1
|
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA. The MAL Family of Proteins: Normal Function, Expression in Cancer, and Potential Use as Cancer Biomarkers. Cancers (Basel) 2023; 15:2801. [PMID: 37345137 DOI: 10.3390/cancers15102801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
The MAL family of integral membrane proteins consists of MAL, MAL2, MALL, PLLP, CMTM8, MYADM, and MYADML2. The best characterized members are elements of the machinery that controls specialized pathways of membrane traffic and cell signaling. This review aims to help answer the following questions about the MAL-family genes: (i) is their expression regulated in cancer and, if so, how? (ii) What role do they play in cancer? (iii) Might they have biomedical applications? Analysis of large-scale gene expression datasets indicated altered levels of MAL-family transcripts in specific cancer types. A comprehensive literature search provides evidence of MAL-family gene dysregulation and protein function repurposing in cancer. For MAL, and probably for other genes of the family, dysregulation is primarily a consequence of gene methylation, although copy number alterations also contribute to varying degrees. The scrutiny of the two sources of information, datasets and published studies, reveals potential prognostic applications of MAL-family members as cancer biomarkers-for instance, MAL2 in breast cancer, MAL2 and MALL in pancreatic cancer, and MAL and MYADM in lung cancer-and other biomedical uses. The availability of validated antibodies to some MAL-family proteins sanctions their use as cancer biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Rubio-Ramos A, Bernabé-Rubio M, Labat-de-Hoz L, Casares-Arias J, Kremer L, Correas I, Alonso MA. MALL, a membrane-tetra-spanning proteolipid overexpressed in cancer, is present in membraneless nuclear biomolecular condensates. Cell Mol Life Sci 2022; 79:236. [PMID: 35399121 PMCID: PMC8995265 DOI: 10.1007/s00018-022-04270-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022]
Abstract
Proteolipids are proteins with unusual lipid-like properties. It has long been established that PLP and plasmolipin, which are two unrelated membrane-tetra-spanning myelin proteolipids, can be converted in vitro into a water-soluble form with a distinct conformation, raising the question of whether these, or other similar proteolipids, can adopt two different conformations in the cell to adapt their structure to distinct environments. Here, we show that MALL, another proteolipid with a membrane-tetra-spanning structure, distributes in membranes outside the nucleus and, within the nucleus, in membrane-less, liquid-like PML body biomolecular condensates. Detection of MALL in one or other environment was strictly dependent on the method of cell fixation used, suggesting that MALL adopts different conformations depending on its physical environment —lipidic or aqueous— in the cell. The acquisition of the condensate-compatible conformation requires PML expression. Excess MALL perturbed the distribution of the inner nuclear membrane proteins emerin and LAP2β, and that of the DNA-binding protein BAF, leading to the formation of aberrant nuclei. This effect, which is consistent with studies identifying overexpressed MALL as an unfavorable prognostic factor in cancer, could contribute to cell malignancy. Our study establishes a link between proteolipids, membranes and biomolecular condensates, with potential biomedical implications.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Zheng P, Sun S, Wang J, Cheng ZJ, Lei KC, Xue M, Zhang T, Huang H, Zhang XD, Sun B. Integrative omics analysis identifies biomarkers of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2022; 79:66. [PMID: 35015148 PMCID: PMC11075137 DOI: 10.1007/s00018-021-04094-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by chronic progressive pulmonary fibrosis and a poor prognosis. Genetic studies, including transcriptomic and proteomics, have provided new insight into revealing mechanisms of IPF. Herein we provided a novel strategy to identify biomarkers by integrative analysis of transcriptomic and proteomic profiles of IPF patients. We examined the landscape of IPF patients' gene expression in the transcription and translation phases and investigated the expression and functions of two new potential biomarkers. Differentially expressed (DE) mRNAs were mainly enriched in pathways associated with immune system activities and inflammatory responses, while DE proteins are related to extracellular matrix production and wound repair. The upregulated genes in both phases are associated with wound repair and cell differentiation, while the downregulated genes in both phases are associated with reduced immune activities and the damage of the alveolar tissues. On this basis, we identified thirteen potential marker genes. Among them, we validated the expression changes of butyrophilin-like 9 (BTNL9) and plasmolipin (PLLP) and investigated their functional pathways in the IPF mechanism. Both genes are downregulated in the tissues of IPF patients and Bleomycin-induced mice, and co-expression analysis indicates that they have a protective effect by inhibiting extracellular matrix production and promoting wound repair in alveolar epithelial cells.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shixue Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jingxian Wang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guizhou, 550025, China
| | - Zhangkai Jason Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kuan Cheok Lei
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Teng Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | | | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Lentiviral gene delivery to plasmolipin-expressing cells using Mus caroli endogenous retrovirus envelope protein. Biochimie 2017; 142:226-233. [DOI: 10.1016/j.biochi.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023]
|
6
|
Vatanavicharn T, Pongsomboon S, Tassanakajon A. Two plasmolipins from the black tiger shrimp, Penaeus monodon and their response to virus pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:389-394. [PMID: 22766100 DOI: 10.1016/j.dci.2012.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
Two isoforms of plasmolipin were initially identified from the black tiger shrimp (Penaeus monodon) EST database and completed using 50 RACE to reveal complete cDNAs of 558 bp (PmPLP1) and 537 bp(PmPLP2) with 87% nucleotide sequence identity. The deduced amino acid sequences contained four-transmembrane domains and showed the highest amino acid identity (49% and 51%, respectively) to the honey bee (Apis mellifera) chemokine-like factor (CKLF), with a very similar hydrophobic pattern to other plasmolipins. Transcripts of PmPLP1 and PmPLP2 were observed in all tested shrimp tissues with the highest expression levels in the gill and epipodite for PmPLP1 and in the hemocytes and antennal gland for PmPLP2. PmPLP1 transcript levels were significantly upregulated in hemocytes at 24 and 72 h post infection (hpi) with yellow head virus (YHV) (7.4- and 14.7- fold, respectively), but only after 72 hpi by white spot syndrome virus (WSSV). In contrast, PmPLP2 was only slightly (but statistically significant)up-regulated with YHV and WSSV. Thus, PmPLPs have the potential to be a part of viral infection mechanisms or defense response. This is the first characterization of a plasmolipin gene in crustaceans.
Collapse
Affiliation(s)
- Tipachai Vatanavicharn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
7
|
Stys PK. The axo-myelinic synapse. Trends Neurosci 2011; 34:393-400. [PMID: 21741098 DOI: 10.1016/j.tins.2011.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 01/19/2023]
Abstract
Axons have evolved to acquire myelination, enabling denser packing and speedier transmission. Although myelin is considered a passive insulator, recent reports suggest a more dynamic role. Axons, in turn, are endowed with neurotransmitter release and uptake systems along their trunks. Based on these observations, I argue that there may exist a new type of chemical synapse between axon and myelin, one that supports activity-dependent communication between the two. This raises intriguing possibilities of dynamic fine-tuning of the myelin sheath even in adulthood, efficient recruitment of resources for myelin maintenance and bi-directional signaling, whereby the axon informs its myelinating cell of its metabolic needs proportionally to the electrical traffic it is transmitting. This would also have implications for de- and dysmyelinating diseases should this axo-myelinic synapse become dysfunctional.
Collapse
Affiliation(s)
- Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Dhaunchak AS, Huang JK, De Faria O, Roth AD, Pedraza L, Antel JP, Bar-Or A, Colman DR. A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia 2010; 58:1949-60. [DOI: 10.1002/glia.21064] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Identification of the myelin protein plasmolipin as the cell entry receptor for Mus caroli endogenous retrovirus. J Virol 2008; 82:6862-8. [PMID: 18463156 DOI: 10.1128/jvi.00397-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Asian wild mouse species Mus caroli harbors an endogenous retrovirus (McERV) that is closely related to but distinct from the endogenous retrovirus family defined by the Mus dunni endogenous virus and the Mus musculus endogenous retrovirus. McERV could infect some cell types from humans, dogs, and rats, but not all, and did not infect any mouse cell line tested. Because of its interesting host range and proposed ancestral relationship to primate retroviruses and because none of the entry receptors for this family of retroviruses had been identified, we began a search for the McERV receptor. We determined the chromosomal location of the receptor gene in the human genome by phenotypic screening of the G3 human-hamster radiation hybrid cell line panel and confirmed the localization by assaying for receptor activity conferred by bacterial artificial chromosome (BAC) clones spanning the region. We next localized the gene more precisely in one positive BAC by assaying for receptor activity following BAC digestion with several restriction enzymes that cleaved different sets of genes, and we confirmed that the final candidate gene, plasmolipin (PLLP; TM4SF11), is the novel receptor by showing that the expression of the human PLLP cDNA renders hamster and mouse cells susceptible to McERV infection. PLLP functions as a voltage-dependent potassium ion channel and is expressed primarily in kidney and brain, helping to explain the limited range of cell types that McERV can infect. Interestingly, mouse PLLP also functioned well as a receptor for McERV but was simply not expressed in the mouse cell types that we originally tested.
Collapse
|
10
|
Gould RM, Morrison HG, Gilland E, Campbell RK. Myelin tetraspan family proteins but no non-tetraspan family proteins are present in the ascidian (Ciona intestinalis) genome. THE BIOLOGICAL BULLETIN 2005; 209:49-66. [PMID: 16110093 DOI: 10.2307/3593141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several of the proteins used to form and maintain myelin sheaths in the central nervous system (CNS) and the peripheral nervous system (PNS) are shared among different vertebrate classes. These proteins include one-to-several alternatively spliced myelin basic protein (MBP) isoforms in all sheaths, proteolipid protein (PLP) and DM20 (except in amphibians) in tetrapod CNS sheaths, and one or two protein zero (P0) isoforms in fish CNS and in all vertebrate PNS sheaths. Several other proteins, including 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin and lymphocyte protein (MAL), plasmolipin, and peripheral myelin protein 22 (PMP22; prominent in PNS myelin), are localized to myelin and myelin-associated membranes, though class distributions are less well studied. Databases with known and identified sequences of these proteins from cartilaginous and teleost fishes, amphibians, reptiles, birds, and mammals were prepared and used to search for potential homologs in the basal vertebrate, Ciona intestinalis. Homologs of lipophilin proteins, MAL/plasmolipin, and PMP22 were identified in the Ciona genome. In contrast, no MBP, P0, or CNP homologs were found. These studies provide a framework for understanding how myelin proteins were recruited during evolution and how structural adaptations enabled them to play key roles in myelination.
Collapse
Affiliation(s)
- Robert M Gould
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
N-Acetyl-L-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.
Collapse
Affiliation(s)
- Morris H Baslow
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA.
| |
Collapse
|
12
|
Wewetzer K, Archelos JJ, Hartung HP, Seilheimer B, Christ B. The monoclonal antibody 23E9 defines a novel developmentally-regulated Schwann cell surface antigen. Int J Dev Neurosci 1999; 17:715-25. [PMID: 10568688 DOI: 10.1016/s0736-5748(99)00046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study describes the identification and partial characterization of a novel Schwann cell surface molecule by means of a monoclonal antibody (23E9). The 23E9 antigen was found in association with Schwann cells of the peripheral nerve but not with sensory neurons and satellite cells of the dorsal root ganglion. The expression of the antigen in the sciatic nerve starts after birth, is high around postnatal day 8 and becomes down-regulated towards the adult stage. This suggests that it may be involved in the induction of myelin formation. On Western blots, the antibody identified two major bands of approximately 27 and 42 kDa. Treatment of cultured Schwann cells with forskolin, an agent known to mimic neuronal contact in vitro, stimulated the up-regulation of the antigen. This implies that the expression of 23E9 is induced and maintained by axon-derived signals in vivo. Comparison of the presented data with the literature suggests that we have identified a novel cell surface molecule not previously characterized in the context of Schwann cell biology. To clarify the molecular identity of the antigen and define its physiological relevance, the antibody will be used in future studies for immunoprecipitation and functional in vitro assays.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn
- Antibodies, Monoclonal
- Antibody Specificity
- Antigens, Surface/analysis
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Ganglia, Spinal/cytology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Rats
- Rats, Wistar
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/growth & development
- Sciatic Nerve/metabolism
Collapse
Affiliation(s)
- K Wewetzer
- Hannover Medical School, Center of Anatomy, Germany.
| | | | | | | | | |
Collapse
|
13
|
Palaniyar N, Semotok JL, Wood DD, Moscarello MA, Harauz G. Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:85-100. [PMID: 9858696 DOI: 10.1016/s0005-2736(98)00180-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Proteolipid protein (PLP or lipophilin) is a highly conserved, strongly hydrophobic, integral membrane protein, and is the major protein component of central nervous system myelin. Although PLP has been implicated in many functions, its in vivo role is still uncertain. Here, we report the investigation of PLP's putative adhesive function using purified PLP and reconstituted phospholipid vesicles made of either 100% phosphatidylcholine (PC), or a mixture of 92% PC and 8% phosphatidylserine (PS), by weight. PLP-induced changes in the phospholipid bilayer surfaces were directly examined by transmission electron microscopy. We found that upon the introduction of PLP, larger lipid vesicles became smaller and unilamellar. At the PLP:lipid molar ratio of 1:20, vesicle membranes rolled onto themselves forming 'croissant'-like structures that subsequently adhered to each other. The phenomena of PLP-induced bilayer rolling and adhesion were dependent on the concentration of PLP and the period of incubation, but were independent of the presence of calcium and types of phospholipids (PC or PC:PS). Furthermore, the presence of PLP in the lipid bilayers prevented the fusion of membranes. These findings show that PLP can induce membrane 'winding' while preventing the fusion of adjacent lipid bilayers. Hence, our data provide direct evidence for PLP's suspected function of membrane adhesion, and also suggest that PLP could potentially play a role in the formation of the myelin sheath.
Collapse
Affiliation(s)
- N Palaniyar
- Department of Molecular Biology and Genetics, The University of Guelph, 50 Stone Road East, Guelph, Ont. N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
14
|
rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach. J Neurosci 1998. [PMID: 9634556 DOI: 10.1523/jneurosci.18-13-04901.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
rMAL, the rat myelin and lymphocyte protein, is a small hydrophobic protein of 17 kDa with four putative transmembrane domains and is expressed in oligodendrocytes and Schwann cells, the myelinating cells of the nervous system. In addition, transcript expression has been found in kidney, spleen, and intestine. Confocal microscopy and immunoelectron microscopy with an affinity-purified antibody localized rMAL to compact myelin in a pattern similar to the structural myelin proteins: myelin basic protein and proteolipid protein. In kidney and stomach epithelia, rMAL is located almost exclusively on the apical (luminal) membranes of the cells lining distal tubuli in kidney and the glandular part of the stomach. Biochemical analysis of plasma membranes isolated from spinal cord and kidney demonstrated that rMAL is a proteolipid that is present in detergent insoluble complexes typical for proteins associated with glycosphingolipids. Lipid and protein analysis showed a co-enrichment of glycosphingolipids and rMAL protein within these complexes, indicating a close association of rMAL to glycosphingolipids in myelin and in kidney in vivo. We conclude that specific rMAL-glycosphingolipid interactions may lead to the formation and maintenance of stable protein-lipid microdomains in myelin and apical epithelial membranes. They may contribute to specific properties of these highly specialized plasma membranes.
Collapse
|
15
|
Abstract
This review is a personal memoir of the history of proteolipids and is limited to aspects of the field with which the author has been involved in one way or another. The discovery of proteolipids was a serendipitous observation made in the course of the study of sulfatides. Initial focus was on the chemical characterization of brain proteolipids, their behavior under different conditions and their identification as the major protein of CNS myelin. The sequence of PLP was obtained using solid phase protein sequencing techniques. This, in turn, made possible a new era in which biochemical, cellular and molecular approaches could be applied to address new questions about PLP. Identification of genetic defects in the PLP molecule and its regulation has contributed to understanding myelin biology. Studies of the encephalitogenic activity of PLP in animal models have influenced the views of inflammatory processes in multiple sclerosis. Despite remarkable progress, much remains to be learned about the structure and function of PLP.
Collapse
Affiliation(s)
- M B Lees
- Biomedical Sciences Division, E.K. Shriver Center, Waltham, MA 02254, USA
| |
Collapse
|
16
|
Magyar JP, Ebensperger C, Schaeren-Wiemers N, Suter U. Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family. Gene 1997; 189:269-75. [PMID: 9168137 DOI: 10.1016/s0378-1119(96)00861-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An increasing number of four-transmembrane proteins has been found to be associated with CNS and PNS myelin. Some of these proteins play crucial roles in the development and maintenance of the nervous system. In the CNS, proteolipid protein (PLP) is mutated in the myelin disorder Pelizaeus-Merzbacher disease and in spastic paraplegia, while in the PNS, peripheral myelin protein 22 (PMP22) and connexin32 (C x 32) are culprit genes in the most frequent forms of hereditary peripheral neuropathies. Myelin and lymphocyte protein (MAL; also called MVP17 or VIP17) and plasmolipin are additional tetraspan proteins that are highly expressed by myelinating glial cells. However, little is known about the role of these proteins in the nervous system. As a prerequisite for functional genetic approaches in the mouse, we have isolated and characterized a mouse MAL cDNA and the corresponding structural MAL gene. Computer-aided analysis and database searches revealed that MAL belongs to a larger gene family which also includes plasmolipin, BENE and the expressed sequence tag (EST) H09290. While the overall amino acid sequence identities between mouse MAL and the related proteins are relatively low (29-37%), the conserved motif -[Q/Y-G-W-V-M-F/Y-V]- which is found at the junction of the first extracellular loop and the second membrane-associated domain serves as a fingerprint for the MAL protein family. Expression analysis of the members of the MAL gene family indicates widespread expression in various tissues, suggesting a common role of these proteins in cell biology.
Collapse
Affiliation(s)
- J P Magyar
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- G J Snipes
- Department of Neuropathology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|