutamate receptors of kainate and quisqualate subtypes.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
18
|
Holopainen I, Lidén E, Nilsson A, Sellström A. Depolarization of the neuronal membrane caused by cotransport of taurine and sodium. Neurochem Res 1990; 15:89-94. [PMID: 2325829 DOI: 10.1007/bf00969189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
C 1300 neuroblastoma cells were cultured and used to study the effect of sodium dependent taurine transport on the membrane potential. Measuring net accumulation of taurine and the depolarization caused by externally applied taurine, we found both processes become active at an external concentration of taurine of 1 mM or more. Net accumulation had Km of 13 mM and a Vmax of 126 nmol x mg of protein-1 x min-1. The taurine induced depolarization of the neuroblastoma cell was parallelled by a 25 per cent decrease in its membrane impedance. The transport of taurine, the depolarization caused by taurine and the effect of taurine on the membrane impedance, all, had a similar dependence on the external sodium concentration. Our results on the depolarizing cotransport between taurine and sodium at the neuronal membrane, may illustrate an additional mechanism for the control of the electrical activity of neuronal cells.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
19
|
Holopainen I, Kontro P. Uptake and release of glycine in cerebellar granule cells and astrocytes in primary culture: potassium-stimulated release from granule cells is calcium-dependent. J Neurosci Res 1989; 24:374-83. [PMID: 2593181 DOI: 10.1002/jnr.490240306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The properties of [3H]glycine uptake and release were studied with cerebellar granule cells, 7-9 days in vitro, (DIV) and astrocytes, 14-15 DIV, in primary cultures. The uptake of glycine in both cell types consisted of a saturable high-affinity transport and nonsaturable diffusion. The transport constant (Km) and maximal velocity (V) were significantly higher in granule cells than in astrocytes. Uptake was strictly Na+-dependent and also markedly diminished in low-Cl medium. The specificity of the uptake was similar in both cell types. The spontaneous release of glycine from granule cells and astrocytes was fast. Homoexchange with extracellularly added glycine in granule cells suggests that the efflux is at least partly mediated via membrane transport sites in these cells. Kainate stimulated the release more effectively in neurons than in glial cells, the effect apparently being mediated by specific kainate-sensitive receptors in both cell types. The release was enhanced by veratridine and by depolarization of cell membranes by high K (50 mM) in both neurons and astrocytes. The potassium-stimulated release was partially Ca-dependent in neurons but Ca-independent in glial cells. The results suggest a functional role for glycine in both cerebellar astrocytes and glutamatergic granule cells.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
20
|
Martin DL, Madelian V, Shain W. Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells do not require extracellular calcium. J Neurosci Res 1989; 23:191-7. [PMID: 2547083 DOI: 10.1002/jnr.490230209] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Astroglial cells release taurine when stimulated by beta-adrenergic agonists and other neuroactive agents. The Ca2+-dependency of taurine release by an LRM55 astroglial cell line was investigated by removing Ca2+ from the perfusion medium and by using three inorganic and three organic Ca2+-channel blockers (Mn2+, Co2+, Cd2+, verapamil, nifedipine, and diltiazem). Spontaneous release and release stimulated by the beta-adrenergic agonist isoproterenol were not inhibited when cells were perfused with medium containing no added Ca2+ and 10 microM EGTA. Isoproterenol-stimulated taurine release was not blocked when extracellular Ca2+ was completely replaced by Mn2+, Co2+, or Cd2+, nor was it blocked by verapamil, nifedipine, or diltiazem. In fact isoproterenol-stimulated taurine release was increased by 50 microM diltiazem and when Ca2+ was replaced by Co2+. The rate of spontaneous release increased slowly and continually when Co2+ was substituted for Ca2+ but was almost unaffected by substitution of Mn2+ or Cd2+. Application of diltiazem increased spontaneous release significantly, while verapamil and nifedipine appeared to cause small increases. These results indicate that entry of Ca2+ from the extracellular medium is not required for either receptor-mediated or spontaneous taurine release from astroglial cells. Some other changes in the medium did strongly affect release. Both spontaneous and isoproterenol-stimulated release were inhibited by elevated osmotic pressure, and spontaneous release was greatly increased when Ca2+ was completely removed without substituting another divalent cation. Spontaneous release increased when antagonistic metal ions were replaced with Ca2+ and when organic channel blockers were removed.
Collapse
Affiliation(s)
- D L Martin
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | | | |
Collapse
|
21
|
Abstract
HEPES inhibited the taurine uptake in glial cells. A different kind of inhibition was observed when HEPES was present in the culture medium or in the incubation medium used for the taurine-uptake measurement. As an example of a possible interference of HEPES in pharmacological experiments, we have studied the effect of this buffer on the modulation of taurine uptake by beta agonists or ionic concentration.
Collapse
Affiliation(s)
- P L Lleu
- Centre de Neurochimie du CNRS et Unité 44 de l'INSERM, Strasbourg, France
| | | |
Collapse
|
22
|
Oja SS, Kontro P. Release of endogenous taurine and gamma-aminobutyric acid from brain slices from the adult and developing mouse. J Neurochem 1989; 52:1018-24. [PMID: 2926386 DOI: 10.1111/j.1471-4159.1989.tb01842.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The spontaneous and potassium-stimulated release of endogenous taurine and gamma-aminobutyric acid (GABA) from cerebral cortex and cerebellum slices from adult and developing mice was studied in a superfusion system. The spontaneous release of GABA was of the same magnitude in slices from adult and developing mice, but the spontaneous release of taurine was considerably greater in the adults. The potassium-stimulated release of GABA from cerebral cortex slices was about five times greater in adult than in 3-day-old mice, but the potassium-stimulated release of taurine was more than six times greater in 3-day-old than in adult mice. In cerebellar slices from 7-day-old mice, potassium stimulation also evoked a massive release of taurine, whereas the evoked release from slices from adult mice was rather negligible. Also in cerebellar slices the potassium-stimulated release of GABA exhibited the opposite quantitative pattern. The stimulated release of both GABA and taurine was partially calcium dependent. The results suggest that taurine may be an important regulator of excitability in the developing brain.
Collapse
Affiliation(s)
- S S Oja
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
23
|
Philibert RA, Rogers KL, Dutton GR. Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+. J Neurosci Res 1989; 22:167-71. [PMID: 2468785 DOI: 10.1002/jnr.490220209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Primary cultures of cerebellar neurons obtained from 7-9-day-old rats and grown 7-9 days in vitro (DIV) were used to study the effects of Na+ and Ca++ on K+-evoked taurine release. These cultures, made up largely of granule neurons (90%) and inhibitory interneurons (5-7%), produced a dose-dependent, depolarization-evoked taurine release that was Ca++-dependent at 40 mM K+, and Ca++-independent at K+ concentrations above 40 mM. The dihydropyridine Ca++ channel agonist BAY K 8644 (1 microM) augmented 30 mM K+-evoked release, while the antagonist nifedipine (5 microM) abolished both the BAY K 8644- and K+-enhanced release. Depolarization with the Na+ channel agonist veratridine (50 microM) stimulated taurine efflux, which was completely blocked by pretreatment with tetrodotoxin (2 microM). However, 50 mM K+-evoked taurine release was not affected by tetrodotoxin pretreatment. Substitution of choline Cl for NaCl partially antagonized 50 mM K+-evoked release, and by itself, the Na+ ionophore monensin (50 microM) stimulated release. These results suggest that both K+-evoked and basal taurine release from primary cerebellar neuronal cultures are sensitive to the levels of both intracellular and extracellular Na+ and Ca++. In contrast to previous findings using cerebellar astrocytes, neuronal L-type Ca++ channels, but not voltage-dependent Na+ channels, also appear to be necessary. The implications of these results on taurine's status as a putative neurotransmitter are discussed.
Collapse
Affiliation(s)
- R A Philibert
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
24
|
Holopainen I, Louve M, Enkvist MO, Akerman KE. 86Rubidium release from cultured primary astrocytes: effects of excitatory and inhibitory amino acids. Neuroscience 1989; 30:223-9. [PMID: 2568601 DOI: 10.1016/0306-4522(89)90367-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of high K+, glutamate and its analogue, kainate, on K+ release were studied in primary astrocyte cultures prepared from newborn rat brains using 86Rb+ as a tracer for K+. An increase in 86Rb+ release was observed when the extracellular K+ concentration was elevated (10-40 mM). Glutamate and kainate stimulated the release in a dose-dependent manner, 100 microM concentrations being about as equally effective as high K+ (40 mM). Both compounds also caused an increase in the absorbance of the cyanine dye, 3,3'-diethylthiadicarbocyanine, indicating depolarization of the membrane. No significant Na+-dependent uptake of [3H]kainate occurred in the cells, thus excluding the possibility that depolarization was due to electrogenic uptake of amino acid into the cells. GABA and taurine significantly depressed the high K+- and glutamate-induced 86Rb+ release. Taurine itself caused a small increase in 86Rb+ release and the membrane was depolarized, judging from the increase in the absorbance of the cyanine dye, 3,3'-diethylthiadicarbocyanine. No effect of taurine was observed when the Cl- concentration was reduced in the experimental medium. The results suggest that cultured astrocytes respond by membrane depolarization to high external K+ and to glutamate and kainate. The degree of this depolarization can be modified by the inhibitory amino acids GABA, taurine and glycine, the effect of taurine probably being mediated by an increase in Cl- conductance across the cell membrane. The role of functional receptors for amino acid transmitters and the effects observed are discussed.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
25
|
Holopainen I, Kontro P, Oja SS. Release of taurine from cultured cerebellar granule cells and astrocytes: co-release with glutamate. Neuroscience 1989; 29:425-32. [PMID: 2566956 DOI: 10.1016/0306-4522(89)90069-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The properties of the release of preloaded [3H]taurine and endogenous taurine were studied with cultured cerebellar granule cells (7-8 days in vitro) and astrocytes (14-15 days in vitro) from the rat. The spontaneous release of taurine from both cell types was slow. The release from both neurons and astrocytes was significantly enhanced by 0.1 mM veratridine, the stimulatory effect being more pronounced in granule cells than in astrocytes. No homo or heteroexchange with extracellularly added taurine or its structural analogues could be detected, suggesting that the efflux is probably not mediated via the membrane transport sites. Kainate stimulated the release more from granule cells than from astrocytes, the effect apparently being mediated by kainate-sensitive receptors. Depolarization of cell membranes by 50 mM K+ induced co-release of endogenous taurine and glutamate from both cell types. Preloaded [3H]taurine was readily released from astrocytes by potassium stimulation. Stimulated release occurred from granule cells if they had been cultured for 4 days with the label but not from the cells preloaded for only 15 min.
Collapse
Affiliation(s)
- I Holopainen
- Tampere Brain Research Center, Department of Biomedical Sciences, University of Tampere, Finland
| | | | | |
Collapse
|
26
|
Philibert RA, Rogers KL, Dutton GR. K+-evoked taurine efflux from cerebellar astrocytes: on the roles of Ca2+ and Na+. Neurochem Res 1989; 14:43-8. [PMID: 2469025 DOI: 10.1007/bf00969756] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (greater than 100 microM), and preincubation with 2 microM omega-conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2-4 min. Although 2 microM tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.
Collapse
Affiliation(s)
- R A Philibert
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
27
|
Affiliation(s)
- R J Huxtable
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson 85724
| |
Collapse
|
28
|
Enkvist MO, Holopainen I, Akerman KE. The effect of K+ and glutamate receptor agonists on the membrane potential of suspensions of primary cultures of rat astrocytes as measured with a cyanine dye, DiS-C2-(5). Brain Res 1988; 462:67-75. [PMID: 2902909 DOI: 10.1016/0006-8993(88)90586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cyanine dye DiS-C2-(5) was used to investigate the effect of K+ and glutamate receptor agonists on the membrane potential of whole populations of primary rat astrocytes in suspension. Increasing the external K+ concentration from 5 to 40 mM caused a depolarization of the cells. Ba2+ blocked the response to K+, whereas 4-aminopyridine had no effect on the depolarization. The effect of added external K+ was enhanced by the addition of the neutral K+ ionophore valinomycin. This supports the view that the membrane potential of primary astrocytes is dependent of the K+ gradient, and suggests that the membrane is not ideally permeable to K+ ions. Glutamate caused a depolarization of the cells which was not affected by Ba2+. In the presence of veratridine and ouabain no effect of glutamate was seen. The cells were also depolarized by the glutamate receptor agonists quisqualate, kainate and N-methyl-D-aspartate (NMDA). The response to kainate was blocked by kynurenate, which also diminished the depolarization caused by glutamate. NMDA was effective when added after kainate. The effect of the glutamate receptor agonists tested was generally smaller than that of glutamate itself, and a prior addition of one of the agonists diminished the response to glutamate. The results obtained suggest that cyanine dyes are well suited for investigating the behavior of whole populations of cultured primary astrocytes.
Collapse
Affiliation(s)
- M O Enkvist
- Department of Biochemistry and Pharmacy, Abo Akademi, Turku, Finland
| | | | | |
Collapse
|
29
|
Philibert RA, Rogers KL, Allen AJ, Dutton GR. Dose-dependent, K+-stimulated efflux of endogenous taurine from primary astrocyte cultures is Ca2+-dependent. J Neurochem 1988; 51:122-6. [PMID: 2898000 DOI: 10.1111/j.1471-4159.1988.tb04844.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The K+-stimulated efflux of endogenous taurine from primary rat cerebellar astrocyte cultures prepared from 7-9-day-old rats was studied at 16-18 days in vitro using HPLC analysis. Taurine efflux was dose-dependent at K+ concentrations between 10 mM and 80 mM, with an EC50 of approximately 50 mM. Maximum stimulation of efflux above basal levels ranged from 56% at 10 mM K+ (204 pmol/min/mg protein) to 470% at 80 mM K+ (960 pmol/min/mg protein). Removal of Ca2+ from the buffer and the addition of either 1 mM EGTA or 10 mM Mg2+ abolished K+-stimulated efflux. Taurine efflux peaked and fell in parallel with the K+ concentration, but with an approximate lag of 3-5 min. The time course and amount of preloaded [3H]taurine released did not differ significantly from that seen for endogenous efflux. Basal taurine efflux varied inversely with the extracellular concentration of Ca2+ over the concentration range 0-5.0 mM. The observed Ca2+ dependence is consistent with a role for Ca2+ in the regulation of taurine release. Furthermore, taurine release from astrocytes in response to elevated K+ may reflect a neuromodulatory role for this amino acid in the CNS.
Collapse
Affiliation(s)
- R A Philibert
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
30
|
Holopainen I, Kontro P. Glutamate release from cerebellar granule cells differentiating in culture: Modulation of the K+-stimulated release by inhibitory amino acids. Neurochem Int 1988; 12:155-61. [DOI: 10.1016/0197-0186(88)90123-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1987] [Accepted: 09/11/1987] [Indexed: 11/30/2022]
|
31
|
Kontro P, Oja SS. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Brain Res 1987; 465:277-91. [PMID: 3440208 DOI: 10.1016/0165-3806(87)90249-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The release of exogenous taurine and gamma-aminobutyric acid (GABA) was studied with slices from the developing mouse cerebral cortex. The spontaneous efflux of GABA increased with the cerebral GABA content during postnatal development, while the spontaneous efflux of taurine was approximately the same in both neonate and adult mice, in spite of a several-fold higher cerebral taurine content in the former. GABA, taurine and their structural analogues caused marked homo- and hetero-trans-stimulation of the release in both adult and developing mice, probably via membrane transport sites. The release was greatly enhanced by both 0.01 mM veratridine and exposure to sodium-free medium, the effects being more pronounced with GABA in the adults and with taurine in the neonates. The excitatory amino acids homocysteate, aspartate and kainate enhanced taurine release particularly from the developing cerebral cortex but were not effective on GABA release in the adults. The potassium stimulation of taurine release had a strikingly slow time course in both adult and developing mice. The responses in GABA release were also fairly slow in the neonates. Potassium stimulation evoked a large release of GABA in adult but not in developing mice. The evoked taurine release was in developing mice several-fold greater than the evoked GABA release, decreasing in magnitude with age. The potassium-stimulated release was only partially calcium dependent, more so with GABA in the adults and with taurine in the neonates, but a high magnesium ion concentration inhibited the release of both amino acids more strongly in the latter age group. Verapamil (0.1 mM) almost abolished the potassium stimulation of GABA release in both adult and neonate mice and was more effective on taurine release in neonate mice. The results suggest that taurine, not GABA, is the major inhibitor of excitability in developing mouse brain.
Collapse
Affiliation(s)
- P Kontro
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
32
|
Hannuniemi R, Pajari-Backas M, Oja OS, Oja SS. Transport of leucine, lysine, glycine and aspartate in neuroblastoma C1300 and glioma C6 cells. ACTA PHYSIOLOGICA SCANDINAVICA 1987; 131:575-81. [PMID: 3126624 DOI: 10.1111/j.1748-1716.1987.tb08278.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-saturable penetration and the V and Km constants of saturable influx of leucine, lysine and glycine were always greater in cultured neuroblastoma (C1300) than in glioma (C6) cells. Aspartate uptake was detected only in glioma cells. Unstimulated efflux of the amino acids was initially fast in both cell types but soon slowed down. The efflux of glycine and aspartate exhibited no heteroexchange, the efflux of lysine was stimulated by extracellular leucine and that of leucine slightly by lysine and glycine but only in glioma cells.
Collapse
Affiliation(s)
- R Hannuniemi
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
33
|
Kontro P, Oja SS. Taurine efflux from brain slices: potassium-evoked release is greater from immature than mature brain tissue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 217:79-88. [PMID: 3434432 DOI: 10.1007/978-1-4899-0405-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The stimulated release of taurine was severalfold greater from slices of immature than mature brain. The release had a strikingly slow time course at all ages, the slower the younger were the animals. It is concluded that taurine is an important regulatory of neuronal activity in the developing brain.
Collapse
Affiliation(s)
- P Kontro
- Department of Biomedical Sciences, University of Tampere, Finland
| | | |
Collapse
|
34
|
Holopainen I, Malminen O, Kontro P. Sodium-dependent high-affinity uptake of taurine in cultured cerebellar granule cells and astrocytes. J Neurosci Res 1987; 18:479-83. [PMID: 3437468 DOI: 10.1002/jnr.490180315] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Taurine uptake in cultured cerebellar granule cells and astrocytes consisted of a saturable high-affinity component and nonsaturable diffusion. The transport constant (Km) was significantly lower and the maximal velocity (V) higher in granule cells than in astrocytes. The uptakes were strictly sodium dependent and also moderately decreased in potassium-free medium. The specificity profile of taurine uptake was similar in both cell types, hypotaurine, beta-alanine, and guanidinoethanesulphonic acid being the most potent inhibitors, followed by GABA and homotaurine. Glutamate inhibited taurine uptake more in astrocytes than in granule cells. In principle, the uptake systems were similar in granule cells and astrocytes, exhibiting features characteristic of uptake of a neurotransmitter or -modulator.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | |
Collapse
|
35
|
Pin JP, Weiss S, Sebben M, Kemp DE, Bockaert J. Release of endogenous amino acids from striatal neurons in primary culture. J Neurochem 1986; 47:594-603. [PMID: 2426401 DOI: 10.1111/j.1471-4159.1986.tb04541.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endogenous amino acid release was examined in highly purified striatal neurons obtained from fetal mouse brain, and differentiated in primary culture. This study aimed to determine which amino acids are released from striatal neurons after a brief depolarization period induced by elevated potassium concentration or veratrine. Amino acids released into the extracellular medium, subsequent to a 3-min exposure of striatal neurons, were subjected to HPLC analysis. At 14 days in vitro potassium (56 mM) depolarization elicited a 25-fold increase in gamma-aminobutyric acid release, 85% of which was calcium-dependent. This effect was small but apparent at 7 days in vitro (two-fold increase) and greatly increased between 11 and 14 days in vitro, subsequent to the appearance of synaptic vesicles in nerve terminals. gamma-Aminobutyric acid release was readily reversible within minutes of return to the resting state. Veratrine induced a quantitatively similar but calcium-independent increase in gamma-aminobutyric acid release. Similar results were observed on aspartate and glutamate release, but the increase was very small even after 14 days in vitro (62.2 and 123.3% increase over basal release, respectively). Taurine and hypotaurine release increased during and after depolarization induced by potassium. This effect remained constant between 11 and 18 days in vitro. BAY K 8644, a dihydropyridine-sensitive calcium channel agonist, augmented the effect of 15 mM potassium on gamma-aminobutyric acid release, but this effect remained very small as compared to the potassium (56 mM) or veratrine effects. In addition, nifedipine inhibited this BAY K 8644-induced release. These results demonstrate the high level of differentiation among striatal neurons containing gamma-aminobutyric acid in this in vitro system.
Collapse
|
36
|
Holopainen I, Kontro P. High-affinity uptake of taurine and beta-alanine in primary cultures of rat astrocytes. Neurochem Res 1986; 11:207-15. [PMID: 3084980 DOI: 10.1007/bf00967969] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetics and specificity of taurine and beta-alanine uptake were studied in primary cultures of rat astrocytes under identical experimental conditions. The uptake consisted of nonsaturable penetration and saturable high-affinity transport that was strictly sodium dependent. The cells accumulated taurine more effectively than beta-alanine, both the affinity and uptake capacity being greater for taurine. Taurine uptake was competitively inhibited by beta-alanine and GABA, the former being more potent. Also, hypotaurine and 2-guanidinoethanesulphonic acid strongly reduced taurine uptake, but L-2,4-diaminobutyric acid had no significant effect. beta-Alanine uptake was also competitively inhibited by GABA, but the most potent inhibitors were hypotaurine and 2-guanidinoethanesulphonic acid. L-2,4-Diaminobutyric acid was moderately active. The uptake systems for taurine and beta-alanine were thus in principle similar, and they exhibited certain characteristics typical for a neurotransmitter amino acid. The inhibition studies further suggest the existence of only one common transport system for taurine, beta-alanine, and GABA in cultured primary astrocytes. The same uptake system may also be used for hypotaurine.
Collapse
|
37
|
Holopainen I, Oja SS, Marnela KM, Kontro P. Free amino acids of rat astrocytes in primary culture: changes during cell maturation. Int J Dev Neurosci 1986; 4:493-6. [PMID: 3455607 DOI: 10.1016/0736-5748(86)90031-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The concentrations of free amino acids were analysed in cultured primary astrocytes during cell maturation and in the starting material, i.e. the cerebral hemispheres of newborn rats. Taurine was the most abundant amino acid in all samples, the content of glutamine being comparable only in immature astrocytes (7 days in culture). The intracellular levels of most amino acids significantly decreased during the first 2 weeks in culture, remaining fairly stable during the third week.
Collapse
Affiliation(s)
- I Holopainen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
38
|
Salazar P, Quesada O, Campomanes MA, Morán J, Pasantes-Morales H. Pharmacological identification of retinal cells releasing taurine by light stimulation. J Neurosci Res 1986; 15:383-91. [PMID: 3009837 DOI: 10.1002/jnr.490150309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of drugs blocking synaptic activity at different retinal levels was examined in this study, in an attempt to identify the origin of the light-stimulated release of 3H-taurine from the chick retina. It was determined by autoradiography that the chick retina accumulates taurine in photoreceptors, in cells from the inner nuclear layer, and in processes of the inner plexiform layer. All these are possible sites for the release of taurine upon illumination. To discriminate among these possibilities, the effects of aspartate, tetrodotoxin, strychnine, picrotoxin, chlorpromazine, tubocurarine, atropine, glutamate diethyl esther, alpha-amino adipate and 2-amino-4-phosphonobutyrate were studied. Aspartate (10 mM), which is known to eliminate the light response of cells postsynaptic to photoreceptors, induced a marked increase of 150% in the resting efflux of 3H-taurine but did not decrease significantly the light-stimulated release. Tetrodotoxin, which blocks amacrine cell responses, decreased 3H-taurine release stimulated by light by less than 20%. The efflux of taurine was unaffected by strychnine, picrotoxin, tubocurarine, atropine, chlorpromazine, and 2-amino-4-phosphonobutyrate, whereas it was increased by glutamate diethyl esther and alpha-amino adipate. These results, all together, point to photoreceptors as the cells releasing 3H-taurine in response to light.
Collapse
|