1
|
Knaga S, Kasperek K, Batkowska J, Drabik K, Zięba G. Ovomucoid gene polymorphism and its influence on quality changes at various storage timepoint of eggs from two strains of Japanese quail. Poult Sci 2024; 103:104129. [PMID: 39137497 PMCID: PMC11372569 DOI: 10.1016/j.psj.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
During storage, irreversible changes occur in eggs, resulting in a decline in their quality, predominantly affecting the albumen. Ovomucoid, a major protein found in egg white, belongs to the Kazal-type serine proteinase inhibitors and serves to protect the embryo from microorganisms. Notably, in chicken eggs, it is a significant allergen. There is a possibility that its polymorphism also influences the quality and stability of table eggs. Hence, this study aimed to evaluate the potential effect of polymorphism in the ovomucoid gene and protein on quality changes during the storage of eggs derived from 2 strains of Japanese quail, encompassing various utility types. Eggs from selected females of laying and meat-type breeds were stored for 14 wk, with egg quality traits assessed 10 times during this duration. DNA was isolated from each female, and sequencing was conducted on all exons of the ovomucoid gene. In total, 5 SNPs were identified in exons and adjacent intronic sequences, with SNP1 (13:12355585), SNP4 (13:12356594), and SNP5 (13:12358538) leading to amino acid substitutions in the ovomucoid protein. Notably, all SNPs except SNP5 were identified in the ovomucoid gene of Japanese quail for the first time. The results demonstrated that in the F33 strain, SNP1, SNP3, and SNP4 exhibited significant associations with egg weight, whereas in the S22 strain, SNP5 significantly affected yolk color and various eggshell quality traits, including eggshell weight, eggshell thickness, and breaking strength, throughout the storage period. Furthermore, a haplotype block containing 2 SNPs (3 and 4) was identified, exhibiting 2 distinct haplotypes that significantly affected egg weight, eggshell weight, and breaking strength at various storage time points during egg quality analyses. These findings provide novel insights into the genetic basis of egg quality during storage and have the potential to be integrated into breeding programs for these strains.
Collapse
Affiliation(s)
- S Knaga
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| | - K Kasperek
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, 20-950, Poland.
| | - J Batkowska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, 20-950, Poland
| | - K Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, 20-950, Poland
| | - G Zięba
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, 20-950, Poland
| |
Collapse
|
2
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Montalban B, Hinou H. Glycoblotting-Based Ovo-Sulphoglycomics Reveals Phosphorylated N-Glycans as a Possible Host Factor of AIV Prevalence in Waterfowls. ACS Infect Dis 2024; 10:650-661. [PMID: 38173147 PMCID: PMC10863614 DOI: 10.1021/acsinfecdis.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Sulfated N-glycans play a crucial role in the interaction between influenza A virus (IAV) and its host. These glycans have been found to enhance viral replication, highlighting their significance in IAV propagation. This study investigated the expression of acidic N-glycans, specifically sulfated and phosphorylated glycans, in the egg whites of 72 avian species belonging to the Order Anseriformes (waterfowls). We used the glycoblotting-based sulphoglycomics approach to elucidate the diversity of acidic N-glycans and infer their potential role in protecting embryos from infections. Family-specific variations in sulfated and phosphorylated N-glycan profiles were identified in waterfowl egg whites. Different waterfowl species exhibited distinct expressions of sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures. Additionally, species-specific expression of phosphorylated N-glycans was observed. Furthermore, it was found that waterfowl species with high avian influenza virus (AIV) prevalence displayed a higher abundance of phosphorylated hybrid and high-mannose N-glycans on their egg whites. These findings shed light on the importance of phosphorylated and sulfated N-glycans in understanding the role of acidic glycans in IAV propagation.
Collapse
Affiliation(s)
- Bryan
M. Montalban
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Frontier
Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Dong Z, An L, Lu M, Tang M, Chen H, Huang X, Hou Y, Shen G, Zhang X, Zhang Y, Xia Q, Zhao P. SPINK7 Recognizes Fungi and Initiates Hemocyte-Mediated Immune Defense Against Fungal Infections. Front Immunol 2021; 12:735497. [PMID: 34603317 PMCID: PMC8484702 DOI: 10.3389/fimmu.2021.735497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Serine protease inhibitors of Kazal-type (SPINKs) were widely identified in vertebrates and invertebrates, and played regulatory roles in digestion, coagulation, and fibrinolysis. In this study, we reported the important role of SPINK7 in regulating immune defense of silkworm, Bombyx mori. SPINK7 contains three Kazal domains and has 6 conserved cysteine residues in each domain. Quantitative real-time PCR analyses revealed that SPINK7 was exclusively expressed in hemocytes and was upregulated after infection with two fungi, Saccharomyces cerevisiae and Candida albicans. Enzyme activity inhibition test showed that SPINK7 significantly inhibited the activity of proteinase K from C. albicans. Additionally, SPINK7 inhibited the growth of three fungal spores, including S. cerevisiae, C. albicans, and Beauveria bassiana. The pathogen-associated molecular patterns (PAMP) binding assays suggested that SPINK7 could bind to β-D-glucan and agglutinate B. bassiana and C. albicans. In vitro assays were performed using SPINK7-coated agarose beads, and indicated that SPINK7 promoted encapsulation and melanization of agarose beads by B. mori hemocytes. Furthermore, co-localization studies using immunofluorescence revealed that SPINK7 induced hemocytes to aggregate and entrap the fungi spores of B. bassiana and C. albicans. Our study revealed that SPINK7 could recognize fungal PAMP and induce the aggregation, melanization, and encapsulation of hemocytes, and provided valuable clues for understanding the innate immunity and cellular immunity in insects.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiqin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
6
|
Utratna M, Annuk H, Gerlach JQ, Lee YC, Kane M, Kilcoyne M, Joshi L. Rapid screening for specific glycosylation and pathogen interactions on a 78 species avian egg white glycoprotein microarray. Sci Rep 2017; 7:6477. [PMID: 28743896 PMCID: PMC5526940 DOI: 10.1038/s41598-017-06797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
There is an urgent need for discovery of novel antimicrobials and carbohydrate-based anti-adhesive strategies are desirable as they may not promote resistance. Discovery of novel anti-adhesive molecules from natural product libraries will require the use of a high throughput screening platform. Avian egg white (EW) provides nutrition for the embryo and protects against infection, with glycosylation responsible for binding certain pathogens. In this study, a microarray platform of 78 species of avian EWs was developed and profiled for glycosylation using a lectin panel with a wide range of carbohydrate specificities. The dominating linkages of sialic acid in EWs were determined for the first time using the lectins MAA and SNA-I. EW glycosylation similarity among the different orders of birds did not strictly depend on phylogenetic relationship. The interactions of five strains of bacterial pathogens, including Escherichia coli, Staphylococcus aureus and Vibrio cholera, identified a number of EWs as potential anti-adhesives, with some as strain- or species-specific. Of the two bacterial toxins examined, shiga-like toxin 1 subunit B bound to ten EWs with similar glycosylation more intensely than pigeon EW. This study provides a unique platform for high throughput screening of natural products for specific glycosylation and pathogen interactions. This platform may provide a useful platform in the future for discovery of anti-adhesives targeted for strain and species specificity.
Collapse
Affiliation(s)
- Marta Utratna
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Heidi Annuk
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Yuan C Lee
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Marian Kane
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
7
|
Qasim MA, Wang L, Qasim S, Lu S, Lu W, Wynn R, Yi ZP, Laskowski M. Additivity-based design of the strongest possible turkey ovomucoid third domain inhibitors for porcine pancreatic elastase (PPE) and Streptomyces griseus protease B (SGPB). FEBS Lett 2013; 587:3021-6. [PMID: 23892073 DOI: 10.1016/j.febslet.2013.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
Abstract
We describe here successful designs of strong inhibitors for porcine pancreatic elastase (PPE) and Streptomyces griseus protease B (SGPB). For each enzyme two inhibitor variants were designed. In one, the reactive site residue (position 18) was retained and the best residues were substituted at contact positions 13, 14, and 15. In the other variant the best residues were substituted at all contact positions except the reactive site where a Gly was substituted. The four designed variants were: for PPE, T(13)E(14)Y(15)-OMTKY3 and T(13)E(14)Y(15)G(18)M(21)P(32)V(36)-OMTKY3, and for SGPB, S(13)D(14)Y(15)-OMTKY3 and S(13)D(14)Y(15)G(18)I(19)K(21)-OMTKY3. The free energies of association (ΔG(0)) of expressed variants have been measured with the proteases for which they were designed as well as with five other serine proteases and the results are discussed.
Collapse
Affiliation(s)
- Mohammad A Qasim
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907-1393, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo CT, McClean S, Shaw C, Rao PF, Ye MY, Bjourson AJ. Purification, characterization and molecular cloning of chymotrypsin inhibitor peptides from the venom of Burmese Daboia russelii siamensis. Peptides 2013; 43:126-32. [PMID: 23428970 DOI: 10.1016/j.peptides.2013.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation.
Collapse
Affiliation(s)
- Chun-Teng Guo
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
9
|
Hirose K, Amano M, Hashimoto R, Lee YC, Nishimura SI. Insight into Glycan Diversity and Evolutionary Lineage Based on Comparative Avio-N-glycomics and Sialic Acid Analysis of 88 Egg Whites of Galloanserae. Biochemistry 2011; 50:4757-74. [DOI: 10.1021/bi101940x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuko Hirose
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Maho Amano
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Division of Quantification of Health State (Feel Fine Co.), Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ryo Hashimoto
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yuan Chuan Lee
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Division of Quantification of Health State (Feel Fine Co.), Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Ezose Sciences, Inc., 25 Riverside Drive, Pine Brook, New Jersey 07058, United States
- Medicinal Chemistry Pharmaceuticals, LLC, 1-715, N7, W4, Kita-ku, Sapporo 060-0807, Japan
| |
Collapse
|
10
|
Lomonte B, Escolano J, Fernández J, Sanz L, Angulo Y, Gutiérrez JM, Calvete JJ. Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res 2008; 7:2445-57. [DOI: 10.1021/pr8000139] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - José Escolano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Libia Sanz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| | - Juan J. Calvete
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, and Instituto de Biomedicina de Valencia, C.S.I.C., Jaume Roig 11, 46010 Valencia, Spain
| |
Collapse
|
11
|
Lee TW, Qasim MA, Laskowski M, James MNG. Structural Insights into the Non-additivity Effects in the Sequence-to-Reactivity Algorithm for Serine Peptidases and their Inhibitors. J Mol Biol 2007; 367:527-46. [PMID: 17266986 DOI: 10.1016/j.jmb.2007.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 11/17/2022]
Abstract
Sequence-to-reactivity algorithms (SRAs) for proteins have the potential of being broadly applied in molecular design. Recently, Laskowski et al. have reported an additivity-based SRA that accurately predicts most of the standard free energy changes of association for variants of turkey ovomucoid third domain (OMTKY3) with six serine peptidases, one of which is streptogrisin B (commonly known as Streptomyces griseus peptidase B, SGPB). Non-additivity effects for residues 18I and 32I, and for residues 20I and 32I of OMTKY3 occurred when the associations with SGPB were predicted using the SRA. To elucidate precisely the mechanics of these non-additivity effects in structural terms, we have determined the crystal structures of the unbound OMTKY3 (with Gly32I as in the wild-type amino acid sequence) at a resolution of 1.16 A, the unbound Ala32I variant of OMTKY3 at a resolution of 1.23 A, and the SGPB:OMTKY3-Ala32I complex (equilibrium association constant K(a)=7.1x10(9) M(-1) at 21(+/-2) C degrees, pH 8.3) at a resolution of 1.70 A. Extensive comparisons with the crystal structure of the unbound OMTKY3 confirm our understanding of some previously addressed non-additivity effects. Unexpectedly, SGPB and OMTKY3-Ala32I form a 1:2 complex in the crystal. Comparison with the SGPB:OMTKY3 complex shows a conformational change in the SGPB:OMTKY3-Ala32I complex, resulting from a hinged rigid-body rotation of the inhibitor caused by the steric hindrance between the methyl group of Ala32IA of the inhibitor and Pro192BE of the peptidase. This perturbs the interactions among residues 18I, 20I, 32I and 36I of the inhibitor, probably resulting in the above non-additivity effects. This conformational change also introduces residue 10I as an additional hyper-variable contact residue to the SRA.
Collapse
Affiliation(s)
- Ting-Wai Lee
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
12
|
Mekonnen SM, Olufsen M, Smalås AO, Brandsdal BO. Predicting proteinase specificities from free energy calculations. J Mol Graph Model 2006; 25:176-85. [PMID: 16386933 DOI: 10.1016/j.jmgm.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 11/28/2022]
Abstract
The role of the primary binding residue (P1) in complexes between three different subtilases (subtilisin Carlsberg, thermitase and proteinase K) and their canonical protein inhibitor eglin c have been studied by free energy calculations. Based on the crystal structures of eglin c in complex with subtilisin Carlsberg and thermitase, and a homology model of the eglin c-proteinase K complex, a total of 57 mutants have been constructed and docked into their host proteins. The binding free energy was then calculated using molecular dynamics (MD) simulations combined with the linear interaction energy (LIE) method for all complexes differing only in the nature of the amino acid at the P1 position. LIE calculations for 19 different complexes for each subtilase were thus carried out excluding proline. The effects of substitutions at the P1 position on the binding free energies are found to be very large, and positively charged residues (Arg, Lys and His) are particularly deleterious for all three enzymes. The charged variants of the acidic side chains are found to bind more favorably as compared to their protonated states in all three subtilases. Furthermore, hydrophobic amino acids are accommodated most favorably at the S1-site in all three enzymes. Comparison of the three series of binding free energies shows only minor differences in the 19 computed relative binding free energies among these subtilases. This is further reflected in the correlation coefficient between the 23 relative binding free energies obtained, including the possible protonation states of ionizable side chains, but excluding the P1 Pro, for subtilisin Carlsberg versus thermitase (0.95), subtilisin versus proteinase K (0.94) and thermitase versus proteinase K (0.96).
Collapse
Affiliation(s)
- Seble Merid Mekonnen
- The Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, N9037 Tromsø, Norway
| | | | | | | |
Collapse
|
13
|
Suzuki N, Laskowski M, Lee YC. Phylogenetic expression of Galalpha1-4Gal on avian glycoproteins: glycan differentiation inscribed in the early history of modern birds. Proc Natl Acad Sci U S A 2004; 101:9023-8. [PMID: 15184685 PMCID: PMC428466 DOI: 10.1073/pnas.0402822101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/18/2022] Open
Abstract
Glycoproteins containing Galalpha1-4Gal (galabiose) had been rarely found in vertebrates, except in a few species of birds and amphibians. We had previously reported that pigeon (Columba livia) egg white and serum glycoproteins are rich in N-glycans with Galalpha1-4Gal at nonreducing termini. To investigate the origin of Galalpha1-4Gal expression in avian evolution, we examined the presence of Galalpha1-4Gal glycoproteins in egg whites from 20 orders, 88 families, 163 genera, and 181 species of birds, as probed by Western blot with Griffonia simplicifolia-I lectin (terminal alpha-Gal/GalNAc-specific) and anti-P(1) mAb (Galalpha1-4Galbeta1-4GlcNAcbeta1-specific). One of the significant observations is the total absence of Galalpha1-4Gal glycoproteins in Struthioniformes (four species), Tinamiformes (three species), Craciformes (two species), Galliformes (14 species), and Anseriformes (10 species), which are phylogenetically separated from other orders at earlier stage of modern bird diversification (100-65 million years ago). The presence or absence of Galalpha1-4Gal glycoproteins in other avian orders varied by the species (104 species positive, and 44 species negative), even though some of them belong to the same order or family. Our results revealed that the expression of Galalpha1-4Gal glycoproteins is not rare among avians, and is correlated with the phylogeny. The expression was most likely differentiated at earlier stage of diversification in modern birds, but some birds might have lost the facility for the expression relatively recently.
Collapse
Affiliation(s)
- Noriko Suzuki
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Armstrong MH, Braun EL, Kimball RT. Phylogenetic Utility of Avian Ovomucoid Intron G: A Comparison of Nuclear and Mitochondrial Phylogenies in Galliformes. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/auk/118.3.799] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A novel nuclear marker, the avian ovomucoid intron G (OVOG) was sequenced from 19 galliform taxa. Results of the phylogenetic analyses using OVOG were compared to those obtained using the mitochondrial cytochrome b (cytb) gene to determine the phylogenetic utility of OVOG. OVOG appeared to have strong phylogenetic signal for reconstructing relationships among genera and families, and the only difference between OVOG and cytb was in the placement of the New World quail (Odontophoridae). Genetic distances estimated using OVOG are approximately half of those estimated using cytb, although that relationship was not linear. OVOG exhibited patterns of nucleotide substitution very different from cytb, with OVOG having little base compositional bias, a relatively low transition–transversion ratio, and little among-site rate heterogeneity.
Collapse
Affiliation(s)
| | - Edward L. Braun
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Plant Biology, Ohio State University, 1735 Neil Avenue, Columbus, Ohio 43210, USA
| | - Rebecca T. Kimball
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1735 Neil Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Nirmala X, Kodrík D, Zurovec M, Sehnal F. Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2064-73. [PMID: 11277929 DOI: 10.1046/j.1432-1327.2001.02084.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect silk is made up of structural fibrous (fibroins) and sticky (sericins) proteins, and contains a few small peptides of hitherto unknown functions. We demonstrate that two of these peptides inhibit bacterial and fungal proteinases (subtilisin, proteinase K and pronase). These 'silk proteinase inhibitors' 1 and 2 (SPI 1 and 2) are produced in the middle section of the silk-secreting glands prior to cocoon spinning and their production is controlled at transcription level. The full length cDNA of pre-SPI 1 contains 443 nucleotides and encodes a peptide of 76 amino-acid residues, of which 20 make up a signal sequence. The mature SPI 1 (6056.7 Da, 56 residues) is a typical thermostable Kunitz-type proteinase inhibitor with Arg in P1 position. The cDNA of pre-SPI 2 consists of 260 nucleotides and yields a putative secretory peptide of 58 amino-acid residues. The functional SPI 2 (3993 Da, 36 residues) is a single-domain Kazal-type proteinase inhibitor with unique structural features: free segment of the N-terminus is reduced to a single amino-acid residue, lack of CysI and CysV precludes formation of the A-ring and provides increased flexibility to the C-ring, and absence of several residues around the normal position of CysV shortens and changes the alpha helix segment of the protein. The structure reveals that the length and arrangement of the B-ring, including exposure of the P1 residue, and the position of the C-terminus relative to the B-loop, are essential for the activity of the Kazal-type inhibitors.
Collapse
Affiliation(s)
- X Nirmala
- Entomological Institute, Academy of Sciences, and the Faculty of Biological Sciences, University of South Bohemia, Branisovská, Ceské Budejovice, Czech Republic
| | | | | | | |
Collapse
|
16
|
Lu SM, Lu W, Qasim MA, Anderson S, Apostol I, Ardelt W, Bigler T, Chiang YW, Cook J, James MN, Kato I, Kelly C, Kohr W, Komiyama T, Lin TY, Ogawa M, Otlewski J, Park SJ, Qasim S, Ranjbar M, Tashiro M, Warne N, Whatley H, Wieczorek A, Wieczorek M, Wilusz T, Wynn R, Zhang W, Laskowski M. Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proc Natl Acad Sci U S A 2001; 98:1410-5. [PMID: 11171964 PMCID: PMC29270 DOI: 10.1073/pnas.98.4.1410] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 12/07/2000] [Indexed: 11/18/2022] Open
Abstract
An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved.
Collapse
Affiliation(s)
- S M Lu
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907-1393, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proc Natl Acad Sci U S A 2001. [PMID: 11171964 PMCID: PMC29270 DOI: 10.1073/pnas.031581398] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved.
Collapse
|
18
|
Grzesiak A, Helland R, Smalås AO, Krowarsch D, Dadlez M, Otlewski J. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases. J Mol Biol 2000; 301:205-17. [PMID: 10926503 DOI: 10.1006/jmbi.2000.3935] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the S(1) subsite in trypsin, chymotrypsin and plasmin has been examined by measuring the association with seven different mutants of bovine pancreatic trypsin inhibitor (BPTI); the mutants contain Gly, Ala, Ser, Val, Leu, Arg, and Trp at the P(1) position of the reactive site. The effects of substitutions at the P(1) position on the association constants are very large, comprising seven orders of magnitude for trypsin and plasmin, and over five orders for chymotrypsin. All mutants showed a decrease of the association constant to the three proteinases in the same order: Ala>Gly>Ser>Arg>Val>Leu>Trp. Calorimetric and circular dichroism methods showed that none of the P1 substitutions, except the P1-Val mutant, lead to destabilisation of the binding loop conformation. The X-ray structure of the complex formed between bovine beta-trypsin and P(1)-Leu BPTI showed that the P(1)-Leu sterically conflicts with the side-chain of P(3)-Ile, which thereby is forced to rotate approximately 90 degrees. Ile18 (P(3)) in its new orientation, in turn interacts with the Tyr39 side-chain of trypsin. Introduction of a large side-chain at the P1' position apparently leads to a cascade of small alterations of the trypsin-BPTI interface that seem to destabilise the complex by it adopting a less optimized packing and by tilting the BPTI molecule up to 15 degrees compared to the native trypsin-BPTI complex.
Collapse
Affiliation(s)
- A Grzesiak
- Protein Engineering Laboratory, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, Wroclaw, 50-137, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Baker BM, Murphy KP. Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol 1997; 268:557-69. [PMID: 9159490 DOI: 10.1006/jmbi.1997.0977] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An understanding of the structural basis for protein-protein interactions, and molecular recognition in general, requires complete characterization of binding energetics. Not only does this include quantification of the changes that occur in all of the thermodynamic parameters upon binding, including the enthalpy, entropy and heat capacity, but a description of how these changes are modulated by environmental conditions, most notably pH. Here, we have investigated the binding of turkey ovomucoid third domain (OMTKY3), a potent serine protease inhibitor, to the serine protease porcine pancreatic elastase (PPE) using isothermal titration calorimetry and structure-based thermodynamic calculations. We find that near neutral pH the binding energetics are influenced by a shift in the pKa of an ionizable group, most likely histidine 57 in the protease active site. Consequently, the observed binding energetics are strongly dependent upon solution conditions. Through a global analysis, the intrinsic energetics of binding have been determined, as have those associated with the pKa shift. The protonation energetics suggest that the drop in pKa is largely due to desolvation of the histidine residue. The resulting deprotonation is necessary for the enzymatic function of elastase. Intrinsically, at 25 degrees C the binding of OMTKY3 to PPE is characterized by an almost negligible enthalpy change, a large positive entropy change, and a large negative heat capacity change. These parameters are consistent with a model of the OMTKY3-PPE complex, which shows a large and significantly apolar protein-protein interface. Thermodynamic calculations based upon changes that occur in polar and apolar solvent-accessible surface area are in very good agreement with the measured intrinsic binding energetics.
Collapse
Affiliation(s)
- B M Baker
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
20
|
Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 1997; 266:441-61. [PMID: 9047374 DOI: 10.1006/jmbi.1996.0781] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The P1 or primary specificity residue of standard mechanism canonical protein inhibitors of serine proteinases, inserts into the S1 primary specificity cavity of the cognate enzyme upon enzyme-inhibitor complex formation. Both natural evolution and protein engineering often change the P1 residue to greatly alter the specificity and the binding strength. To systematize such results we have obtained all 20 coded P1 variants of one such inhibitor, turkey ovomucoid third domain, by recombinant DNA technology. The variants were extensively characterized. The association equilibrium constants were measured at pH 8.30, 21 (+/-2) degrees C, for interaction of these variants with six well characterized serine proteinases with hydrophobic S1, cavities. The enzyme names are followed by the best, worst and most specific coded residue for each. Bovine chymotrypsin A alpha (Tyr, Pro, Trp), porcine pancreatic elastase (Leu/Ala, Arg, Ala), subtilisin Carlsberg (Cys, Pro, Glu), Streptomyces griseus proteinase A (Cys, Pro, Leu) and B (Cys, Pro, Lys) and human leukocyte elastase (Ile, Asp, Ile). The data set was merged with Ka values for five non-coded variants at P1 of turkey ovomucoid third domain obtained in our laboratory by enzymatic semisynthesis. The ratios of the highest to the lowest Ka for each of the six enzymes range from 10(6) to 10(8). The dominant force for binding to these pockets is the hydrophobic interaction. Excess steric bulk (too large for the pocket), awkward shape (Pro, Val and Ile), polarity (Ser) oppose interaction. Ionic charges, especially negative charges on Glu- and Asp- are strongly unfavorable. The Pearson pro duct moment correlations for all the 15 enzyme pairs were calculated. We suggest that these may serve as a quantitative description of the specificity of the enzymes at P1. The sets of Streptomyces griseus proteinases A and B and of the two elastases are strongly positively correlated. Strikingly, chymotrypsin and pancreatic elastase are negatively correlated (-0.10). Such correlations can be usefully extended to many other enzymes and to many other binding pockets to provide a general measure of pocket binding specificity.
Collapse
Affiliation(s)
- W Lu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Galzie Z, Qasim MA, Salahuddin A. Isolation and characterization of domain I of ovoinhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1293:113-21. [PMID: 8652616 DOI: 10.1016/0167-4838(95)00234-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Domain I of ovoinhibitor was isolated by subjecting the protein to specific chemical cleavage by cyanogen bromide followed by repeated gel filtration. The first domain of ovoinhibitor was found to be homogeneous by the criteria of gel chromatography, SDS-PAGE and PAGE. Mr values by gel filtration (10900) and SDS-PAGE (8300) were slightly higher than that computed from amino-acid sequence. This discrepancy has been attributed to the glycoprotein nature of domain I as it was found to contain 10% neutral carbohydrate and 2% sialic acid. Fluorescence spectral properties showed the presence of tryptophan in domain I. The amino-acid composition of domain I isolated in this study was in very good agreement with that computed from amino-acid sequence. Gel filtration behaviour of the first domain was consistent with a Stokes radius of 1.6 nm and a frictional ratio of 1.2 suggesting asymmetry and/or excessive hydration. Domain I was found to be a potent inhibitor of bovine trypsin but was virtually devoid of activity against chymotrypsin, elastase and proteinase K. The equilibrium association constant for domain I-trypsin complex was computed to be 6.6x10(8)M-1.
Collapse
Affiliation(s)
- Z Galzie
- Interdisciplinary Biotechnology Unit, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | | | | |
Collapse
|
22
|
Hjelmqvist L, Metsis M, Persson H, Höög JO, McLennan J, Jörnvall H. Alcohol dehydrogenase of class I: kiwi liver enzyme, parallel evolution in separate vertebrate lines, and correlation with 12S rRNA patterns. FEBS Lett 1995; 367:306-10. [PMID: 7541757 DOI: 10.1016/0014-5793(95)00554-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol dehydrogenase class I from kiwi liver has been purified, analyzed, and compared with that of other alcohol dehydrogenases. The results show that several avian and mammalian forms of the enzyme exhibit parallel evolutionary patterns in two independent lineages of a single protein, establishing a pattern in common. Furthermore, the data correlate the enzyme evolutionary pattern with that of 12S rRNA. Biologically, the patterns complement those on ratite and other avian relationships. Functionally, the enzyme has a low Km with ethanol and a branched-chain residue at position 141, like the mammalian enzymes but in contrast to the other characterized ratite enzyme (with Ala-141 and a higher Km). This pattern of natural variability suggests a frequent but not fully complete correlation between a large residue size at position 141 and tight ethanol binding.
Collapse
Affiliation(s)
- L Hjelmqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Laurents DV, Subbiah S, Levitt M. Different protein sequences can give rise to highly similar folds through different stabilizing interactions. Protein Sci 1994; 3:1938-44. [PMID: 7703840 PMCID: PMC2142644 DOI: 10.1002/pro.5560031105] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report an interesting case of structural similarity between 2 small, nonhomologous proteins, the third domain of ovomucoid (ovomucoid) and the C-terminal fragment of ribosomal L7/L12 protein (CTF). The region of similarity consists of a 3-stranded beta-sheet and an alpha-helix. This region is highly similar; the corresponding elements of secondary structure share a common topology, and the RMS difference for "equivalent" C alpha atoms is 1.6 A. Surprisingly, this common structure arises from completely different sequences. For the common core, the sequence identity is less than 3%, and there is neither significant sequence similarity nor similarity in the position or orientation of conserved hydrophobic residues. This superposition raises the question of how 2 entirely different sequences can produce an identical structure. Analyzing this common region in ovomucoid revealed that it is stabilized by disulfide bonds. In contrast, the corresponding structure in CTF is stabilized in the alpha-helix by a composition of residues with high helix-forming propensities. This result suggests that different sequences and different stabilizing interactions can produce an identical structure.
Collapse
Affiliation(s)
- D V Laurents
- Beckman Laboratories for Structural Biology, Department of Cell Biology, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
24
|
Parker JM, Hodges RS. HomologyPlot: searching for homology to a family of proteins using a database of unique conserved patterns. J Comput Aided Mol Des 1994; 8:193-210. [PMID: 8064334 DOI: 10.1007/bf00119867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new database of conserved amino acid residues is derived from the multiple sequence alignment of over 84 families of protein sequences that have been reported in the literature. This database contains sequences of conserved hydrophobic core patterns which are probably important for structure and function, since they are conserved for most sequences in that family. This database differs from other single-motif or signature databases reported previously, since it contains multiple patterns for each family. The new database is used to align a new sequence with the conserved regions of a family. This is analogous to reports in the literature where multiple sequence alignments are used to improve a sequence alignment. A program called HomologyPlot (suitable for IBM or compatible computers) uses this database to find homology of a new sequence to a family of protein sequences. There are several advantages to using multiple patterns. First, the program correctly identifies a new sequence as a member of a known family. Second, the search of the entire database is rapid and requires less than one minute. This is similar to performing a multiple sequence alignment of a new sequence to all of the known protein family sequences. Third, the alignment of a new sequence to family members is reliable and can reproduce the alignment of conserved regions already described in the literature. The speed and efficiency of this method is enhanced, since there is no need to score for insertions or deletions as is done in the more commonly used sequence alignment methods. In this method only the patterns are aligned. HomologyPlot also provides general information on each family, as well as a listing of patterns in a family.
Collapse
Affiliation(s)
- J M Parker
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
25
|
|
26
|
Swint L, Robertson AD. Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation. Protein Sci 1993; 2:2037-49. [PMID: 8298454 PMCID: PMC2142319 DOI: 10.1002/pro.5560021205] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.
Collapse
Affiliation(s)
- L Swint
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | |
Collapse
|
27
|
Hochstrasser K, Wachter E, Reisinger PW, Greim M, Albrecht GJ, Gebhard W. Amino acid sequences of mammalian kazal-type proteinase inhibitors from salivary glands. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 106:103-8. [PMID: 8403842 DOI: 10.1016/0305-0491(93)90014-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. The amino acid sequences of bikazins (the double-headed Kazal-type proteinase inhibitors from submandibular glands) isolated from the snow leopard (Unica unica), the European mink (Mustela lutreola), and the European pine marten (Martes martes) were determined. 2. N-terminal domains of bikazins are characterized by a cysteine residue spacing that differs from that of C-terminal domains of bikazins and other Kazal-type proteinase inhibitor domains. 3. N-terminal sequences of bikazins seem to be specific for, and highly conserved within, each Carnivora family.
Collapse
Affiliation(s)
- K Hochstrasser
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke, Universität München, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Apostol I, Giletto A, Komiyama T, Zhang W, Laskowski M. Amino acid sequences of ovomucoid third domains from 27 additional species of birds. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:419-33. [PMID: 8251062 DOI: 10.1007/bf01025042] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ovomucoids consist of a single polypeptide chain which is composed of three tandem Kazal domains. Each Kazal domain is an actual or putative protein inhibitor of serine proteinases. Ovomucoid third domains were already isolated and sequenced from 126 species of birds (Laskowski et al., 1987, 1990). This paper adds 27 new species. A number of generalizations are made on the basis of sequences from 153 species. The residues that are in contact with the enzyme in enzyme-inhibitor complexes are strikingly hypervariable. While the primary specificity residue, P1, is the most variable; substitutions occur predominantly among aliphatic, hydrophobic residues. Consensus sequences for an avian ovomucoid third domain, for a b-type Kazal domain (i.e., a COOH terminal domain of multidomain inhibitors) and for a general Kazal domain are given. Finally, the individual new sequences are briefly discussed.
Collapse
Affiliation(s)
- I Apostol
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | |
Collapse
|
29
|
Bigler TL, Lu W, Park SJ, Tashiro M, Wieczorek M, Wynn R, Laskowski M. Binding of amino acid side chains to preformed cavities: interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P1 residues. Protein Sci 1993; 2:786-99. [PMID: 8495199 PMCID: PMC2142496 DOI: 10.1002/pro.5560020509] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the association of serine proteinases with their cognate substrates and inhibitors an important interaction is the fitting of the P1 side chain of the substrate or inhibitor into a preformed cavity of the enzyme called the S1 pocket. In turkey ovomucoid third domain, which is a canonical protein proteinase inhibitor, the P1 residue is Leu18. Here we report the values of equilibrium constants, Ka, for turkey ovomucoid third domain and 13 additional Leu18X variants with six serine proteinases: bovine alpha chymotrypsin A, porcine pancreatic elastase, subtilisin Carlsberg, Streptomyces griseus proteinases A and B, and human leukocyte elastase. Eight of the Xs are coded amino acids: Ala, Ser, Val, Met, Gln, Glu, Lys, and Phe, and five are noncoded: Abu, Ape, Ahx, Ahp, and Hse. They were chosen to simplify the interamino acid comparisons. In the homologous series of straight-chain side chains Ala, Abu, Ape, Ahx, Ahp, free energy of binding decreases monotonically with the side-chain length for chymotrypsin with large binding pocket, but even for this enzyme shows curvature. For the two S. griseus enzymes a minimum appears to be reached at Ahp. A minimum is clearly evident for the two elastases, where increasing the side-chain length from Ahx to Ahp greatly weakens binding, but much more so for the apparently more rigid pancreatic enzyme than for the more flexible leukocyte enzyme. beta-Branching (Ape/Val) is very deleterious for five of the six enzymes; it is only slightly deleterious for the more flexible human leukocyte elastase. The effect of gamma-branching (Ahx/Leu), of introduction of heteroatoms (Abu/Ser), (Ape/Hse), and (Ahx/Met), and of introduction of charge (Gln/Glu) and (Ahp/Lys) are tabulated and discussed. An important component of the free energy of interaction is the distortion of the binding pocket by bulky or branched side chains. Most of the variants studied were obtained by enzymatic semisynthesis. X18 variants of the 6-18 peptide GlyNH2 were synthesized and combined with natural reduced peptide 19-56. Disulfide bridges were formed. The GlyNH2 was removed and the reactive-site peptide bond X18-Glu19 was synthesized by complex formation with proteinase K. The resultant complexes were dissociated by sudden pH drop. This kinetically controlled dissociation afforded virgin, reactive-site-intact inhibitor variants.
Collapse
Affiliation(s)
- T L Bigler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393
| | | | | | | | | | | | | |
Collapse
|
30
|
Sil PC, Chaudhuri TK, Sinha NK. Basic trypsin-subtilisin inhibitor from marine turtle egg white: hydrodynamic and inhibitory properties. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:71-8. [PMID: 8427637 DOI: 10.1007/bf01024917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A basic trypsin-subtilisin inhibitor has been isolated from the egg white of marine turtle (Caretta caretta Linn.) and purified to homogeneity by gel filtration followed by ion-exchange chromatography. It has a single polypeptide chain of 117 amino acid residues, having a molecular weight of 13,600. It lacks methionine and tryptophan. Its isoelectric point is at pH 10.0 and the sedimentation coefficient (S20,w) value of 1.62 S is independent of protein concentration. It has a Stokes radius of 18.8 A, an intrinsic viscosity of 0.048 dl g-l and a diffusion coefficient of 10.17 x 10(-7) cm2 sec-1. Its fluorescence emission spectrum is similar to that of free tyrosine and the bimolecular quencing rate constant of its tyrosine residues with acrylamide is 3.15 x 10(9) M-1 sec-1. The inhibitor strongly inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio of unity. The nature of inhibition toward both enzymes is not temporary. It has independent binding sites for inhibition of trypsin and subtilisin. Chemical modification with tetranitromethane suggests the presence of three tyrosine residues on the surface of the inhibitor molecule.
Collapse
Affiliation(s)
- P C Sil
- Department of Chemistry, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
31
|
Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:433-51. [PMID: 1541261 DOI: 10.1111/j.1432-1033.1992.tb16654.x] [Citation(s) in RCA: 849] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The substrate-like 'canonical' inhibition by the 'small' serine proteinase inhibitors and the product-like inhibition by the carboxypeptidase inhibitor have provided the only atomic models of protein inhibitor--proteinase interactions for about 15 years. The recently published structures of cystatin/stefin--papain complexes and of hirudin--thrombin complexes reveal novel non-substrate-like interactions. In addition, the structure of pro-carboxypeptidase shows a model of inactivation which bears resemblance to proteinase/protein inhibitor systems. Considerable progress in understanding the transition between native and cleaved states of the serpins has also been made by several recent structural studies.
Collapse
Affiliation(s)
- W Bode
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
32
|
Strickler J, Berka T, Gorniak J, Fornwald J, Keys R, Rowland J, Rosenberg M, Taylor D. Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50721-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Ardelt W, Laskowski M. Effect of single amino acid replacements on the thermodynamics of the reactive site peptide bond hydrolysis in ovomucoid third domain. J Mol Biol 1991; 220:1041-53. [PMID: 1880798 DOI: 10.1016/0022-2836(91)90370-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have measured equilibrium constants, Khyd, at pN 6 for the hydrolysis of the reactive site peptide bond (bond between residues 18 and 19) in 42 sequenced variants (39 natural, 3 semisynthetic) of avian ovomucoid third domains. The values range from 0.4 to approximately 35. In 35 cases the effect of a single amino acid replacement on Khyd could be calculated, 13 are without effect and 22 range from a factor of 1.25 to 5.5. Several, but not all, of the effects can be rationalized in terms of residue-residue interactions that are affected by the reactive site hydrolysis. As the measurements are very precise it appears that additional measurements on designed rather than natural variants should allow for the precise measurement of side-chain--side-chain interaction energies.
Collapse
Affiliation(s)
- W Ardelt
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
34
|
Komiyama T, Bigler T, Yoshida N, Noda K, Laskowski M. Replacement of P1 Leu18 by Glu18 in the reactive site of turkey ovomucoid third domain converts it into a strong inhibitor of Glu-specific Streptomyces griseus proteinase (GluSGP). J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99076-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Stevens L. Egg white proteins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 100:1-9. [PMID: 1756612 DOI: 10.1016/0305-0491(91)90076-p] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Egg white proteins are the principal solutes present in egg white, making up approximately 10% of its weight. 2. They are globular proteins and most have acidic isoelectric points. 3. Many are glycoproteins with carbohydrate contents ranging from 2 to 58%. 4. Of the major egg white proteins, lysozyme is the only one having catalytic activity, but many have specific binding sites, e.g. for vitamins such as biotin, riboflavin and thiamin, or for metal ions such as FeIII. 5. A major group are those showing proteinase inhibitory activity, and they include ovomucoid, ovoinhibitor, cystatin and ovostatin. 6. The synthesis of egg white protein occurs in the oviduct, and is hormonally controlled either by oestrogens or progesterone. 7. Extensive studies have been carried out in the genes coding for egg white proteins.
Collapse
Affiliation(s)
- L Stevens
- Department of Biological and Molecular Sciences, University of Stirling, Scotland, UK
| |
Collapse
|