1
|
Mager DE, Straubinger RM. Contributions of William Jusko to Development of Pharmacokinetic and Pharmacodynamic Models and Methods. J Pharm Sci 2024; 113:2-10. [PMID: 37778439 DOI: 10.1016/j.xphs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
2
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm Drug Dispos 2007; 28:263-73. [PMID: 17569107 PMCID: PMC4181331 DOI: 10.1002/bdd.551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methylprednisolone (MPL) pharmacokinetics was examined in adrenalectomized (ADX) and normal rats to assess the feasibility of intramuscular (i.m.) dosing for use in pharmacodynamic studies. Several study phases were pursued. Parallel group studies were performed in normal and ADX rats given 50 mg/kg MPL (i.v. or i.m.) and blood samples were collected up to 6 h. Data from studies where normal rats were dosed with 50 mg/kg MPL i.m. and killed over either 6 or 96 h were combined to determine muscle site and plasma MPL concentrations. Lastly, ADX rats were dosed with 50 mg/kg MPL i.m. and killed over 18 h to assess hepatic tyrosine aminotransferase (TAT) dynamics. MPL exhibited bi-exponential kinetics after i.v. dosing with a terminal slope of 2.1 h(-1). The i.m. drug was absorbed slowly with two first-order absorption rate constants, 1.26 and 0.219 h(-1) indicating flip-flop kinetics with overall 50% bioavailability. The kinetics of MPL at the injection site exhibited slow, dual absorption rates. Although i.m. MPL showed lower bioavailability compared with other corticosteroids in rats, TAT dynamics revealed similar i.m. and i.v. response profiles. The more convenient intramuscular dosing can replace the i.v. route without causing marked differences in pharmacodynamics.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Correspondence to: 565 Hochstetter Hall, Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
3
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 2007; 34:643-67. [PMID: 17593325 PMCID: PMC4180077 DOI: 10.1007/s10928-007-9063-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase (TAT) were evaluated in normal rats. A group of normal male Wistar rats were injected with 50 mg/kg methylprednisolone (MPL) intramuscularly at the nadir of their plasma corticosterone (CST) rhythm (early light cycle) and sacrificed at various time points up to 96 h post-treatment. Blood and livers were collected to measure plasma MPL, CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density, TAT mRNA, and TAT activity. The pharmacokinetics of MPL showed bi-exponential disposition with two first-order absorption components from the injection site and bioavailability was 21%. Plasma CST was reduced after MPL dosing, but resumed its daily circadian pattern within 36 h. Cytosolic receptor density was significantly suppressed (90%) and returned to baseline by 72 h resuming its biphasic pattern. Hepatic GR mRNA follows a circadian pattern which was disrupted by MPL and did not return during the study. MPL caused significant down-regulation (50%) in GR mRNA which was followed by a delayed rebound phase (60-70 h). Hepatic TAT mRNA and activity showed up-regulation as a consequence of MPL, and returned to their circadian baseline within 72 and 24 h of treatment. A mechanistic receptor/gene-mediated pharmacokinetic/pharmacodynamic model was able to satisfactorily describe the complex interplay of exogenous and endogenous corticosteroid effects on hepatic GR mRNA, cytosolic free GR, TAT mRNA, and TAT activity in normal rats.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Clinical Pharmacology, Pfizer Inc., Groton, CT 06340, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Hazra A, DuBois DC, Almon RR, Jusko WJ. Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. J Pharmacokinet Pharmacodyn 2007; 34:333-54. [PMID: 17285360 PMCID: PMC4184272 DOI: 10.1007/s10928-007-9049-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-beta (CEBP-beta), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
Qu J, Jusko WJ, Straubinger RM. Utility of cleavable isotope-coded affinity-tagged reagents for quantification of low-copy proteins induced by methylprednisolone using liquid chromatography/tandem mass spectrometry. Anal Chem 2006; 78:4543-52. [PMID: 16808464 PMCID: PMC2516203 DOI: 10.1021/ac0521697] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene expression changes underlie important biological and pharmacological responses. Although mRNA expression profiling is routine, quantification of low-abundance proteins, which typically represent key effectors of responses, remains challenging. A novel strategy was developed for sensitive and accurate quantification of low-abundance proteins in highly complex biological matrixes. First, the cysteine specificity of cleavable isotope-coded affinity tags (cICAT) was employed to reduce the complexity of the digested proteome of tissue homogenates and to improve the quantification of low-abundance proteins. Second, cICAT-treated tissue samples were analyzed on a capillary LC coupled to an ion trap MS to screen for the subset of cICAT-peptides, derived from target proteins of interest, that was successfully labeled and retrieved. Third, putatively identified peptides derived from target proteins were synthesized, cICAT-labeled, and used both to optimize multiple reactions monitoring (MRM) analysis and to confirm chromatographic retention time and fragmentation pattern. Finally, batch quantification of target peptides was performed using MRM on a LC/triple-quad MS/MS using (12)C- (control) and (13)C (experimental)-cICAT-labeled tissue mixtures. The utility of this method was demonstrated by elucidating the time-course of tyrosine aminotransferase induction in the liver of rats following treatment with the corticosteroid methylprednisolone (MPL). This approach significantly improved quantitative sensitivity, and the linear range was 10-fold greater than published previously. An additional advantage is that archived samples may be reinterrogated to investigate the regulation of additional targets that become of interest. Stored samples were sucessfully reinterrogated to monitor the induction of ornithine decarboxylase, which is also an MPL-induced protein. To our knowledge, this is the first report of an ICAT-based method that is capable of quantifying low-abundance proteins in highly complex samples, such as tissue homogenates. The approach enables simultaneous quantification of multiple effector proteins induced by biological or pharmacological stimuli, and the processed samples can be interrogated repeatedly as additional targets of interest arise.
Collapse
Affiliation(s)
- Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| | - William J. Jusko
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| | - Robert M. Straubinger
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| |
Collapse
|
6
|
Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 2002; 29:1-24. [PMID: 12194533 PMCID: PMC4207287 DOI: 10.1023/a:1015765201129] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A fifth-generation model for receptor/gene-mediated corticosteroid effects was proposed based on results from a 50 mg/kg i.v. bolus dose of methylprednisolone (MPL) in male adrenalectomized rats, and confirmed using data from other acute dosage regimens. Steady-state equations for receptor down-regulation and tyrosine aminotransferase (TAT) enzyme induction patterns were derived. Five groups of male Wistar rats (n = 5/group) were subcutaneously implanted with Alzet mini-pumps primed to release saline or 0.05, 0.1, 0.2, and 0.3 mg/kg/hr of MPL for 7 days. Rats were sacrificed at the end of the infusion. Plasma MPL concentrations, blood lymphocyte counts, and hepatic cytosolic free receptor density, receptor mRNA, TAT mRNA, and TAT enzyme levels were quantitated. The pronounced steroid effects were evidenced by marked losses in body weights and changes in organ weights. All four treatments caused a dose-dependent reduction in hepatic receptor levels, which correlated with the induction of TAT mRNA and TAT enzyme levels. The 7 day receptor mRNA and free receptor density correlated well with the model predicted steady-state levels. However, the extent of enzyme induction was markedly higher than that predicted by the model suggesting that the usual receptor/gene-mediated effects observed upon single/intermittent dosing of MPL may be countered by alterations in other aspects of the system. A mean IC50 of 6.1 ng/mL was estimated for the immunosuppressive effects of methylprednisolone on blood lymphocytes. The extent and duration of steroid exposure play a critical role in mediating steroid effects and advanced PK/PD models provide unique insights into controlling factors.
Collapse
Affiliation(s)
- Rohini Ramakrishnan
- Department of Pharmaceutical Sciences, 565 Hochstetter Hall, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
7
|
Hochhaus G, Barrett JS, Derendorf H. Evolution of pharmacokinetics and pharmacokinetic/dynamic correlations during the 20th century. J Clin Pharmacol 2000; 40:908-17. [PMID: 10975063 DOI: 10.1177/00912700022009648] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- G Hochhaus
- College of Pharmacy, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
8
|
Sun YN, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ. Dose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1998; 26:619-48. [PMID: 10485078 DOI: 10.1023/a:1020746822634] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dose-dependent and repeated-dose effects of methylprednisolone (MPL) on down-regulation of glucocorticoid receptor messenger RNA (GR mRNA) and GR density, as well as tyrosine aminotransferase (TAT) mRNA and TAT induction by receptor/gene-mediated mechanisms in rat liver were examined. A previously developed pharmacokinetic/pharmacodynamic (PK/PD) model was used to design these studies which sought to challenge the model. Three groups of male adrenalectomized Wistar rats received MPL by i.v. injection: low-dose (10 mg/kg at Time 0), high-dose (50 mg/kg at Time 0), and dual-dose (50 mg/kg at Time 0 and 24 hr). Plasma concentrations of MPL, and hepatic content of free GR, GR mRNA, TAT mRNA, and TAT activity were determined. The P-Pharm program was applied for population analysis of MPL PK revealing low interindividual variation in CL and Vc values (3-14%). Two indirect response models were applied to test two competing hypotheses for GR mRNA dynamics. Indirect Pharmacodynamic Response Model I (Model A) where the complex in the nucleus decreases the transcription rate of GR mRNA better described GR mRNA/GR down-regulation. Levels of TAT mRNA began to increase at 1-2 hr, reached a maximum at 5-6 hr, and declined to the baseline at 12-14 hr after MPL dosing. The induction of TAT activity followed a similar pattern with a delay of about 1-2 hr. The low-dose group had 50-60% of the TAT mRNA and TAT induction compared to the high-dose group. Since the GR density returned to about 70% of the baseline level before the second 50 mg/kg dose at 24 hr, tolerance was found for TAT mRNA/TAT induction where only 50-60% of the initial responses were produced. Our fourth-generation model describes the dose dependence and tolerance effects of TAT mRNA/TAT induction by MPL involving multiple-step signal transduction controlled by the steroid regimen, free GR density, and GR occupancy. This model may provide the foundation for studying other induced proteins or enzymes mediated by the similar receptor/nuclear events.
Collapse
Affiliation(s)
- Y N Sun
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260, USA
| | | | | | | | | |
Collapse
|
9
|
Sun YN, DuBois DC, Almon RR, Jusko WJ. Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1998; 26:289-317. [PMID: 10098101 DOI: 10.1023/a:1023233409550] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A fourth-generation pharmacokinetic/pharmacodynamic (PK/PD) model for receptor/genemediated effects of corticosteroids was developed. Male adrenalectomized Wistar rats received a 50 mg/kg i.v. bolus dose of methylprednisolone (MPL). Plasma concentrations of MPL, hepatic glucocorticoid receptor (GR) messenger RNA (mRNA) and GR density, tyrosine amino-transferase (TAT) mRNA, and TAT activity in liver were determined at various time points up to 72 hr after MPL dosing. Down-regulation of GR mRNA and GR density were observed: GR mRNA level declined to 45-50% of the baseline in 8-10 hr, and slowly returned to predose level in about 3 days; GR density fell to 0 soon after dosing and returned to the baseline in two phases. The first phase, occurring in the first 10 hr, entailed recovery from 0 to 30%. The second phase was parallel to the GR mRNA recovery phase. Two indirect response models were applied for GR mRNA dynamics regulated by activated steroid-receptor complex. A full PK/PD model for GR mRNA/GR down-regulation was proposed, including GR recycling theory. TAT mRNA began to increase at about 1.5 hr, reached the maximum at about 5.5 hr, and declined to the baseline at about 14 hr after MPL dosing. TAT induction followed a similar pattern with a delay of about 1-2 hr. A transcription compartment was applied as one of the cascade events leading to TAT mRNA and TAT induction. Pharmacodynamic parameters were obtained by fitting seven differential equations piecewise using the maximum likelihood method in the ADAPT II program. This model can describe GR down-regulation and the precursor/product relationship between TAT mRNA and TAT in receptor/gene-mediated corticosteroid effects.
Collapse
Affiliation(s)
- Y N Sun
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The corticosteroids, such as prednisolone and methylprednisolone, provide diverse antiinflammatory and immunosuppressive effects which typically show responses with slow onset and prolonged duration. This report summarizes modeling efforts which are successful in describing such steroid effects. Clinical effects with such a pattern, including adrenal suppression and altered trafficking of basophils and helper T-cells, can be related to plasma drug concentrations by models containing an inhibition function and differential equations for controlling input and disposition of the response variable. Some responses have circadian-controlled inputs which add time-dependent complexities to the models. Kinetic/dynamic data for several corticosteroid effects yield IC50 values which agree well with receptor KD values. A relationship of linear AUC of effect versus log AUC of steroid in plasma is found with these models over a large range of doses. Gene-mediated effects of corticosteroids are initiated by receptor-binding which causes a cascade effect altering DNA transcription, RNA, mRNA and proteins or enzymes accounting for drug effects. Models for such behavior have been developed in animals for hepatic tyrosine aminotransferase (TAT) enzyme activity. Studies with methylprednisolone formulated in liposomes show tissue sequestration of steroid, prolonged receptor-binding and extended inhibition of splenocyte proliferation. The data and models usually show good correspondence of the AUC of receptor occupancy with the AUC of pharmacologic response.
Collapse
Affiliation(s)
- W J Jusko
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260, USA
| |
Collapse
|
11
|
DuBois DC, Xu ZX, McKay L, Almon RR, Pyszcznski N, Jusko WJ. Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J Steroid Biochem Mol Biol 1995; 54:237-43. [PMID: 7577705 DOI: 10.1016/0960-0760(95)00139-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Autoregulation of glucocorticoid receptor (GR) concentration in vivo may be an important determinant of steroid sensitivity. The dynamics of GR regulation were assessed and compared to regulation of tyrosine aminotransferase (TAT) expression in liver tissue taken from rats treated with a single 50 mg/kg i.v. dose of methylprednisolone. Plasma methylprednisolone concentrations were determined by HPLC analysis. Receptor and TAT message levels were determined by quantitative Northern hybridization. Methylprednisolone plasma kinetics showed a half-life of 0.6 h. Receptor occupancy occurred rapidly and cytosolic GR reappeared over 2-12 h. TAT activity rose between 2 and 6 h and then dissipated. Reduction in receptor mRNA levels occurred very rapidly, being detectable by 30 min following steroid administration. A down-regulated steady-state in GR message expression was reached by 2 h post-injection, and was maintained throughout the 18 h examined in this study. Comparison of methylprednisolone kinetics demonstrated that down-regulation was maintained long after drug was eliminated. In contrast, TAT message induction occurred with a sharp peak; maximal induction occurred between 5-6 h and return to baseline at approx. 8-10 h post-induction. This study shows that unlike TAT induction, GR message repression in vivo does not require continual presence of hormone.
Collapse
Affiliation(s)
- D C DuBois
- Department of Biological Sciences, School of Pharmacy, State University of New York at Buffalo 14260, USA
| | | | | | | | | | | |
Collapse
|
12
|
Xu ZX, Sun YN, DuBois DC, Almon RR, Jusko WJ. Third-generation model for corticosteroid pharmacodynamics: roles of glucocorticoid receptor mRNA and tyrosine aminotransferase mRNA in rat liver. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1995; 23:163-81. [PMID: 8719235 DOI: 10.1007/bf02354270] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A third-generation pharmacokinetic/pharmacodynamic model was proposed for receptor/gene-mediated corticosteroid effects. The roles of the messenger RNA (mRNA) for the glucocorticoid receptor (GR) in hepatic GR down-regulation and the mRNA for hepatic tyrosine aminotransferase (TAT) induction by methylprednisolone (MPL) were examined. Male adrenalectomized Wistar rats received 50 mg/kg MPL iv. Blood and liver samples were collected at various time points for a period of 18 hr. Plasma concentrations of MPL, free hepatic cytosolic GR densities, GR mRNA, TAT mRNA, and TAT activities in liver were determined. Plasma MPL profile was biexponential with a terminal t1/2 of 0.57 hr. Free hepatic GR density rapidly disappeared from cytoplasm after the MPL dose and then slowly returned to about 60% of starting level after 16 hr. Meanwhile, GR mRNA level fell to 45% of baseline within 2 hr postdosing, and remained at that level for at least 18 hr. The GR down-regulation of GR mRNA and protein turnover rate were modeled. The TAT mRNA began to increase at about 2 hr, reached a maximum at about 5 hr, and declined to baseline by 14 hr. TAT induction followed a similar pattern, except the induction was delayed about 0.5 hr. Pharmacodynamic parameters were obtained by fitting seven differential equations in a piecewise fashion. The cascade of corticosteroid steps were modeled by a series of inductions for steroid-receptor-DNA complex, two intermediate transit compartments, TAT mRNA, and TAT activity. Results indicate that GR mRNA and TAT mRNA are major controlling factors for the receptor/gene-mediated effects of corticosteroids.
Collapse
Affiliation(s)
- Z X Xu
- Department of Pharmaceutics, State University of New York at Buffalo 14260, USA
| | | | | | | | | |
Collapse
|
13
|
Mishina EV, Straubinger RM, Pyszczynski NA, Jusko WJ. Enhancement of tissue delivery and receptor occupancy of methylprednisolone in rats by a liposomal formulation. Pharm Res 1993; 10:1402-10. [PMID: 8272400 DOI: 10.1023/a:1018954704886] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A liposomal formulation of methylprednisolone (L-MPL) was developed to improve localization of this immunosuppressant in lymphatic tissues. Liposomes containing MPL were formulated from a mixture of phosphatydylcholine and phosphatydylglycerol (molar ratio, 9:1) and sized by extrusion through a 0.1-micron membrane. Male Sprague-Dawley rats received a bolus dose of 2 mg/kg of L-MPL or free MPL in solution (control). Samples of blood, spleen, liver, thymus, and bone marrow were collected at intervals over a 66-hr period. Concentrations of MPL in plasma and organs and free cytosolic glucocorticoid receptors (GCR) in spleen and liver were determined. The plasma MPL profiles for free and L-MPL were bi- and triexponential. Although the alpha phase kinetics of both dosage forms were similar, L-MPL showed a substantially slower elimination phase than did free drug. Incorporation of MPL into liposomes caused the following increases: terminal half-life, from 0.48 (MPL) to 30.13 hr (L-MPL); MRT, from 0.42 to 11.95 hr, Vss, from 2.10 to 21.87 L/kg; and AUC, from 339 to 1093 ng x hr/mL. Uptake of liposomes enhanced significantly the delivery of drug to lymphatic tissues and liver; AUC tissue:plasma ratios for spleen increased 77-fold; for liver, 9-fold; and for thymus, 27-fold. The duration of GCR occupancy was extended 10-fold in spleen and 13-fold in liver by the liposomal formulation. Lymphatic tissue selectivity and extended receptor binding of liposome-delivered MPL offer promise for enhanced immunosuppression.
Collapse
Affiliation(s)
- E V Mishina
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260
| | | | | | | |
Collapse
|