1
|
Yevglevskis M, Bowskill CR, Chan CCY, Heng JHJ, Threadgill MD, Woodman TJ, Lloyd MD. A study on the chiral inversion of mandelic acid in humans. Org Biomol Chem 2015; 12:6737-44. [PMID: 25050409 DOI: 10.1039/c3ob42515k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandelic acid is a chiral metabolite of the industrial pollutant styrene and is used in chemical skin peels, as a urinary antiseptic and as a component of other medicines. In humans, S-mandelic acid undergoes rapid chiral inversion to R-mandelic acid by an undefined pathway but it has been proposed to proceed via the acyl-CoA esters, S- and R-2-hydroxy-2-phenylacetyl-CoA, in an analogous pathway to that for Ibuprofen. This study investigates chiral inversion of mandelic acid using purified human recombinant enzymes known to be involved in the Ibuprofen chiral inversion pathway. Both S- and R-2-hydroxy-2-phenylacetyl-CoA were hydrolysed to mandelic acid by human acyl-CoA thioesterase-1 and -2 (ACOT1 and ACOT2), consistent with a possible role in the chiral inversion pathway. However, human α-methylacyl-CoA racemase (AMACR; P504S) was not able to catalyse exchange of the α-proton of S- and R-2-hydroxy-2-phenylacetyl-CoA, a requirement for chiral inversion. Both S- and R-2-phenylpropanoyl-CoA were epimerised by AMACR, showing that it is the presence of the hydroxy group that prevents epimerisation of R- and S-2-hydroxy-2-phenylacetyl-CoAs. The results show that it is unlikely that 2-hydroxy-2-phenylacetyl-CoA is an intermediate in the chiral inversion of mandelic acid, and that the chiral inversion of mandelic acid is via a different pathway to that of Ibuprofen and related drugs.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
2
|
Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev Cell 2011; 21:457-68. [PMID: 21920312 DOI: 10.1016/j.devcel.2011.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/28/2022]
Abstract
A fundamental question in cell biology is how cells control organelle composition and abundance. Woronin bodies are fungal peroxisomes centered on a crystalline core of the self-assembled HEX protein. Despite using the canonical peroxisome import machinery for biogenesis, Woronin bodies are scarce compared to the overall peroxisome population. Here, we show that HEX oligomers promote the differentiation of a subpopulation of peroxisomes, which become enlarged and highly active in matrix protein import. HEX physically associates with the essential matrix import peroxin, PEX26, and promotes its enrichment in the membrane of differentiated peroxisomes. In addition, a PEX26 mutant that disrupts differentiation produces increased numbers of aberrantly small Woronin bodies. Our data suggest a mechanism where HEX oligomers recruit a key component of the import machinery, which promotes the import of additional HEX. This type of positive feedback provides a basic mechanism for the production of an organelle subpopulation of distinct composition and abundance.
Collapse
Affiliation(s)
- Fangfang Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
3
|
|
4
|
Islinger M, Li KW, Loos M, Liebler S, Angermüller S, Eckerskorn C, Weber G, Abdolzade A, Völkl A. Peroxisomes from the Heavy Mitochondrial Fraction: Isolation by Zonal Free Flow Electrophoresis and Quantitative Mass Spectrometrical Characterization. J Proteome Res 2009; 9:113-24. [DOI: 10.1021/pr9004663] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Ka Wan Li
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Maarten Loos
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sven Liebler
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Sabine Angermüller
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Christoph Eckerskorn
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Gerhard Weber
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Afsaneh Abdolzade
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| | - Alfred Völkl
- Department of Anatomy and Cell Biology, Ruprecht-Karl University, 69120 Heidelberg, Germany, Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands, and BD Diagnostics - Preanalytical Systems, 82152 Planegg/Martinsried, Germany
| |
Collapse
|
5
|
Schrader M, Fahimi HD. Peroxisomes and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1755-66. [PMID: 17034877 DOI: 10.1016/j.bbamcr.2006.09.006] [Citation(s) in RCA: 529] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 12/28/2022]
Abstract
The discovery of the colocalization of catalase with H2O2-generating oxidases in peroxisomes was the first indication of their involvement in the metabolism of oxygen metabolites. In past decades it has been revealed that peroxisomes participate not only in the generation of reactive oxygen species (ROS) with grave consequences for cell fate such as malignant degeneration but also in cell rescue from the damaging effects of such radicals. In this review the role of peroxisomes in a variety of physiological and pathological processes involving ROS mainly in animal cells is presented. At the outset the enzymes generating and scavenging H2O2 and other oxygen metabolites are reviewed. The exposure of cultured cells to UV light and different oxidizing agents induces peroxisome proliferation with formation of tubular peroxisomes and apparent upregulation of PEX genes. Significant reduction of peroxisomal volume density and several of their enzymes is observed in inflammatory processes such as infections, ischemia-reperfusion injury and hepatic allograft rejection. The latter response is related to the suppressive effects of TNFalpha on peroxisomal function and on PPARalpha. Their massive proliferation induced by a variety of xenobiotics and the subsequent tumor formation in rodents is evidently due to an imbalance in the formation and scavenging of ROS, and is mediated by PPARalpha. In PEX5-/- mice with the absence of functional peroxisomes severe abnormalities of mitochondria in different organs are observed which resemble closely those in respiratory chain disorders associated with oxidative stress. Interestingly, no evidence of oxidative damage to proteins or lipids, nor of increased peroxide production has been found in that mouse model. In this respect the role of PPARalpha, which is highly activated in those mice, in prevention of oxidative stress deserves further investigation.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str. 6, 35037 Marburg, Germany.
| | | |
Collapse
|
6
|
Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 2004; 122:383-93. [PMID: 15241609 DOI: 10.1007/s00418-004-0673-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 12/22/2022]
Abstract
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor-alpha on peroxisome function and peroxisome proliferator activated receptor-alpha. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5-/- knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Strasse 6, 35037, Marburg, Germany
| | | |
Collapse
|
7
|
Abstract
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.
Collapse
Affiliation(s)
- J H Eckert
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
8
|
Fahimi HD, Baumgart E. Current cytochemical techniques for the investigation of peroxisomes. A review. J Histochem Cytochem 1999; 47:1219-32. [PMID: 10490450 DOI: 10.1177/002215549904701001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The past decade has witnessed unprecedented progress in elucidation of the complex problems of the biogenesis of peroxisomes and related human disorders, with further deepening of our understanding of the metabolic role of this ubiquitous cell organelle. There have been many recent reviews on biochemical and molecular biological aspects of peroxisomes, with the morphology and cytochemistry receiving little attention. This review focuses on the state-of-the-art cytochemical techniques available for investigation of peroxisomes. After a brief introduction into the use of the 3,3'-diaminobenzidine method for localization of catalase, which is still most commonly used for identification of peroxisomes, the cerium technique for detection of peroxisomal oxidases is discussed. The influence of the buffer used in the incubation medium on the ultrastructural pattern obtained in rat liver peroxisomes in conjunction with the localization of urate oxidase in their crystalline cores is discussed, particularly since Tris-maleate buffer inhibits the enzyme activity. In immunocytochemistry, quantitation of immunogold labeling by automatic image analysis enables quantitative assessment of alterations of proteins in the matrix of peroxisomes. This provides a highly sensitive approach for analysis of peroxisomal responses to metabolic alterations or to xenobiotics. The recent evidence suggesting the involvement of ER in the biogenesis of "preperoxisomes" is mentioned and the potential role of preembedding immunocytochemistry for identification of ER-derived early peroxisomes is emphasized. The use of GFP expressed with a peroxisomal targeting signal for the investigation of peroxisomes in living cells is briefly discussed. Finally, the application of in situ hybridization for detection of peroxisomal mRNAs is reviewed, with emphasis on a recent protocol using perfusion-fixation, paraffin embedding, and digoxigenin-labeled cRNA probes, which provides a highly sensitive method for detection of both high- and low-abundance mRNAs encoding peroxisomal proteins. (J Histochem Cytochem 47:1219-1232, 1999)
Collapse
Affiliation(s)
- H D Fahimi
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
9
|
Johkura K, Usuda N, Liang Y, Nakazawa A. Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues. J Histochem Cytochem 1998; 46:1161-73. [PMID: 9742072 DOI: 10.1177/002215549804601008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the developmental changes in the localization of peroxisome-specific enzymes in rat kidney tissues from embryonic Day 16 to postnatal Week 10 by immunoblot analysis and immunohistochemistry, using antibodies for the peroxisomal enzymes catalase, d-amino acid oxidase, l-alpha-hydroxyacid oxidase (isozyme B), and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein. Peroxisomal enzymes were detected in the neonatal kidney by immunoblot analysis and their amount increased with kidney development. By light microscopic immunohistochemistry, they were first localized in a few proximal tubules in the juxtamedullary cortex of 18-day embryos. The distribution of proximal tubules positive for them expanded towards the superficial cortex with development. The full thickness of the cortex became positive for the staining by 14 days after birth. Peroxisomes could be detected by electron microscopy in structurally immature proximal tubules in 18-day embryos. Their size increased and the ultrastructure of subcompartments became clear with continuing development of proximal tubules. These results show that peroxisomal enzymes appear in the immature proximal tubules in the kidney of embryos and that the ultrastructure of the peroxisomes and localization of the peroxisomal enzymes develop along with the maturation of proximal tubules and kidney tissues.
Collapse
Affiliation(s)
- K Johkura
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
10
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
11
|
Griffini P, Vigorelli E, Bertone V, Freitas I, Van Noorden CJ. Quantitative comparison between the gel-film and polyvinyl alcohol methods for dehydrogenase histochemistry reveals different intercellular distribution patterns of glucose-6-phosphate and lactate dehydrogenases in mouse liver. THE HISTOCHEMICAL JOURNAL 1994; 26:480-6. [PMID: 7928401 DOI: 10.1007/bf00157893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The precise histochemical localization and quantification of the activity of soluble dehydrogenases in unfixed cryostat sections requires the use of tissue protectants. In this study, two protectants, polyvinyl alcohol (PVA) and agarose gel, were compared for assaying the activity of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) in normal female mouse liver. Quantification of enzyme activity was determined cytophotometrically in periportal (PP), pericentral (PC) and midzonal (MZ) areas. No coloured reaction product was present in PVA media after the incubation period. In contrast, the agarose gels appeared to be highly coloured after incubation. As a consequence, sections incubated with gel media were less intensely stained than those incubated in PVA-containing media. The specific G6PDH reaction (test minus control) yielded approximately 75% less formazan in sections incubated by the agarose gel method than with the PVA method. Further, the amount of formazan deposits attributable to G6PDH activity was highest in the midzonal and pericentral zones of the liver lobule with PVA media, and Kupffer cells could be discriminated easily because of their high G6PDH activity. Significant zonal differences or Kupffer cells could not be observed when agarose gel films were used for the detection of G6PDH activity. The LDH localization patterns appeared to be more uniform after incubation with both methods: no significant differences in specific test minus control reactions were seen between PP, PC and MZ. However, less formazan production (33%) was detected in sections incubated with agarose gels when compared with those incubated with PVA media.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Griffini
- Department of Animal Biology, University of Pavia, Italy
| | | | | | | | | |
Collapse
|
12
|
Halbhuber KJ, Hulstaert CE, Feuerstein H, Zimmermann N. Cerium as capturing agent in phosphatase and oxidase histochemistry. Theoretical background and applications. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 28:1-120. [PMID: 8190897 DOI: 10.1016/s0079-6336(11)80041-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K J Halbhuber
- Klinikum der Friedrich-Schiller-Universität Jena, Institut für Anatomie II, Germany
| | | | | | | |
Collapse
|
13
|
Belmouden A, Lê KH, Lederer F, Garchon HJ. Molecular cloning and nucleotide sequence of cDNA encoding rat kidney long-chain L-2-hydroxy acid oxidase. Expression of the catalytically active recombinant protein as a chimaera. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:17-25. [PMID: 8508789 DOI: 10.1111/j.1432-1033.1993.tb17891.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Long-chain L-alpha-hydroxy acid oxidase from rat kidney is a member of the family of FMN-dependent alpha-hydroxy-acid-oxidizing enzymes. With the knowledge of the recently determined amino acid sequence, the cDNA encoding the enzyme has now been cloned using the polymerase chain reaction. The 1648-bp cDNA contains an open reading frame coding for the 352 residues of the previously determined sequence, preceded by a methionine codon. In addition, several clones were found to present a nine-base insertion, predicting the existence of an isoform with a tripeptide VRK inserted between residues 188 and 189 of the mature protein. The presence of about 10% of this isoform in the oxidase purified from rat kidney was indeed identified by amino acid sequencing. A recombinant active enzyme was obtained as a protein fused to glutathione S-transferase using the bacterial expression plasmid pGEX-3X. Physico-chemical characterization indicated, for the fused enzyme, properties similar to those of the rat kidney protein. When the chimaera was submitted to factor Xa, proteolysis at the engineered cleavage point was poor. Separation of hydroxy acid oxidase from glutathione S-transferase could not be achieved with trypsin either. With both proteases, the initial cleavage point appeared to be in a peptide loop internal to the hydroxy acid oxidase sequence, close to or in the tripeptide insertion locus and not at the engineered factor-Xa-cleavage point. Comparative tryptic proteolysis of the rat kidney enzyme yielded a form cleaved in the same loop.
Collapse
Affiliation(s)
- A Belmouden
- Centre National de la Recherche Scientifique, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
14
|
Frederiks WM, Bosch KS, Ankum M, Wanders RJ. Histochemistry of peroxisomal enzyme activities: a tool in the diagnosis of Zellweger syndrome. J Inherit Metab Dis 1993; 16:921-8. [PMID: 7907383 DOI: 10.1007/bf00711506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The localization of the activity of the peroxisomal enzymes D-amino acid oxidase and hydroxyacid oxidase was studied at the light-microscopical level in livers and kidneys of control subjects and patients with Zellweger syndrome, an inherited disease characterized by a lack of intact peroxisomes. D-Amino acid oxidase and hydroxyacid oxidase activities were demonstrated in unfixed cryostat sections with the cerium-diaminobenzidine-cobalt-hydrogen peroxide procedure, in which cerium ions capture hydrogen peroxide, the product of both enzymes. In a second step reaction decomposition of cerium perhydroxide gives rise to a diaminobenzidine polymer complexed with cobalt ions. D-Amino acid oxidase and hydroxyacid oxidase activities were found in peroxisomes of liver parenchymal cells, and only D-amino acid oxidase in peroxisomes of proximal tubular cells of kidneys of control humans. The activities of these enzymes were not detectable in livers and kidneys of Zellweger patients. It is concluded that the cerium-diaminobenzidine-cobalt-hydrogen peroxide procedure enables the demonstration of peroxisomal enzyme activities in human tissues at the light-microscopical level and is an important tool in detecting patients with Zellweger syndrome.
Collapse
Affiliation(s)
- W M Frederiks
- Laboratory of Cell Biology and Histology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Zaar K, Völkl A, Fahimi HD. Purification of marginal plates from bovine renal peroxisomes: identification with L-alpha-hydroxyacid oxidase B. J Cell Biol 1991; 113:113-21. [PMID: 2007616 PMCID: PMC2288925 DOI: 10.1083/jcb.113.1.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The matrix of mammalian peroxisomes frequently contains crystalline inclusions. The most common inclusions are membrane associated plate-like "marginal plates" of hitherto unknown nature in renal peroxisomes and central polytubular "cores" composed of urate oxidase in hepatic peroxisomes. In bovine kidney, peroxisomes of proximal tubules exhibit peculiar angular shapes that are caused by multiple marginal plates (Zaar, K., and H.D. Fahimi. 1990. Cell Tissue Res. 260:409-414). Enriched or highly purified peroxisome preparations from this source were used to purify and characterize marginal plates. By SDS-PAGE, one major polypeptide of Mr 33,500 was observed that corresponded to the marginal plate protein. This polypeptide was identified by its enzymatic activity as well as by immunoblotting and preembedding immunocytochemistry as the isozyme B of L-alpha-hydroxyacid oxidase (EC 1.4.3.2). Morphologically, marginal plates were revealed to consist of rectangular straight-edged sheets, exhibiting a defined crystalline lattice structure. The sheets apparently are composed of a single layer of protomers which associate laterally to form a plate-like structure. As deduced from the negative staining results and the additional information of the thickness of marginal plates, each protomer seems to consist of eight subunits forming a cube-like array. The tendency of L-alpha-hydroxyacid oxidase B to self-associate in vitro (Philips, D.R., J.A. Duley, D.J. Fennell, and R.S. Holmes. 1976. Biochim. Biophys. Acta. 427:679-687) corresponds to the mode of association of cubical protomers to form the so-called marginal plates in renal peroxisomes.
Collapse
Affiliation(s)
- K Zaar
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Angermüller S. Peroxisomal oxidases: cytochemical localization and biological relevance. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1989; 20:1-65. [PMID: 2574900 DOI: 10.1016/s0079-6336(89)80008-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
(1) alpha-HAOX has a broad substrate specificity. In rat kidney, the enzyme reacts with aliphatic and aromatic alpha-hydroxy acids, in rat liver, however, only with aliphatic ones. (2) The best substrate for the demonstration of alpha-HAOX activity in rat and human liver is glycolate. (3) alpha-hydroxy butyric acid is the best substrate in the luminometric assay for the demonstration of alpha-HAOX activity in the rat kidney, whereas glycolate is not catalysed by the enzyme. (4) In the proximal tubulus epithelial cells of the rat kidney alpha-HAOX is concentrated in the peripheral matrix of the peroxisomes.
Collapse
Affiliation(s)
- S Angermüller
- Department of Anatomy and Cell Biology, University of Heidelberg
| |
Collapse
|
17
|
Beard ME, Davies T, Holloway M, Holtzman E. Peroxisomes in pigment epithelium and Müller cells of amphibian retina possess D-amino acid oxidase as well as catalase. Exp Eye Res 1988; 47:795-806. [PMID: 2905671 DOI: 10.1016/0014-4835(88)90063-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper we identify peroxisomes in Müller cells and retinal pigment epithelial cells of Rana pipiens and Xenopus laevis by virtue of their content of cytochemically stainable catalase. These organelles have the form of an extensive, branched system of tubules in the retinal pigment epithelium and appear as discrete ovoid structures in the Müller cells. In both the pigment epithelium and the Müller cells a second peroxisomal enzyme, D-amino acid oxidase, can be detected in the same structures as catalase by means of a cerium-based cytochemical staining procedure. This oxidase is active only against nonpolar and polar, uncharged D-amino acids.
Collapse
Affiliation(s)
- M E Beard
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | |
Collapse
|
18
|
Urban P, Chirat I, Lederer F. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker's yeast. Biochemistry 1988; 27:7365-71. [PMID: 3061453 DOI: 10.1021/bi00419a029] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydroxyacid oxidase from rat kidney is an FMN-dependent enzyme that catalyzes the oxidation of L-alpha-hydroxy acids as well as, more slowly, that of L-alpha-amino acids. We report here a modified purification method for the enzyme, which is found to possess one cofactor per subunit of Mr 39,000. Determination of its N-terminal sequence suggests the protein is homologous to spinach glycolate oxidase and baker's yeast lactate dehydrogenase. In the presence of a hydroxy acid and of bromopyruvate, under anaerobic conditions, the enzyme is found to catalyze both transhydrogenation and reductive bromide ion elimination. It had previously been observed that hydroxyacid oxidase could not catalyze chloride elimination from chlorolactate in the presence of oxygen [Cromartie, T.H., & Walsh, C.T. (1975) Biochemistry 14, 3482-3490]. The behavior of this enzyme toward halogeno substrates is therefore similar to that of baker's yeast L-lactate dehydrogenase and in part different from that of Mycobacterium smegmatis lactate oxidase and porcine kidney D-amino-acid oxidase. These findings can be rationalized on the basis of a common mechanism for all these enzymes, implying formation of a carbanion as a first step, with different rate-limiting steps in the overall reaction.
Collapse
Affiliation(s)
- P Urban
- Unité Associée au Centre National de la Recherche Scientifique UA 122, Hôpital Necker, Paris, France
| | | | | |
Collapse
|
19
|
Angermüller S, Fahimi HD. Heterogenous staining ofd-amino acid oxidase in peroxisomes of rat liver and kidney. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00570285] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yamamoto K, Fahimi HD. Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 1987; 105:713-22. [PMID: 2887576 PMCID: PMC2114753 DOI: 10.1083/jcb.105.2.713] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The three-dimensional (3-D) form and the interrelationship of peroxisomes (Po) in the model of regenerating rat liver after partial hepatectomy were studied by computer-assisted 3-D reconstruction of serial ultrathin sections. Po were labeled cytochemically for either catalase, which stains them all uniformly, or for D-amino acid oxidase (DAA-OX), which gives a heterogeneous reaction with lightly and darkly stained PO. In regenerating rat liver, Po exhibit marked pleomorphism with some budding forms and dumbbell-shaped ones. The 3-D reconstruction revealed many single spherical Po measuring 0.15-0.8 micron in diameter. In addition, two to five Po were found interconnected with each other via narrow 30-50-nm hourglass-shaped bridges forming a reticulum. Such aggregates of Po measured 1.5-2.5 microns across. Whereas all segments of this reticulum stained homogeneously for catalase, they exhibited a marked difference in the intensity of the DAA-OX reaction. These observations are consistent with the view of peroxisomal proliferation by budding or fragmentation from preexisting ones. Under such conditions of rapid growth as in regenerating liver, Po may be interconnected forming a reticulum. The interconnections between Po with differing DAA-OX activities suggest that they originate from the same parent organelle.
Collapse
|