1
|
Minhas M, Lunn SE. Naturalistic examination of the anxiolytic effects of medical cannabis and associated gender and age differences in a Canadian cohort. J Cannabis Res 2023; 5:20. [PMID: 37296470 DOI: 10.1186/s42238-023-00192-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The aim of the current study was to examine patterns of medical cannabis use in those using it to treat anxiety and to investigate if the anxiolytic effects of cannabis were impacted by gender and/or age. METHODS Patient-reported data (n = 184 participants, 61% female, 34.7 ± 8.0 years) was collected through the Strainprint® app. Tracked sessions were included if the method of administration was inhalation, treatment was for anxiety and the product used was dried flower. The final analyzed dataset encompassed three of the most commonly utilized dried flower products in anxiety sessions. Independent sample t-tests were used. The core analysis examined within subject changes overtime (pre-medication to post-medication) and interactions between time with two candidate moderators [gender (male, female) and age (18-29, 30-39, and 40 + years old)] by using analysis of variance (ANOVA). For significant main effects of interactions, post hoc tests were conducted using a Bonferroni correction. A secondary analysis examined differences in proportion of emotives endorsed as a function of gender or age using chi-square test of independence. RESULTS Cannabis consumption resulted in a significant decrease in anxiety scores among both males and females (average efficacy of 50%) and efficacy was similar across the three cultivars. However, gender differences in efficacy were identified in two of the cultivars. All age groups experienced significant reductions in their anxiety post cannabis consumption; however, the 40 + year old group had significantly less efficacy than the other groups. The overall optimal dosing for the entire cohort was 9-11 inhalations for males and 5-7 inhalations for females, with some variation in dosing across the different cultivars, genders and age groups. CONCLUSIONS We found all three cultivars had significant anxiolytic effects and were well-tolerated. Some limitations of the study are the moderate sample size, self-reported diagnosis of anxiety, unknown comorbidities and experience with cannabis, whether other drugs or cannabis products were used, and restriction to solely inhaled administration. We suggest that the gender and age differences in optimal dosing could support both healthcare practitioners and patients initiate medical cannabis treatment for anxiety.
Collapse
Affiliation(s)
- Meenu Minhas
- Aurora Cannabis Inc, Edmonton, AB, Canada
- Aurora Cannabis Inc, 1590 Galbraith Rd, BC, V9M 4A1, Comox, Canada
| | - Stephanie E Lunn
- Aurora Cannabis Inc, Edmonton, AB, Canada.
- Aurora Cannabis Inc, 1590 Galbraith Rd, BC, V9M 4A1, Comox, Canada.
| |
Collapse
|
2
|
Shah S, Schwenk ES, Sondekoppam RV, Clarke H, Zakowski M, Rzasa-Lynn RS, Yeung B, Nicholson K, Schwartz G, Hooten WM, Wallace M, Viscusi ER, Narouze S. ASRA Pain Medicine consensus guidelines on the management of the perioperative patient on cannabis and cannabinoids. Reg Anesth Pain Med 2023; 48:97-117. [PMID: 36596580 DOI: 10.1136/rapm-2022-104013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The past two decades have seen an increase in cannabis use due to both regulatory changes and an interest in potential therapeutic effects of the substance, yet many aspects of the substance and their health implications remain controversial or unclear. METHODS In November 2020, the American Society of Regional Anesthesia and Pain Medicine charged the Cannabis Working Group to develop guidelines for the perioperative use of cannabis. The Perioperative Use of Cannabis and Cannabinoids Guidelines Committee was charged with drafting responses to the nine key questions using a modified Delphi method with the overall goal of producing a document focused on the safe management of surgical patients using cannabinoids. A consensus recommendation required ≥75% agreement. RESULTS Nine questions were selected, with 100% consensus achieved on third-round voting. Topics addressed included perioperative screening, postponement of elective surgery, concomitant use of opioid and cannabis perioperatively, implications for parturients, adjustment in anesthetic and analgesics intraoperatively, postoperative monitoring, cannabis use disorder, and postoperative concerns. Surgical patients using cannabinoids are at potential increased risk for negative perioperative outcomes. CONCLUSIONS Specific clinical recommendations for perioperative management of cannabis and cannabinoids were successfully created.
Collapse
Affiliation(s)
- Shalini Shah
- Dept of Anesthesiology & Perioperative Care, UC Irvine Health, Orange, California, USA
| | - Eric S Schwenk
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Hance Clarke
- Anesthesiology and Pain Medicine, Univ Toronto, Toronto, Ontario, Canada
| | - Mark Zakowski
- Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Brent Yeung
- Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, USA
| | | | - Gary Schwartz
- AABP Integrative Pain Care, Melville, New York, USA.,Anesthesiology, Maimonides Medical Center, Brooklyn, New York, USA
| | | | - Mark Wallace
- Anesthesiology, Division of Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Eugene R Viscusi
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
3
|
Martínez-Peña AA, Lee K, Pereira M, Ayyash A, Petrik JJ, Hardy DB, Holloway AC. Prenatal Exposure to Delta-9-tetrahydrocannabinol (THC) Alters the Expression of miR-122-5p and Its Target Igf1r in the Adult Rat Ovary. Int J Mol Sci 2022; 23:ijms23148000. [PMID: 35887347 PMCID: PMC9323798 DOI: 10.3390/ijms23148000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring’s reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.
Collapse
Affiliation(s)
- Annia A. Martínez-Peña
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
| | - Kendrick Lee
- The Children’s Health Research Institute, The Lawson Health Research Institute, Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada; (K.L.); (D.B.H.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.P.); (J.J.P.)
| | - Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.P.); (J.J.P.)
| | - Daniel B. Hardy
- The Children’s Health Research Institute, The Lawson Health Research Institute, Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada; (K.L.); (D.B.H.)
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 22130)
| |
Collapse
|
4
|
Delta-9-tetrahydrocannabinol increases vascular endothelial growth factor (VEGF) secretion through a cyclooxygenase-dependent mechanism in rat granulosa cells. Reprod Toxicol 2022; 111:59-67. [PMID: 35588954 DOI: 10.1016/j.reprotox.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24hours. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.
Collapse
|
5
|
Cannabinoids-based Medicine Pharmacology, Drug Interactions, and Perioperative Management of Surgical Patients. Adv Anesth 2021; 38:167-188. [PMID: 34106833 DOI: 10.1016/j.aan.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Patilea-Vrana GI, Unadkat JD. Development and Verification of a Linked Δ 9-THC/11-OH-THC Physiologically Based Pharmacokinetic Model in Healthy, Nonpregnant Population and Extrapolation to Pregnant Women. Drug Metab Dispos 2021; 49:509-520. [PMID: 33952608 DOI: 10.1124/dmd.120.000322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
Conducting clinical trials to understand the exposure risk/benefit relationship of cannabis use is not always feasible. Alternatively, physiologically based pharmacokinetic (PBPK) models can be used to predict exposure of the psychoactive cannabinoid (-)-Δ9-tetrahydrocannabinol (THC) and its active metabolite 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC). Here, we first extrapolated in vitro mechanistic pharmacokinetic information previously quantified to build a linked THC/11-OH-THC PBPK model and verified the model with observed data after intravenous and inhalation administration of THC in a healthy, nonpregnant population. The in vitro to in vivo extrapolation of both THC and 11-OH-THC disposition was successful. The inhalation bioavailability (Finh) of THC after inhalation was higher in chronic versus casual cannabis users (Finh = 0.35 and 0.19, respectively). Sensitivity analysis demonstrated that 11-OH-THC but not THC exposure was sensitive to alterations in hepatic intrinsic clearance of the respective compound. Next, we extrapolated the linked THC/11-OH-THC PBPK model to pregnant women. Simulations showed that THC plasma area under the curve (AUC) does not change during pregnancy, but 11-OH-THC plasma AUC decreases by up to 41%. Using a maternal-fetal PBPK model, maternal and fetal THC serum concentrations were simulated and compared with the observed THC serum concentrations in pregnant women at term. To recapitulate the observed THC fetal serum concentrations, active placental efflux of THC needed to be invoked. In conclusion, we built and verified a linked THC/11-OH-THC PBPK model in healthy nonpregnant population and demonstrated how this mechanistic physiologic and pharmacokinetic platform can be extrapolated to a special population, such as pregnant women. SIGNIFICANCE STATEMENT: Although the pharmacokinetics of cannabinoids have been extensively studied clinically, limited mechanistic pharmacokinetic models exist. Here, we developed and verified a physiologically based pharmacokinetic (PBPK) model for (-)-Δ9-tetrahydrocannabinol (THC) and its active metabolite, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC). The PBPK model was verified in healthy, nonpregnant population after intravenous and inhalation administration of THC, and then extrapolated to pregnant women. The THC/11-OH-THC PBPK model can be used to predict exposure in special populations, predict drug-drug interactions, or impact of genetic polymorphism.
Collapse
Affiliation(s)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Liu Z, Martin JH. Gaps in predicting clinical doses for cannabinoids therapy: Overview of issues for pharmacokinetics and pharmacodynamics modelling. Br J Clin Pharmacol 2018; 84:2483-2487. [PMID: 29766540 PMCID: PMC6177720 DOI: 10.1111/bcp.13635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
Model-based prediction on clinical doses for cannabinoids therapy is beneficial in the clinical setting, especially for seriously ill patients with both altered pharmacokinetics and pharmacodynamic responses. The objective of this article is to review the currently available PK and/or PD models of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) and to highlight the major issues for modelling this complex therapeutic area. A systematic search was conducted in the electronic databases PubMed and EMBASE using the key words 'cannabis', 'cannabinoid', 'tetrahydrocannabinol', 'THC', 'cannabidiol', 'CBD', 'pharmacokinetic model', 'pharmacodynamics model' and their combinations. Twelve empirical PK and/or PD models for THC for humans were identified. Among them, ten were developed from data of healthy participants and two were from ill patients. Models for CBD were not found. Model-based prediction on appropriate doses for cannabinoids therapy for ill patients is currently limited due to insufficiency of relevant PK and PD data. High-quality PK and PD data of cannabinoids for patients with different illnesses is needed for model development. Mechanism-based PK and PD models are promising for improved predictive dosing performance for ill and comorbid patients.
Collapse
Affiliation(s)
- Zheng Liu
- School of Medicine and Public HealthUniversity of Newcastle, Hunter Medical Research Institute, Kookaburra CircuitNSW2305Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE)New Lambton HeightsNSW2305Australia
- Clinical Pharmacology, Department of MedicineThe Royal Children's Hospital MelbourneAustralia
| | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of Newcastle, Hunter Medical Research Institute, Kookaburra CircuitNSW2305Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE)New Lambton HeightsNSW2305Australia
| |
Collapse
|
8
|
Schaefer N, Wojtyniak JG, Kroell AK, Koerbel C, Laschke MW, Lehr T, Menger MD, Maurer HH, Meyer MR, Schmidt PH. Can toxicokinetics of (synthetic) cannabinoids in pigs after pulmonary administration be upscaled to humans by allometric techniques? Biochem Pharmacol 2018; 155:403-418. [DOI: 10.1016/j.bcp.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022]
|
9
|
Newmeyer MN, Swortwood MJ, Abulseoud OA, Huestis MA. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration. Drug Alcohol Depend 2017; 175:67-76. [PMID: 28407543 DOI: 10.1016/j.drugalcdep.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although smoking is the most common cannabis administration route, vaporization and consumption of cannabis edibles are common. Few studies directly compare cannabis' subjective and physiological effects following multiple administration routes. METHODS Subjective and physiological effects, and expired carbon monoxide (CO) were evaluated in frequent and occasional cannabis users following placebo (0.001% Δ9-tetrahydrocannabinol [THC]), smoked, vaporized, and oral cannabis (6.9% THC, ∼54mg). RESULTS Participants' subjective ratings were significantly elevated compared to placebo after smoking and vaporization, while only occasional smokers' ratings were significantly elevated compared to placebo after oral dosing. Frequent smokers' maximum ratings were significantly different between inhaled and oral routes, while no differences in occasional smokers' maximum ratings between active routes were observed. Additionally, heart rate increases above baseline 0.5h after smoking (mean 12.2bpm) and vaporization (10.7bpm), and at 1.5h (13.0bpm) and 3h (10.2bpm) after oral dosing were significantly greater than changes after placebo, with no differences between frequent and occasional smokers. Finally, smoking produced significantly increased expired CO concentrations 0.25-6h post-dose compared to vaporization. CONCLUSIONS All participants had significant elevations in subjective effects after smoking and vaporization, but only occasional smokers after oral cannabis, indicating partial tolerance to subjective effects with frequent exposure. There were no differences in occasional smokers' maximum subjective ratings across the three active administration routes. Vaporized cannabis is an attractive alternative for medicinal administrations over smoking or oral routes; effects occur quickly and doses can be titrated with minimal CO exposure. These results have strong implications for safety and abuse liability assessments.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse National Institutes of Health, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Madeleine J Swortwood
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse National Institutes of Health, Baltimore, MD, United States; Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, United States
| | - Osama A Abulseoud
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse National Institutes of Health, Baltimore, MD, United States
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse National Institutes of Health, Baltimore, MD, United States; University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Marsot A, Audebert C, Attolini L, Lacarelle B, Micallef J, Blin O. Population pharmacokinetics model of THC used by pulmonary route in occasional cannabis smokers. J Pharmacol Toxicol Methods 2017; 85:49-54. [DOI: 10.1016/j.vascn.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
|
11
|
Heuberger JAAC, Guan Z, Oyetayo OO, Klumpers L, Morrison PD, Beumer TL, van Gerven JMA, Cohen AF, Freijer J. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics. Clin Pharmacokinet 2015; 54:209-19. [PMID: 25316574 DOI: 10.1007/s40262-014-0195-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.
Collapse
|
12
|
Schwope DM, Bosker WM, Ramaekers JG, Gorelick DA, Huestis MA. Psychomotor performance, subjective and physiological effects and whole blood Δ⁹-tetrahydrocannabinol concentrations in heavy, chronic cannabis smokers following acute smoked cannabis. J Anal Toxicol 2012; 36:405-12. [PMID: 22589524 DOI: 10.1093/jat/bks044] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Δ⁹-Tetrahydrocannabinol (THC) is the illicit drug most frequently observed in accident and driving under the influence of drugs investigations. Whole blood is often the only available specimen collected during such investigations, yet few studies have examined relationships between cannabis effects and whole blood concentrations following cannabis smoking. Nine male and one female heavy, chronic cannabis smokers resided on a closed research unit and smoked ad libitum one 6.8% THC cannabis cigarette. THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC were quantified in whole blood and plasma. Assessments were performed before and up to 6 h after smoking, including subjective [visual analog scales (VAS) and Likert scales], physiological (heart rate, blood pressure and respirations) and psychomotor (critical-tracking and divided-attention tasks) measures. THC significantly increased VAS responses and heart rate, with concentration-effect curves demonstrating counter-clockwise hysteresis. No significant differences were observed for critical-tracking or divided-attention task performance in this cohort of heavy, chronic cannabis smokers. The cannabis influence factor was not suitable for quantifying psychomotor impairment following cannabis consumption and was not precise enough to determine recent cannabis use with accuracy. These data inform our understanding of impairment and subjective effects following acute smoked cannabis and interpretation of whole blood cannabinoid concentrations in forensic investigations.
Collapse
Affiliation(s)
- David M Schwope
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
13
|
Vaddady PK, Mehrotra N, Zhang X, Yates CR, Moore BM, Meibohm B. Pharmacokinetics of a combination of Δ9-tetrahydro-cannabinol and celecoxib in a porcine model of hemorrhagic shock. Biopharm Drug Dispos 2010; 32:89-98. [PMID: 21341278 DOI: 10.1002/bdd.740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
Abstract
Hemorrhagic shock involves loss of a substantial portion of circulating blood volume leading to diminished cardiac output and oxygen delivery to peripheral tissues. In situations where an immediate resuscitation cannot be provided, pharmacotherapy with a novel combination of Δ9-tetrahydro-cannabinol (THC) and celecoxib (CEL) is currently investigated as an alternative strategy to prevent organ damage. In the present study, 28 Yorkshire×Landrace pigs were used to study the pharmacokinetics of THC and CEL in an established porcine model of hemorrhagic shock. Pigs in hemorrhagic shock received 0.5, 1 or 4 mg/kg THC and 2 mg/kg CEL, while normotensive pigs received 1 mg/kg THC and 2 mg/kg CEL by intravenous injection. THC and CEL plasma concentrations were simultaneously determined by LC-MS/MS. Pharmacokinetic parameters and their between animal variability were obtained using standard non-compartmental analysis as well as a compartmental analysis using nonlinear mixed effects modeling. The concentration-time profiles of THC and CEL followed a multi-exponential decline and their pharmacokinetics were similar in hemorrhagic shock and normotensive conditions, despite the substantial change in hemodynamics in the animals with shock. This interesting finding might be due to the pharmacologic effect of the THC/CEL combination, which is intended to maintain adequate perfusion of vital organs in shock. Overall, this study established THC and CEL pharmacokinetics in a porcine shock model and provides the basis for dose selection in further studies of THC and CEL in this indication.
Collapse
Affiliation(s)
- Pavan K Vaddady
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
14
|
Liem-Moolenaar M, te Beek ET, de Kam ML, Franson KL, Kahn RS, Hijman R, Touw D, van Gerven JMA. Central nervous system effects of haloperidol on THC in healthy male volunteers. J Psychopharmacol 2010; 24:1697-708. [PMID: 20142302 DOI: 10.1177/0269881109358200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced 'psychotomimetic' effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their combination were investigated in 35 healthy, male mild cannabis users, measuring Positive and Negative Syndrome Scale, Visual Analogue Scales for alertness, mood, calmness and psychedelic effects, saccadic and smooth pursuit eye measurements, electroencephalography, Body Sway, Stroop test, Visual and Verbal Learning Task, hormone levels and pharmacokinetics. Compared with placebo, THC significantly decreased smooth pursuit, Visual Analogue Scales alertness, Stroop test performance, immediate and delayed word recall and prolactin concentrations, and significantly increased positive and general Positive and Negative Syndrome Scale score, Visual Analogue Scales feeling high, Body Sway and electroencephalography alpha. Haloperidol reversed the THC-induced positive Positive and Negative Syndrome Scale increase to levels observed with haloperidol alone, but not THC-induced 'high' feelings. Compared with placebo, haloperidol significantly decreased saccadic peak velocity, smooth pursuit, Visual Analogue Scales mood and immediate and delayed word recall and significantly increased Body Sway, electroencephalography theta and prolactin levels. THC-induced increases in positive Positive and Negative Syndrome Scale but not in Visual Analogue Scales feeling high were reversed by haloperidol. This indicates that psychotic-like effects induced by THC are mediated by dopaminergic systems, but that other systems are involved in 'feeling high'. Additionally, the clear reductions of psychotic-like symptoms by a clinically relevant dose of haloperidol suggest that THC administration may be a useful pharmacological cannabinoid model for psychotic effects in healthy volunteers.
Collapse
|
15
|
Delta-9-tetrahydrocannabinol (THC) serum concentrations and pharmacological effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg THC. Psychopharmacology (Berl) 2008; 201:171-81. [PMID: 18695931 DOI: 10.1007/s00213-008-1260-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Delta9-Tetrahydrocannabinol (THC) is the main active constituent of cannabis. In recent years, the average THC content of some cannabis cigarettes has increased up to approximately 60 mg per cigarette (20% THC cigarettes). The pharmacokinetics of THC after smoking cannabis cigarettes containing more than approximately 35 mg THC (3.55% THC cigarettes) is unknown. To be able to perform suitable exposure risk analysis, it is important to know if there is a linear relation at higher doses. OBJECTIVES The present study aimed to characterise the pharmacokinetics of THC, the active metabolite 11-OH-THC and the inactive metabolite THC-COOH after smoking a combination of tobacco and cannabis containing high THC doses. MATERIALS AND METHODS This double-blind, placebo-controlled, four-way, cross-over study included 24 male non-daily cannabis users (two to nine joints per month). Participants were randomly assigned to smoke cannabis cigarettes containing 29.3, 49.1 and 69.4 mg THC and a placebo. Serial serum samples collected over a period of 0-8 h were analysed by liquid chromatography electrospray tandem mass spectrometry. Effects on heart rate, blood pressure and 'high' feeling were also measured. RESULTS Mean maximal concentrations (Cmax) were 135.1, 202.9 and 231.0 microg/L for THC and 9.2, 16.4 and 15.8 microg/L for 11-OH-THC after smoking a 29.3-, 49.1- and 69.4-mg THC cigarette, respectively. A large inter-individual variability in Cmax was observed. Heart rate and 'high' feeling significantly increased with increasing THC dose. CONCLUSIONS This study demonstrates that the known linear association between THC dose and THC serum concentration also applies for high THC doses.
Collapse
|
16
|
Strougo A, Zuurman L, Roy C, Pinquier JL, van Gerven JMA, Cohen AF, Schoemaker RC. Modelling of the concentration--effect relationship of THC on central nervous system parameters and heart rate -- insight into its mechanisms of action and a tool for clinical research and development of cannabinoids. J Psychopharmacol 2008; 22:717-26. [PMID: 18583433 DOI: 10.1177/0269881108089870] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmacokinetics after pulmonary administration of delta-9-tetrahydrocannabinol (THC) and its major metabolites 11-OH-THC and 11-nor-9-COOH-THC was quantified. Additionally, the relationship between THC and its effects on heart rate, body sway and several visual analogue scales was investigated using pharmacokinetic-pharmacodynamic (PK-PD) modelling. This provided insights useful for the research and development of novel cannabinoids and the physiology and pharmacology of cannabinoid systems. First, the PK-PD model gave information reflecting various aspects of cannabinoid systems. The delay between THC concentration and effect was quantified in equilibration half-lives of 7.68 min for heart rate and from 39.2 to 84.8 min for the CNS responses. This suggests that the effect of THC on the different responses could be due to different sites of action or different physiological mechanisms. Differences in the shape of the concentration-effect relationship could indicate various underlying mechanisms. Second, the PK-PD model can be used for prediction of THC concentration and effect profiles. It is illustrated how this can be used to optimise studies with entirely different trial designs. Third, many new cannabinoid agonists and antagonists are in development. PK-PD models for THC can be used as a reference for new agonists or as tools to quantitate the pharmacological properties of cannabinoid antagonists.
Collapse
Affiliation(s)
- A Strougo
- Centre for Human Drug Research, Statistics, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.
Collapse
|
18
|
|
19
|
Wilson DM, Peart J, Martin BR, Bridgen DT, Byron PR, Lichtman AH. Physiochemical and pharmacological characterization of a Delta(9)-THC aerosol generated by a metered dose inhaler. Drug Alcohol Depend 2002; 67:259-67. [PMID: 12127197 DOI: 10.1016/s0376-8716(02)00078-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The goal of the present study was to formulate a Delta(9)-tetrahydrocannabinol (Delta(9)-THC) metered-dose inhaler (MDI) that can be used to provide a systemic dose of Delta(9)-THC via inhalation. Following physiochemical characterization and accelerated stability testing of the aerosol, mice were exposed to the aerosol and evaluated for pharmacological effects indicative of cannabinoid activity, including hypomotilìty, antinociception, catalepsy, and hypothermia. The fine particle dose of Delta(9)-THC was 0.22 +/- 0.03 mg (mean +/- S.D.) or 25% of the emitted dose and was not affected by accelerated stability testing. A 10-min exposure to aerosolized Delta(9)-THC elicited hypomotility, antinociception, catalepsy, and hypothermia. Additionally, Delta(9)-THC concentrations in blood and brain at the antinociceptive ED(50) dose were similar for both inhalation and intravenous routes of administration. Finally, pretreatment with the CB(1) receptor antagonist SR 141716A (10 mg/kg, i.p.) significantly antagonized all of the Delta(9)-THC-induced effects. These results indicate that an MDI is a viable method to deliver a systemic dose of Delta(9)-THC that elicits a full spectrum of cannabinoid pharmacological effects in mice that is mediated via a CB(1) receptor mechanism of action. Further development of a Delta(9)-THC MDI could provide an appropriate delivery device for the therapeutic use of cannabinoids, thereby reducing the need for medicinal marijuana.
Collapse
Affiliation(s)
- David M Wilson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
20
|
Cherlet T, Scott JE. Tetrahydrocannabinol (THC) alters synthesis and release of surfactant-related material in isolated fetal rabbit type II cells. Drug Chem Toxicol 2002; 25:171-90. [PMID: 12024801 DOI: 10.1081/dct-120003258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, there has been a great deal of interest in the biological consequences of marijuana use. While evidence indicates that cannabinoids may have therapeutic uses in alleviating certain disease discomfort, there is little recent information on potential health risks, particularly related to the developing fetus. The present study was undertaken to determine the effects of delta 9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana on fetal lung development specifically related to surfactant production. The rationale for the choice of this model lies in the importance of adequate lung development and surfactant production for the successful transition of the fetus to an air-breathing environment. Lung type II cells, the source of pulmonary surfactant, were isolated from fetal rabbit lungs on the 24th gestational day and incubated concurrently with various concentrations of THC and [3H]choline to label disaturated phosphatidylcholine (DSPC) the major surface-active phospholipid of surfactant. Under these conditions THC significantly reduced radiolabelling of DSPC and at the highest concentration (10(-4) M) induced release of DSPC. Pulse-chase studies were also conducted. Cells were prelabelled with [3H]choline, removed to fresh medium with THC (10(-4) M) and incubated for various time periods. Aqueous- and organic-soluble intermediates of DSPC formation were isolated. THC induced a significant increase in radiolabelling of CDPcholine, the rate-limiting conversion in DSPC synthesis. Radiolabelling of total phosphatidylcholine and DSPC was also significantly increased. Assay of CTP: cholinephosphate cytidylyltransferase which enzymatically converts cholinephosphate to CDPcholine showed that THC and phosphatidylglycerol (PG) both induced activation of the enzyme in fetal lung cytosol but not in the membranes. This effect of THC and PG was not additive. THC activated the enzyme only in fetal and not adult rabbit lung. The ability of THC to induce release of surfactant related material was also examined. In cells prelabelled with [3H]choline, THC induced release of [3H]DSPC in both cultured and freshly isolated fetal type II cells. These results suggest THC reduces formation of surfactant DSPC, probably through alterations in membrane dynamics. However, intracellular THC may actually increase formation of DSPC through an effect on the rate-limiting enzyme. THC also increases release of previously formed surfactant-related material.
Collapse
Affiliation(s)
- T Cherlet
- Departments of Oral Biology and Anatomy, Faculties of Medicine and Dentistry, University of Manitoba, Winnipeg, MB, RZE OW2, Canada
| | | |
Collapse
|
21
|
Lukas SE, Orozco S. Ethanol increases plasma Delta(9)-tetrahydrocannabinol (THC) levels and subjective effects after marihuana smoking in human volunteers. Drug Alcohol Depend 2001; 64:143-9. [PMID: 11543984 DOI: 10.1016/s0376-8716(01)00118-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Marihuana and alcohol are often used together, yet little is known about why they are combined. Male volunteers were assigned to one marihuana treatment group (placebo, low or moderate dose Delta(9)-tetrahydrocannabinol (THC)) and, on three separate study days, they also drank a different dose of ethanol (placebo, 0.35 or 0.7 g/kg). Plasma THC levels and changes in subjective mood states were recorded for 90 min after smoking. For many of the drug combinations, when subjects consumed ethanol they detected marihuana effects more quickly, reported more episodes of euphoria and had higher plasma THC levels than when they consumed placebo ethanol. These data suggest that ethanol may increase the absorption of THC resulting in an increase in the positive subjective mood effects of smoked marihuana and contributing to the popularity of this drug combination.
Collapse
Affiliation(s)
- S E Lukas
- McLean Hospital/Harvard Medical School, Behavioral Psychopharmacology Research Laboratory, East House III, 115 Mill Street, Belmont, MA 02478-9106, USA.
| | | |
Collapse
|
22
|
Abstract
The present study was conducted to determine if there is a neurophysiological correlate of marihuana-induced good effects or euphoria. Three groups of 6 male occasional marihuana smokers were prepared for electroencephalographic (EEG) recording and smoked either placebo or marihuana cigarettes containing 1.26% or 2.53% delta 9-tetrahydrocannabinol (delta 9-THC) in a controlled laboratory setting. Using a continuously available non-verbal joystick device and a questionnaire, subjects reported changes in their subjective mood state while EEG activity was continuously recorded. Subjects reported multiple episodes of intense good effects or euphoria during the first 15 min after marihuana. These episodes of euphoria occurred while plasma delta 9-THC levels were rapidly rising. EEG alpha power during these discrete episodes of euphoria was significantly higher suggesting that these transient EEG changes may reflect a neurophysiological correlate of the reinforcing effects of marihuana.
Collapse
Affiliation(s)
- S E Lukas
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, Belmont, MA 02178, USA
| | | | | |
Collapse
|
23
|
Johansson E, Halldin MM, Agurell S, Hollister LE, Gillespie HK. Terminal elimination plasma half-life of delta 1-tetrahydrocannabinol (delta 1-THC) in heavy users of marijuana. Eur J Clin Pharmacol 1989; 37:273-7. [PMID: 2558889 DOI: 10.1007/bf00679783] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The terminal elimination half-life of delta 1-tetrahydrocannabinol (delta 1-THC) was investigated in eight men who were heavy users of marijuana. A stable isotope assay, following smoking deuterium-labeled delta 1-THC, was used to determine plasma concentrations. In two additional users plasma levels were followed after administration of unlabeled delta 1-THC. The subjects were asked to smoke a "loading dose" of 56 mg delta 1-THC during two days and then abstain from all marijuana use for 4 weeks. The pharmacokinetic behavior was consistent with a multicompartment model with a mean plasma elimination half-life of delta 1-THC of 4.3 days when concentrations were followed for 10-15 days after smoking. In the two subjects with detectable plasma levels during 4 weeks, half-lives of 9.6 and 12.6 days was obtained.
Collapse
Affiliation(s)
- E Johansson
- Department of Pharmacognosy, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
24
|
Johansson E, Agurell S, Hollister LE, Halldin MM. Prolonged apparent half-life of delta 1-tetrahydrocannabinol in plasma of chronic marijuana users. J Pharm Pharmacol 1988; 40:374-5. [PMID: 2899638 DOI: 10.1111/j.2042-7158.1988.tb05272.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this study was to characterize the elimination half-life of delta 1-tetrahydrocannabinol in blood plasma in chronic marijuana users. The subjects smoked four cigarettes during a two day period, each cigarette containing 15 mg deuterium-labelled delta 1-tetrahydrocannabinol. The plasma concentrations of deuterium-labelled tetrahydrocannabinol were measured for 13 days using gas chromatography-mass spectrometry equipped with selected ion monitoring. The elimination half-life for delta 1-tetrahydrocannabinol in blood plasma was calculated to be 4.1 +/- 1.1 days (range 2.9-5.0 days) from the two week plasma level curves. Albeit the present results are based upon a small sample, an elimination half-life of delta 1-tetrahydrocannabinol in blood plasma of about 4 days is more in line with apparent half-life excretion of delta 1-tetrahydrocannabinol metabolites in the urine of chronic marijuana smokers.
Collapse
Affiliation(s)
- E Johansson
- Department of Pharmacognosy, Uppsala University, Sweden
| | | | | | | |
Collapse
|
25
|
Daldrup T, Thompson T, Reudenbach G. Cannabiskonsum — Nachweisbarkeitsdauer, zeitlicher Verlauf, forensische Bedeutung. SUCHTKRANKHEITEN 1988. [DOI: 10.1007/978-3-662-10134-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
|
27
|
Abstract
Male volunteer subjects smoked one marijuana cigarette containing 100, 200, or 250 micrograms/kg delta-9-tetrahydrocannabinol (THC) and were tested on three perceptual-motor performance measures related to driving. Performance was measured and blood samples were collected for 24 h after smoking. The covariation between pharmacodynamics of performance and pharmacokinetics of THC in plasma was investigated for decrement in performance as the response to smoking a single marijuana cigarette. A significant linear correlation was found between tracking errors under divided attention and THC plasma levels over 5-25 ng/ml for approximately 2 h after smoking. A sigmoid relation was found between critical tracking breakpoint and log THC plasma levels over 2-25 ng/ml for approximately 7 h after smoking.
Collapse
|
28
|
Willette RE. Development of assays for drugs of abuse. CONTROLLED CLINICAL TRIALS 1984; 5:466-71. [PMID: 6518773 DOI: 10.1016/0197-2456(84)90005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The treatment and prevention of drug abuse has required the development of assays for biological markers to assess an individual's adherence to a treatment regimen or to the prescribed abstinence of drug use. Generally, this requires assays sensitive enough to detect a few nanograms of a particular metabolite per milliliter of urine. Most frequently, the identify of the drug or combination of drugs is not known. This placed a large responsibility on the development of reliable methods. To accomplish this mission, the National Institute on Drug Abuse funded a multiyear, multiple-contract program. This program included the synthesis of reference drugs, their metabolites, and labeled derivatives; the development of several new analytical methods, especially using gas chromatography/mass spectrometry and immunoassay techniques; the establishment of analytical service facilities; animal and human pharmacokinetic studies; and laboratory proficiency testing. Many of the assays are now commercially available and widely used. Assay development requires the consideration of a number of factors, namely, specificity, sensitivity, time, simplicity, and cost. These factors are illustrated in a number of examples.
Collapse
|
29
|
Abstract
Clinical studies have given contradictory reports on the effect of smoking marijuana on the plasma levels of testosterone in males. A reanalysis of existing data established that testosterone levels are depressed both after smoking one marijuana cigarette and after intravenous infusion of delta-9-tetrahydrocannabinol, a pharmacologically active component of marijuana. Simulation of the marijuana interaction, under the assumption that delta-9-tetrahydrocannabinol inhibits testosterone production or secretion, suggests a minimum of 24 hours are required for testosterone to return to pre-smoking levels. A series of clinical studies are specified to clarify the nature of the interaction.
Collapse
|