1
|
Chukwuka KS, Adesida SO, Alimba CG. Carcinogenic and non-carcinogenic risk assessment of consuming metal-laden wild mushrooms in Nigeria: Analyses from field based and systematic review studies. Environ Anal Health Toxicol 2023; 38:e2023013-0. [PMID: 37933107 PMCID: PMC10628401 DOI: 10.5620/eaht.2023013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 11/08/2023] Open
Abstract
This study investigated the potential health risk associated with the consumption of metal-laden mushrooms in Nigeria. Concentrations of Pb, Cd, Cr, Cu, Ni, Zn and Al in wild mushrooms collected from the Nigerian environment were measured using atomic absorption spectrometer. Also, systematic analysis of articles on metal accumulation in mushrooms from Nigeria were obtained from scientific databases. Using hazard model indices, the metal concentration in mushrooms were evaluated for their potential carcinogenic and non-carcinogenic health risk when consumed by adults and children. Zn and Cd, respectively, had the highest and lowest mean concentrations (mg kg-1) in the analysed mushrooms from the field study, while Fe and Co, respectively, had the highest and lowest mean concentrations (mg kg-1) in the systematically reviewed articles. In the field study, the percentage distribution of THQ of the heavy metals greater than 1 was 0% and 42.85% for adults and children respectively. While for the systematic study, 30% and 50% of the heavy metals for adults and children respectively exceeded the limit of 1. The hazard indices obtained from both the systematic and field studies for both age groups were all >1, indicating significant health risk. The findings from both the systematic and field studies revealed that consuming metal-laden mushrooms by adults and children increases the carcinogenic risk to Cd, Cr, and Ni since they exceeded the acceptable limit of 1E-04 stated by USEPA guideline. Based on the findings from the systematic and field studies, it suggests that consuming mushrooms collected from metal polluted substrates increases carcinogenic and non-carcinogenic health risk among Nigerians.
Collapse
|
2
|
Liu S, Liu H, Li J, Wang Y. Research Progress on Elements of Wild Edible Mushrooms. J Fungi (Basel) 2022; 8:jof8090964. [PMID: 36135689 PMCID: PMC9505289 DOI: 10.3390/jof8090964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Wild edible mushrooms are distributed all over the world and are delicious seasonal foods, rich in polysaccharides, amino acids, vitamins, and other components. At the same time, they contain many essential trace elements and are highly enriched in heavy metals (compared to green plants and cultivated edible mushrooms). Consumers may be exposed to health risks due to excessive heavy metals in the process of consumption. This is also one of the important factors affecting the import and export of edible mushrooms, which is of great concern to consumers and entry and exit inspection and quarantine departments. In this paper, the contents of four essential trace elements of iron, manganese, zinc, and copper and four harmful heavy metals of cadmium, lead, mercury, and arsenic in nearly 400 species of wild edible mushrooms from 10 countries are reviewed. It was found that the factors affecting the elemental content of edible mushrooms are mainly divided into internal and external factors. Internal is mainly the difference in species element-enrichment ability, and external is mainly environmental pollution and geochemical factors. The aim is to provide a reference for the risk assessment of edible mushrooms and their elemental distribution characteristics.
Collapse
Affiliation(s)
- Shuai Liu
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Honggao Liu
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China
| | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (J.L.); (Y.W.); Tel.: +86-13-700-615-526 (J.L.); +86-87-165-033-575 (Y.W.)
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Correspondence: (J.L.); (Y.W.); Tel.: +86-13-700-615-526 (J.L.); +86-87-165-033-575 (Y.W.)
| |
Collapse
|
3
|
Li H, Tian Y, Menolli N, Ye L, Karunarathna SC, Perez-Moreno J, Rahman MM, Rashid MH, Phengsintham P, Rizal L, Kasuya T, Lim YW, Dutta AK, Khalid AN, Huyen LT, Balolong MP, Baruah G, Madawala S, Thongklang N, Hyde KD, Kirk PM, Xu J, Sheng J, Boa E, Mortimer PE. Reviewing the world's edible mushroom species: A new evidence-based classification system. Compr Rev Food Sci Food Saf 2021; 20:1982-2014. [PMID: 33599116 DOI: 10.1111/1541-4337.12708] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Wild mushrooms are a vital source of income and nutrition for many poor communities and of value to recreational foragers. Literature relating to the edibility of mushroom species continues to expand, driven by an increasing demand for wild mushrooms, a wider interest in foraging, and the study of traditional foods. Although numerous case reports have been published on edible mushrooms, doubt and confusion persist regarding which species are safe and suitable to consume. Case reports often differ, and the evidence supporting the stated properties of mushrooms can be incomplete or ambiguous. The need for greater clarity on edible species is further underlined by increases in mushroom-related poisonings. We propose a system for categorizing mushroom species and assigning a final edibility status. Using this system, we reviewed 2,786 mushroom species from 99 countries, accessing 9,783 case reports, from over 1,100 sources. We identified 2,189 edible species, of which 2,006 can be consumed safely, and a further 183 species which required some form of pretreatment prior to safe consumption or were associated with allergic reactions by some. We identified 471 species of uncertain edibility because of missing or incomplete evidence of consumption, and 76 unconfirmed species because of unresolved, differing opinions on edibility and toxicity. This is the most comprehensive list of edible mushrooms available to date, demonstrating the huge number of mushrooms species consumed. Our review highlights the need for further information on uncertain and clash species, and the need to present evidence in a clear, unambiguous, and consistent manner.
Collapse
Affiliation(s)
- Huili Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nelson Menolli
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil.,Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil
| | - Lei Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Samantha C Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | | | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Leela Rizal
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | - Taiga Kasuya
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, Barasat, West Bengal, India
| | | | - Le Thanh Huyen
- Department of Toxicology and Environmental Monitoring, Faculty of Environment, Hanoi University of Natural Resources and Environment, Tu Liem North District, Hanoi, Vietnam
| | - Marilen Parungao Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines, Manila, the Philippines
| | - Gautam Baruah
- Balipara Tract and Frontier Foundation, Guwahati, Assam, India
| | - Sumedha Madawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand.,Mushroom Research Foundation, Chiang Mai, Thailand
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, UK
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Jun Sheng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Eric Boa
- Institute of Biology, University of Aberdeen, Aberdeen, UK
| | - Peter E Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| |
Collapse
|
13
|
Muñoz AHS, Kubachka K, Wrobel K, Corona FG, Yathavakilla SKV, Caruso JA, Wrobel K. Metallomics approach to trace element analysis in ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5138-43. [PMID: 15969488 DOI: 10.1021/jf0505933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Huitlacoche is the ethnic name of the young fruiting bodies of Ustilago maydis, a common parasite of maize. In Mexico and other Latin American countries, this fungus has been traditionally appreciated as a local delicacy. In this work a metallomics approach was used with the determination of eight elements in huitlacoche by electrothermal atomic absorption spectrometry as one facet of this approach. The results obtained indicated relatively lower concentrations of commonly analyzed metals, as referred to the data reported for other mushroom types. This effect was ascribed to different accessibilities of elements, depending on fungus substrate (lower from plant than from soil). Subcellular fractionation was accomplished by centrifugation of cell homogenates suspended in Tris-HCl buffer. Recoveries of the fractionation procedure were in the range of 71-103%. For six elements (Cr, Cu, Fe, Mn, Ni, and Pb), the mean relative contributions in cytosol, cell walls, and mixed membrane fraction were 50.7, 48.2, and 1.1% respectively. To attain the molecular weight distribution of compounds containing target elements as an additional aspect of the metallomics approach, the fungus extract (1% sodium dodecyl sulfate in Tris-HCl, 30 mmol L(-)(1), pH 7.0) was analyzed by size exclusion chromatography with UV and ICP-MS detection. With spectrophotometric detection (280 nm), the elution of high molecular weight compounds was observed in the form of one peak (MW > 10 kDa), and several lower peaks appeared at higher retention times (MW < 10 kDa). On ICP-MS chromatograms, a coelution of (59)Co, (63)Cu, (57)Fe, (202)Hg, (60)Ni, and (80)Se with the first peak on the UV chromatogram was clearly observed, indicating that a fraction of each element incorporated with high molecular weight compounds (12.7, 19.8, 33.7, 100, 19.4, and 45.8%, respectively, based on the peak area measurements). From a comparison of (80)Se and (33)S chromatograms (for sulfur analysis, the extract was obtained in the absence of SDS), both elements coeluted with the first UV peak, but their lower molecular weight compounds were apparently different. These findings may contribute to a better understanding of the accumulation of elements in mushrooms.
Collapse
|