1
|
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021; 22:1940. [PMID: 33669286 PMCID: PMC7920058 DOI: 10.3390/ijms22041940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly's behavior and physiology, including feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
2
|
Otopalik AG, Pipkin J, Marder E. Neuronal morphologies built for reliable physiology in a rhythmic motor circuit. eLife 2019; 8:41728. [PMID: 30657452 PMCID: PMC6349406 DOI: 10.7554/elife.41728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/12/2019] [Indexed: 01/24/2023] Open
Abstract
It is often assumed that highly-branched neuronal structures perform compartmentalized computations. However, previously we showed that the Gastric Mill (GM) neuron in the crustacean stomatogastric ganglion (STG) operates like a single electrotonic compartment, despite having thousands of branch points and total cable length >10 mm (Otopalik et al., 2017a; 2017b). Here we show that compact electrotonic architecture is generalizable to other STG neuron types, and that these neurons present direction-insensitive, linear voltage integration, suggesting they pool synaptic inputs across their neuronal structures. We also show, using simulations of 720 cable models spanning a broad range of geometries and passive properties, that compact electrotonus, linear integration, and directional insensitivity in STG neurons arise from their neurite geometries (diameters tapering from 10-20 µm to < 2 µm at their terminal tips). A broad parameter search reveals multiple morphological and biophysical solutions for achieving different degrees of passive electrotonic decrement and computational strategies in the absence of active properties.
Collapse
Affiliation(s)
- Adriane G Otopalik
- Volen Center and Biology Department, Brandeis University, Waltham, United States.,Grass Laboratory, Marine Biological Laboratories, Woods Hole, United States
| | - Jason Pipkin
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|
3
|
Haley JA, Hampton D, Marder E. Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 2018; 7:41877. [PMID: 30592258 PMCID: PMC6328273 DOI: 10.7554/elife.41877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
The activity of neuronal circuits depends on the properties of the constituent neurons and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in extracellular pH – from pH 5.5 to 10.4 – on two central pattern generating networks, the stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.
Collapse
Affiliation(s)
- Jessica A Haley
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - David Hampton
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|
4
|
Pipkin JE, Bushong EA, Ellisman MH, Kristan WB. Patterns and distribution of presynaptic and postsynaptic elements within serial electron microscopic reconstructions of neuronal arbors from the medicinal leech Hirudo verbana. J Comp Neurol 2017; 524:3677-3695. [PMID: 27636374 DOI: 10.1002/cne.24120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/15/2016] [Accepted: 09/10/2016] [Indexed: 12/11/2022]
Abstract
Microscale connectomics involves the large-scale acquisition of high-resolution serial electron micrographs from which neuronal arbors can be reconstructed and synapses can be detected. In addition to connectivity information, these data sets are also rich with structural information, including vesicle types, number of postsynaptic partners at a given presynaptic site, and spatial distribution of synaptic inputs and outputs. This study uses serial block-face scanning electron microscopy (EM) to collect two volumes of serial EM data from ganglia of the medicinal leech. For the first volume, we sampled a small fraction of the neuropil belonging to an adult ganglion. From this data set we measured the proportion of arbors that contained vesicles and the types of vesicles contained and developed criteria to identify synapses and to measure the number of apparent postsynaptic partners in apposition to presynaptic boutons. For the second data set, we sampled an entire juvenile ganglion, which included the somata and arbors of all the neurons. We used this data set to placd our findings from mature tissue in the context of fully reconstructed arbors and to explore the spatial distribution of synaptic inputs and outputs on these arbors. We observed that some neurons segregated their arbors into input only and mixed input/output zones, that other neurons contained exclusively mixed input/output zones, and that still others contained only input zones. These results provide the groundwork for future behavioral studies. J. Comp. Neurol. 524:3677-3695, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jason E Pipkin
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, California, 92093. .,Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093.
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, California, 92093
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, California, 92093.,Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, California, 92093
| | - William B Kristan
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093
| |
Collapse
|
5
|
Otopalik AG, Goeritz ML, Sutton AC, Brookings T, Guerini C, Marder E. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion. eLife 2017; 6. [PMID: 28177286 PMCID: PMC5323045 DOI: 10.7554/elife.22352] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023] Open
Abstract
Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI:http://dx.doi.org/10.7554/eLife.22352.001
Collapse
Affiliation(s)
- Adriane G Otopalik
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Marie L Goeritz
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Alexander C Sutton
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Ted Brookings
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Cosmo Guerini
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
6
|
Otopalik AG, Sutton AC, Banghart M, Marder E. When complex neuronal structures may not matter. eLife 2017; 6. [PMID: 28165322 PMCID: PMC5323043 DOI: 10.7554/elife.23508] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Much work has explored animal-to-animal variability and compensation in ion channel expression. Yet, little is known regarding the physiological consequences of morphological variability. We quantify animal-to-animal variability in cable lengths (CV = 0.4) and branching patterns in the Gastric Mill (GM) neuron, an identified neuron type with highly-conserved physiological properties in the crustacean stomatogastric ganglion (STG) of Cancer borealis. We examined passive GM electrotonic structure by measuring the amplitudes and apparent reversal potentials (Erevs) of inhibitory responses evoked with focal glutamate photo-uncaging in the presence of TTX. Apparent Erevs were relatively invariant across sites (mean CV ± SD = 0.04 ± 0.01; 7–20 sites in each of 10 neurons), which ranged between 100–800 µm from the somatic recording site. Thus, GM neurons are remarkably electrotonically compact (estimated λ > 1.5 mm). Electrotonically compact structures, in consort with graded transmission, provide an elegant solution to observed morphological variability in the STG. DOI:http://dx.doi.org/10.7554/eLife.23508.001
Collapse
Affiliation(s)
- Adriane G Otopalik
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| | - Alexander C Sutton
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| | - Matthew Banghart
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Eve Marder
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|
7
|
Mena W, Diegelmann S, Wegener C, Ewer J. Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators. eLife 2016; 5. [PMID: 27976997 PMCID: PMC5158135 DOI: 10.7554/elife.19686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.
Collapse
Affiliation(s)
- Wilson Mena
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| | - Sören Diegelmann
- Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | | | - John Ewer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
8
|
Goeritz ML, Bowers MR, Slepian B, Marder E. Neuropilar projections of the anterior gastric receptor neuron in the stomatogastric ganglion of the Jonah crab, Cancer borealis. PLoS One 2013; 8:e79306. [PMID: 24312448 PMCID: PMC3848923 DOI: 10.1371/journal.pone.0079306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022] Open
Abstract
Sensory neurons provide important feedback to pattern-generating motor systems. In the crustacean stomatogastric nervous system (STNS), feedback from the anterior gastric receptor (AGR), a muscle receptor neuron, shapes the activity of motor circuits in the stomatogastric ganglion (STG) via polysynaptic pathways involving anterior ganglia. The AGR soma is located in the dorsal ventricular nerve posterior to the STG and it has been thought that its axon passes through the STG without making contacts. Using high-resolution confocal microscopy with dye-filled neurons, we show here that AGR from the crab Cancer borealis also has local projections within the STG and that these projections form candidate contact sites with STG motor neurons or with descending input fibers from other ganglia. We develop and exploit a new masking method that allows us to potentially separate presynaptic and postsynaptic staining of synaptic markers. The AGR processes in the STG show diversity in shape, number of branches and branching structure. The number of AGR projections in the STG ranges from one to three simple to multiply branched processes. The projections come in close contact with gastric motor neurons and descending neurons and may also be electrically coupled to other neurons of the STNS. Thus, in addition to well described long-loop pathways, it is possible that AGR is involved in integration and pattern regulation directly in the STG.
Collapse
Affiliation(s)
- Marie L. Goeritz
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Matthew R. Bowers
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Brian Slepian
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
9
|
|
10
|
White WE, Hooper SL. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena. J Neurophysiol 2013; 110:257-68. [PMID: 23576698 DOI: 10.1152/jn.00993.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423-449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161-2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (-95 to -35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence.
Collapse
Affiliation(s)
- William E White
- Neurobiology Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | | |
Collapse
|
11
|
Tonic dopamine induces persistent changes in the transient potassium current through translational regulation. J Neurosci 2011; 31:13046-56. [PMID: 21917788 DOI: 10.1523/jneurosci.2194-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage-dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (I(A)) of identified neurons in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. Here we show that DA can also persistently alter I(A), and that the immediate and persistent effects of DA oppose one another. The lateral pyloric (LP) neuron exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP I(A), whereas tonic nanomolar DA produces a persistent increase in LP I(A) maximal conductance (G(max)) through a translation-dependent mechanism involving target of rapamycin (TOR). The pyloric dilator (PD) neuron exclusively expresses D2Rs. Micromolar DA produces an immediate hyperpolarizing shift in PD I(A) voltage dependence of activation, whereas tonic DA persistently decreases PD I(A) G(max) through a translation-dependent mechanism not involving TOR. The persistent effects on I(A) G(max) do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage-gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit.
Collapse
|
12
|
Goeritz ML, Ouyang Q, Harris-Warrick RM. Localization and function of Ih channels in a small neural network. J Neurophysiol 2011; 106:44-58. [PMID: 21490285 PMCID: PMC3129722 DOI: 10.1152/jn.00897.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/07/2011] [Indexed: 11/22/2022] Open
Abstract
Subthreshold ionic currents, which activate below the firing threshold and shape the cell's firing properties, play important roles in shaping neural network activity. We examined the distribution and synaptic roles of the hyperpolarization-activated inward current (I(h)) in the pyloric network of the lobster stomatogastric ganglion (STG). I(h) channels are expressed throughout the STG in a patchy distribution and are highly expressed in the fine neuropil, an area that is rich in synaptic contacts. We performed double labeling for I(h) protein and for the presynaptic marker synaptotagmin. The large majority of labeling in the fine neuropil was adjacent but nonoverlapping, suggesting that I(h) is localized in close proximity to synapses but not in the presynaptic terminals. We compared the pattern of I(h) localization with Shal transient potassium channels, whose expression is coregulated with I(h) in many STG neurons. Unlike I(h), we found significant levels of Shal protein in the soma membrane and the primary neurite. Both proteins were found in the synaptic fine neuropil, but with little evidence of colocalization in individual neurites. We performed electrophysiological experiments to study a potential role for I(h) in regulating synaptic transmission. At a synapse between two identified pyloric neurons, the amplitude of inhibitory postsynaptic potentials (IPSPs) decreased with increasing postsynaptic activation of I(h). Pharmacological block of I(h) restored IPSP amplitudes to levels seen when I(h) was not activated. These experiments suggest that modulation of postsynaptic I(h) might play an important role in the control of synaptic strength in this rhythmogenic neural network.
Collapse
Affiliation(s)
- Marie L Goeritz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | | | |
Collapse
|
13
|
Hudson AE, Archila S, Prinz AA. Identifiable cells in the crustacean stomatogastric ganglion. Physiology (Bethesda) 2011; 25:311-8. [PMID: 20940436 DOI: 10.1152/physiol.00019.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural circuits rely on slight physiological differences between the component cells for proper function. When any circuit is analyzed, it is important to characterize the features that distinguish one cell type from another. This review describes the methods used to identify the neurons of the crustacean stomatogastric ganglion.
Collapse
Affiliation(s)
- Amber E Hudson
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
14
|
Ouyang Q, Patel V, Vanderburgh J, Harris-Warrick RM. Cloning and distribution of Ca2+-activated K+ channels in lobster Panulirus interruptus. Neuroscience 2010; 170:692-702. [PMID: 20682332 DOI: 10.1016/j.neuroscience.2010.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Large conductance Ca(2+)-activated potassium (BK) channels play important roles in controlling neuronal excitability. We cloned the PISlo gene encoding BK channels from the spiny lobster, Panulirus interruptus. This gene shows 81-98% sequence identity to Slo genes previously found in other organisms. We isolated a number of splice variants of the PISlo cDNA within Panulirus interruptus nervous tissue. Sequence analysis indicated that there are at least seven alternative splice sites in PISlo, each with multiple alternative segments. Using immunohistochemistry, we found that the PISlo proteins are distributed in the synaptic neuropil, axon and soma of stomatogastric ganglion (STG) neurons.
Collapse
Affiliation(s)
- Q Ouyang
- Department of Neurobiology and Behavior, Cornell University, Ithaca,NY 14853, USA.
| | | | | | | |
Collapse
|
15
|
Zhang H, Rodgers EW, Krenz WDC, Clark MC, Baro DJ. Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical D1 receptor signal transduction cascade. J Neurophysiol 2010; 104:873-84. [PMID: 20519576 DOI: 10.1152/jn.00195.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dopamine (DA) modifies the motor pattern generated by the pyloric network in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus, by directly acting on each of the circuit neurons. The 14 pyloric neurons fall into six cell types, and DA actions are cell type specific. The transient potassium current mediated by shal channels (I(A)) is a common target of DA modulation in most cell types. DA shifts the voltage dependence of I(A) in opposing directions in pyloric dilator (PD) versus lateral pyloric (LP) neurons. The mechanism(s) underpinning cell-type specific DA modulation of I(A) is unknown. DA receptors (DARs) can be classified as type 1 (D1R) or type 2 (D2R). D1Rs and D2Rs are known to increase and decrease intracellular cAMP concentrations, respectively. We hypothesized that the opposing DA effects on PD and LP I(A) were due to differences in DAR expression patterns. In the present study, we found that LP expressed somatodendritic D1Rs that were concentrated near synapses but did not express D2Rs. Consistently, DA modulation of LP I(A) was mediated by a Gs-adenylyl cyclase-cAMP-protein kinase A pathway. Additionally, we defined antagonists for lobster D1Rs (flupenthixol) and D2Rs (metoclopramide) in a heterologous expression system and showed that DA modulation of LP I(A) was blocked by flupenthixol but not by metoclopramide. We previously showed that PD neurons express D2Rs, but not D1Rs, thus supporting the idea that cell specific effects of DA on I(A) are due to differences in receptor expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | |
Collapse
|
16
|
Oginsky MF, Rodgers EW, Clark MC, Simmons R, Krenz WDC, Baro DJ. D(2) receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system. J Comp Neurol 2010; 518:255-76. [PMID: 19941347 DOI: 10.1002/cne.22225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D(2) receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D(2alphaPan)) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG whole-mount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D(2alphaPan) receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D(2alphaPan) receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
17
|
Clark MC, Khan R, Baro DJ. Crustacean dopamine receptors: localization and G protein coupling in the stomatogastric ganglion. J Neurochem 2007; 104:1006-19. [PMID: 17986222 DOI: 10.1111/j.1471-4159.2007.05029.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuromodulators, such as dopamine (DA), control motor activity in many systems. To begin to understand how DA modulates motor behaviors, we study a well-defined model: the crustacean stomatogastric nervous system (STNS). The spiny lobster STNS receives both neuromodulatory and neurohormonal dopaminergic input, and extensive background information exists on the cellular and network effects of DA. However, there is a void of information concerning the mechanisms of DA signal transduction in this system. In this study, we show that Gs, Gi, and Gq are activated in response to DA in STNS membrane preparations from five crustacean species representing distant clades in the order Decapoda. Three evolutionarily conserved DA receptors mediate this response in spiny lobsters: D(1alphaPan), D(1betaPan) and D(2alphaPan). G protein coupling for these receptors can vary with the cell type. In the native membrane, the D(1alphaPan) receptor couples with Gs and Gq, the D(1betaPan) receptor couples with Gs, and the D(2alphaPan) receptor couples with Gi. All three receptors are localized exclusively to the synaptic neuropil and most likely generate global biochemical signals that alter ion channels in distant compartments, as well as local signals.
Collapse
Affiliation(s)
- Merry C Clark
- Program for Cell and Molecular Biology and Physiology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
18
|
Kloppenburg P, Zipfel WR, Webb WW, Harris-Warrick RM. Heterogeneous Effects of Dopamine on Highly Localized, Voltage-Induced Ca2+ Accumulation in Identified Motoneurons. J Neurophysiol 2007; 98:2910-7. [PMID: 17728385 DOI: 10.1152/jn.00660.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of synaptic transmission is a major mechanism for the functional reconfiguration of neuronal circuits. Neurotransmitter release and, consequently, synaptic strength are regulated by intracellular Ca2+ levels in presynaptic terminals. In identified neurons of the lobster pyloric network, we studied localized, voltage-induced Ca2+ accumulation and its modulation in varicosities on distal neuritic arborizations, which have previously been shown to be sites of synaptic contacts. We previously demonstrated that dopamine (DA) weakens synaptic output from the pyloric dilator (PD) neuron and strengthens synaptic output from the lateral pyloric (LP) and pyloric constrictor (PY) neurons. Here we show that DA modifies voltage-activated Ca2+ accumulation in many varicosities in ways that are consistent with DA's effects on synaptic transmission: DA elevates Ca2+ accumulation in LP and PY varicosities and reduces Ca2+ accumulation in PD varicosities. However, in all three neuron types, we also found varicosities that were unaffected by DA. In the PY neurons, we found that DA can simultaneously increase and decrease voltage-evoked Ca2+ accumulation at different varicosities, even within the same neuron. These results suggest that regulation of Ca2+ entry is a common mechanism to regulate synaptic strength in the pyloric network. However, voltage-evoked local Ca2+ accumulation can be differentially modulated to control Ca2+-dependent processes in functionally separate varicosities of a single neuron.
Collapse
Affiliation(s)
- Peter Kloppenburg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
19
|
Zhang Y, Golowasch J. Modeling Recovery of Rhythmic Activity: Hypothesis for the role of a calcium pump. Neurocomputing 2007; 70:1657-1662. [PMID: 18516214 DOI: 10.1016/j.neucom.2006.10.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yili Zhang
- Dept. Biological Sciences, Rutgers University
| | | |
Collapse
|
20
|
Bucher D, Johnson CD, Marder E. Neuronal morphology and neuropil structure in the stomatogastric ganglion of the lobster, Homarus americanus. J Comp Neurol 2007; 501:185-205. [PMID: 17226763 DOI: 10.1002/cne.21169] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The stomatogastric nervous system (STNS) has long been used as a model system for the study of central pattern generation, neuromodulation, and network dynamics. Anatomical studies of the crustacean stomatogastric ganglion (STG) in different species have mostly been restricted to subsets of neurons and/or general structural features. For the first time, we describe the morphology of all STG neurons belonging to the two circuits that produce the well-described pyloric and gastric rhythms in the lobster, Homarus americanus. Somata sit on the dorsal and lateral surface of the STG and send a single primary neurite into the core of the neuropil, which is mostly made up of larger lower order branches. The perimeter of the neuropil consists mostly of finer higher order branches. Immunohistochemical labeling for synaptic proteins is associated with the small diameter branches. Somata positions are not constant but show preferred locations across individuals. The number of copies is constant for all neuron types except the PY and GM neurons (PY neuron number ranges from 3 to 7, and GM neuron number ranges from 6 to 9). Branch structure is largely nondichotomous, and branches can deviate substantially from cylindrical shape. Diameter changes at branch points can be as large as 20-fold. Clearly, the morphology of a specific neuron type can be quite variable from animal to animal.
Collapse
Affiliation(s)
- Dirk Bucher
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
21
|
Marder E, Bucher D. Understanding Circuit Dynamics Using the Stomatogastric Nervous System of Lobsters and Crabs. Annu Rev Physiol 2007; 69:291-316. [PMID: 17009928 DOI: 10.1146/annurev.physiol.69.031905.161516] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the stomatogastric nervous systems of lobsters and crabs have led to numerous insights into the cellular and circuit mechanisms that generate rhythmic motor patterns. The small number of easily identifiable neurons allowed the establishment of connectivity diagrams among the neurons of the stomatogastric ganglion. We now know that (a) neuromodulatory substances reconfigure circuit dynamics by altering synaptic strength and voltage-dependent conductances and (b) individual neurons can switch among different functional circuits. Computational and experimental studies of single-neuron and network homeostatic regulation have provided insight into compensatory mechanisms that can underlie stable network performance. Many of the observations first made using the stomatogastric nervous system can be generalized to other invertebrate and vertebrate circuits.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
22
|
Rabbah P, Nadim F. Synaptic dynamics do not determine proper phase of activity in a central pattern generator. J Neurosci 2006; 25:11269-78. [PMID: 16339022 PMCID: PMC6725900 DOI: 10.1523/jneurosci.3284-05.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhythmic motor activity often requires neuronal output to the muscles to arrive in a particular sequence. At the pattern-generator level, this requires distinct activity phases in different groups of constituent neurons. The phase differences between rhythmically active neurons in a network are thought to arise from the interplay between their intrinsic properties and the temporal dynamics of synapses among these neurons. In the rhythmically active pyloric network of the lobster Panulirus interruptus, synaptic connections from the pacemaker ensemble to the follower neurons [lateral pyloric (LP) and pyloric constrictor (PY)] are thought to be primarily responsible for the proper phase of activity (pacemaker-LP-PY) across all frequencies (0.5-2 Hz) of the pyloric rhythm. We test this hypothesis by characterizing the synapses from the pacemaker ensemble to the LP and PY neurons. Paired comparisons show that these two synapses are not significantly different in strength or in the extent of short-term depression. To examine the level to which intrinsic properties of the follower neurons determine their relative activity phase, we block all chemical synapses within the network and drive the LP and PY neurons rhythmically using artificial synaptic currents with identical strength and dynamics implemented with the dynamic-clamp technique. In response to these identical synaptic inputs, the LP and PY neurons maintain the proper relative phase of activity. These results strongly indicate that the relative phase of activity among these follower neurons within the pyloric network is not dictated by their synaptic inputs but is solely determined by their distinct intrinsic properties.
Collapse
Affiliation(s)
- Pascale Rabbah
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
23
|
Le T, Verley DR, Goaillard JM, Messinger DI, Christie AE, Birmingham JT. Bistable Behavior Originating in the Axon of a Crustacean Motor Neuron. J Neurophysiol 2006; 95:1356-68. [PMID: 16291803 DOI: 10.1152/jn.00893.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both vertebrate and invertebrate motor neurons can display bistable behavior in which self-sustained tonic firing results from a brief excitatory stimulus. Induction of the bistability is usually dependent on activation of intrinsic conductances located in the somatodendritic area and is commonly sensitive to action of neuromodulators. We have observed bistable behavior in a neuromuscular preparation from the foregut of the crab Cancer borealis that consists of the gastric mill 4 (gm4) muscle and the nerve that innervates it, the dorsal gastric nerve ( dgn). Nerve-evoked contractions of enhanced amplitude and long duration (>30 s) were induced by extracellular stimulation when the stimulus voltage was above a certain threshold. Intracellular and extracellular recordings showed that the large contractions were accompanied by persistent firing of the dorsal gastric (DG) motor neuron that innervates gm4. The persistent firing could be induced only by stimulating a specific region of the axon and could not be triggered by depolarizing the soma, even at current amplitudes that induced high-frequency firing of the neuron. The bistable behavior was abolished in low-Ca2+saline or when nicardipine or flufenamic acid, blockers of L-type Ca2+and Ca2+-activated nonselective cation currents, respectively, was applied to the axonal stimulation region of the dgn. Negative immunostaining for synapsin and synaptotagmin argued against the presence of synaptic/modulatory neuropil in the dgn. Collectively, our results suggest that bistable behavior in a motor neuron can originate in the axon and may not require the action of a locally released neuromodulator.
Collapse
Affiliation(s)
- Thuc Le
- Department of Physics, Santa Clara University, Santa Clara, CA 95053-0315, USA
| | | | | | | | | | | |
Collapse
|
24
|
Rabbah P, Golowasch J, Nadim F. Effect of electrical coupling on ionic current and synaptic potential measurements. J Neurophysiol 2005; 94:519-30. [PMID: 15728774 DOI: 10.1152/jn.00043.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.
Collapse
Affiliation(s)
- Pascale Rabbah
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | |
Collapse
|
25
|
Greenberg I, Manor Y. Synaptic depression in conjunction with A-current channels promote phase constancy in a rhythmic network. J Neurophysiol 2004; 93:656-77. [PMID: 15356180 DOI: 10.1152/jn.00640.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many central pattern generators, pairs of neurons maintain an approximately fixed phase despite large changes in the frequency. The mechanisms underlying phase maintenance are not clear. Previous theoretical work suggested that inhibitory synapses that show short-term depression could play a critical role in this respect. In this work we examine how the interaction between synaptic depression and the kinetics of a transient potassium (A-like) current could be advantageous for phase constancy in a rhythmic network. To demonstrate the mechanism in the context of a realistic central pattern generator, we constructed a detailed model of the crustacean pyloric circuit. The frequency of the rhythm was modified by changing the level of a ligand-activated current in one of the pyloric neurons. We examined how the time difference of firing activities between two selected neurons in this circuit is affected by synaptic depression, A-current, and a combination of the two. We tuned the parameters of the model such that with synaptic depression alone, or A-current alone, phase was not maintained between these two neurons. However, when these two components came together, they acted synergistically to maintain the phase across a wide range of cycle periods. This suggests that synaptic depression may be necessary to allow an A-current to delay a postsynaptic neuron in a frequency-dependent manner, such that phase invariance is ensured.
Collapse
Affiliation(s)
- Idan Greenberg
- Life Sciences Department and Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, Israel 84105
| | | |
Collapse
|
26
|
Clark MC, Dever TE, Dever JJ, Xu P, Rehder V, Sosa MA, Baro DJ. Arthropod 5-HT2 receptors: a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif. J Neurosci 2004; 24:3421-35. [PMID: 15056722 PMCID: PMC6730010 DOI: 10.1523/jneurosci.0062-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stomatogastric nervous system (STNS) is a premiere model for studying modulation of motor pattern generation. Whereas the cellular and network responses to monoamines have been particularly well characterized electrophysiologically, the transduction mechanisms that link the different monoaminergic signals to specific intracellular responses are presently unknown in this system. To begin to elucidate monoaminergic signal transduction in pyloric neurons, we used a bioinformatics approach to predict the existence of 18 monoamine receptors in arthropods, 9 of which have been previously cloned in Drosophila and other insects. We then went on to use the two existing insect databases to clone and characterize the 10th putative arthropod receptor from the spiny lobster, Panulirus interruptus. This receptor is most homologous to the 5-HT2 subtype and shows a dose-dependent response to 5-HT but not to any of the other monoamines present in the STNS. Through a series of pharmacological experiments, we demonstrate that this newly described receptor, 5-HT2betaPan, couples with the traditional G(q) pathway when expressed in HEK293 cells, but not to G(s) or G(i/o). Moreover, it is constitutively active, because the highly conserved DRY motif in transmembrane region 3 has evolved into DRF. Site-directed mutagenesis that reverts the motif back to DRY abolishes this agonist-independent activity. We further demonstrate that this receptor most likely participates in the modulation of stomatogastric motor output, because it is found in neurites in the synaptic neuropil of the stomatogastric ganglion as well as in the axon terminals at identified pyloric neuromuscular junctions.
Collapse
MESH Headings
- Amino Acid Motifs/physiology
- Amino Acid Sequence
- Animals
- Biogenic Amines/pharmacology
- Biogenic Amines/physiology
- Cell Line
- Cloning, Molecular
- Computational Biology/methods
- Conserved Sequence/physiology
- Digestive System/innervation
- Drosophila/genetics
- Evolution, Molecular
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Net/metabolism
- Nerve Net/physiology
- Neurotransmitter Agents/metabolism
- Palinuridae/genetics
- Palinuridae/physiology
- Protein Kinase C/metabolism
- Receptors, Neurotransmitter/agonists
- Receptors, Neurotransmitter/metabolism
- Receptors, Serotonin, 5-HT2/genetics
- Receptors, Serotonin, 5-HT2/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Structure-Activity Relationship
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Merry C Clark
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
French LB, Lanning CC, Matly M, Harris-Warrick RM. Cellular localization of Shab and Shaw potassium channels in the lobster stomatogastric ganglion. Neuroscience 2004; 123:919-30. [PMID: 14751285 DOI: 10.1016/j.neuroscience.2003.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The motor pattern generated by the 14 neurons composing the pyloric circuit in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus, is organized not only by the synaptic connections between neurons, but also by the characteristic intrinsic electrophysiological properties of the individual cells. These cellular properties result from the unique complement of ion channels that each cell expresses, and the distribution of those channels in the cell membranes. We have mapped the STG expression of shab and shaw, two genes in the Shaker superfamily of potassium channel genes that encode voltage-dependent, non-inactivating channels. Using antibodies developed against peptide sequences from the two channel proteins, we explored the localization and cell-specific expression of the channels. Anti-Shab and anti-Shaw antibodies both stain all the pyloric neurons in the somata, as well as their primary neurites and branch points of large neurites, but to varying degrees between cell types. Staining was weak and irregular (Shaw) or absent (Shab) in the fine neuropil of pyloric neurons, where most synaptic interactions occur. There is a high degree of variability in the staining intensity among neurons of a single cell class. This supports Golowasch et al.'s [J Neurosci 19 (1999) RC33; Neural Comput 11 (1999) 1079] hypothesis that individual cells can have similar firing properties with varying compositions of ionic currents. Both antibodies stain the axons of the peripheral nerves as they enter foregut muscles. We conclude that both Shab and Shaw channels are appropriately localized to contribute to the noninactivating potassium current in the stomatogastric nervous system.
Collapse
Affiliation(s)
- L B French
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
28
|
CHRISTIE ANDREWE, STEIN WOLFGANG, QUINLAN JOHNE, BEENHAKKER MARKP, MARDER EVE, NUSBAUM MICHAELP. Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 2004; 469:153-69. [PMID: 14694531 PMCID: PMC6494454 DOI: 10.1002/cne.11003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histamine is a neurotransmitter with actions throughout the nervous system of vertebrates and invertebrates. Nevertheless, the actions of only a few identified histamine-containing neurons have been characterized. Here, we present the actions of a histaminergic projection neuron on the rhythmically active pyloric and gastric mill circuits within the stomatogastric ganglion (STG) of the crab Cancer borealis. An antiserum generated against histamine labeled profiles throughout the C. borealis stomatogastric nervous system. Labeling occurred in several somata and neuropil within the paired commissural ganglia as well as in neuropil within the STG and at the junction of the superior oesophageal and stomatogastric nerves. The source of all histamine-like immunolabeling in the STG neuropil was one pair of neuronal somata, the previously identified inferior ventricular (IV) neurons, located in the supraoesophageal ganglion. These neurons also exhibited FLRFamide-like immunoreactivity. Activation of the IV neurons in the crab inhibited some pyloric and gastric mill neurons and, with inputs from the commissural ganglia eliminated, terminated both rhythms. Focal application of histamine had comparable effects. The actions of both applied histamine and IV neuron stimulation were blocked, reversibly, by the histamine type-2 receptor antagonist cimetidine. With the commissural ganglia connected to the STG, IV neuron stimulation elicited a longer-latency activation of commissural projection neurons which in turn modified the pyloric rhythm and activated the gastric mill rhythm. These results support the hypothesis that the histaminergic/peptidergic IV neurons are projection neurons with direct and indirect actions on the STG circuits of the crab C. borealis.
Collapse
Affiliation(s)
- ANDREW E. CHRISTIE
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195
| | - WOLFGANG STEIN
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - JOHN E. QUINLAN
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - MARK P. BEENHAKKER
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - EVE MARDER
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
| | - MICHAEL P. NUSBAUM
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
- Correspondence to: Michael P. Nusbaum, Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, Philadelphia, PA 19104-6074.
| |
Collapse
|
29
|
Wilensky AE, Baldwin DH, Christie AE, Graubard K. Stereotyped neuropil branching of an identified stomatogastric motor neuron. J Comp Neurol 2003; 466:554-63. [PMID: 14566949 DOI: 10.1002/cne.10903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anatomical studies of the crab stomatogastric ganglion (STG) have suggested only minimal organization within the neuropil of this structure. Here, we present evidence that, for at least one intrinsic neuron type, the ventricular dilator (VD) neuron, a highly organized and stereotyped branching structure exists within the stomatogastric neuropil. Specifically, we show the morphology of the VD neuron consists of a single primary neurite that projects from the soma into the neuropil and bifurcates into a pair of subprimary neurites, which in turn exit the neuropilar region, one entering the left and the other the right medial ventricular nerve. Nearly all secondary neurite branching of the VD neuron is from the subprimary neurites. There are approximately 22 secondary branches/neuron (range 14-28), with no significant difference between the number of secondary branches off the right vs. the left subprimary neurite, although the ratio of secondary branches between subprimaries varies (range 0.4-1.6). The fine neurites that branch from the secondary processes segregate hemispherically within the neuropil, based on the subprimary neurite of origin. Within this hemispherical organization, another level of fine neurite segregation is present, namely, the fine neurites derived from each secondary branch are restricted to discrete regions of the hemisphere with only minimal overlap with those derived from other secondary branches. Monte Carlo simulations show that this segregation differs significantly from a random distribution. The organization of branching seen in the VD neuron may play a critical role in the electrotonic and local computational organization of this neuron and sets the stage for physiological experimentation addressing these issues.
Collapse
Affiliation(s)
- Ann E Wilensky
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | |
Collapse
|
30
|
French LB, Lanning CC, Harris-Warrick RM. The localization of two voltage-gated calcium channels in the pyloric network of the lobster stomatogastric ganglion. Neuroscience 2002; 112:217-32. [PMID: 12044485 DOI: 10.1016/s0306-4522(01)00621-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Voltage-gated calcium channels are critical to all aspects of nervous system function, with differing roles within the neuronal somata, at synaptic terminals, and at the neuromuscular junction. We have developed antibodies against two voltage-gated Ca(2+) channel genes from the spiny lobster, Panulirus interruptus, which are homologous to the Drosophila Ca1A (a P/Q-type channel) and Ca1D (an L-type channel) genes. Using these antibodies, we have found that each channel shows unique patterns of localization within the stomatogastric nervous system. Both antibodies stain somata of most of the neurons in the pyloric network to varying degrees. The high degree of variability in staining intensity within individual pyloric cell classes supports the hypothesis of Golowasch et al. (1999a,b) that individual cells can vary in their composition of ionic currents and still have similar firing properties. Anti-Ca1A stains structures in the neuropil, some of which are terminals of axons descending from higher ganglia; however, the majority of these are neither neurites nor blood vessels, but may instead be glial cells or other support elements. Anti-Ca1A labeling was also prominent in the peripheral axons of pyloric motoneurons as they enter muscles, indicating that this channel may be involved in regulation of synaptic transmission onto the foregut muscles. Anti-Ca1D does not label neurites in the neuropil of the stomatogastric ganglion. It stains glial cells in the stomatogastric ganglion in the region of their nuclei, presumably from protein being produced in the perinuclear rough endoplasmic reticulum, en route to the glial cell periphery. While anti-Ca1D labeling is seen in a patchy distribution along peripheral pyloric axons, it was never seen near the muscle. We conclude that the localization of these two calcium channels is tightly controlled within the stomatogastric nervous system, but we cannot conclusively demonstrate that Ca1A and/or Ca1D channels play roles in synaptic integration within the stomatogastric ganglion.
Collapse
|
31
|
Cabirol-Pol MJ, Combes D, Fénelon VS, Simmers J, Meyrand P. Rare and spatially segregated release sites mediate a synaptic interaction between two identified network neurons. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/neu.10023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system. J Neurosci 2000. [PMID: 10964967 DOI: 10.1523/jneurosci.20-17-06619.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The patterned activity generated by the pyloric circuit in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, results not only from the synaptic connectivity between the 14 component neurons but also from differences in the intrinsic properties of the neurons. Presumably, differences in the complement and distribution of expressed ion channels endow these neurons with many of their distinct attributes. Each pyloric cell type possesses a unique, modulatable transient potassium current, or A-current (I(A)), that is instrumental in determining the output of the network. Two genes encode A-channels in this system, shaker and shal. We examined the hypothesis that cell-specific differences in shaker and shal channel distribution contribute to diversity among pyloric neurons. We found a stereotypic distribution of channels in the cells, such that each channel type could contribute to different aspects of the firing properties of a cell. Shal is predominantly found in the somatodendritic compartment in which it influences oscillatory behavior and spike frequency. Shaker channels are exclusively localized to the membranes of the distal axonal compartments and most likely affect distal spike propagation. Neither channel is detectably inserted into the preaxonal or proximal portions of the axonal membrane. Both channel types are targeted to synaptic contacts at the neuromuscular junction. We conclude that the differential targeting of shaker and shal to different compartments is conserved among all the pyloric neurons and that the channels most likely subserve different functions in the neuron.
Collapse
|
33
|
Sharman A, Hirji R, Birmingham JT, Govind CK. Crab stomach pyloric muscles display not only excitatory but inhibitory and neuromodulatory nerve terminals. J Comp Neurol 2000; 425:70-81. [PMID: 10940943 DOI: 10.1002/1096-9861(20000911)425:1<70::aid-cne7>3.0.co;2-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Movements of the foregut in crustaceans are produced by striated muscles that are innervated by motor neurons in the stomatogastric ganglion (STG). Firing of the STG motor neurons generates excitatory junctional potentials (EJPs) in the stomach muscles. We now provide evidence for the existence of separate inhibitory and neuromodulatory innervations of some pyloric muscles in the foregut of several crabs, Callinectes sapidus, Cancer magister, and Cancer borealis. Electron microscopic examination of several pyloric muscles revealed three distinct types of nerve terminals. Excitatory terminals were readily identified by the spherical shape of their small, clear synaptic vesicles. These terminals also housed a few large dense core vesicles. Inhibitory nerve terminals were recognized by the elliptical shape of their small, clear synaptic vesicles, and contacted the muscles at well-defined synapses equipped with dense bar active zones. Bath application of GABA reduced the amplitudes of EJPs in a pyloric muscle of C. borealis, consistent with the presence of GABAergic inhibitory innervation. Neuromodulatory terminals were characterized by their predominant population of large dense and dense core vesicles. These terminals formed synapses with presynaptic dense bars on the muscle, as well as on the excitatory and inhibitory nerve terminals. The presence of the inhibitory and neuromodulatory terminals creates a functional context for previously described reports of neuromodulatory actions on stomach muscles and suggests that the transfer function from STG motor patterns to pyloric movement may be orchestrated by a complex innervation from sources outside of the STG itself.
Collapse
Affiliation(s)
- A Sharman
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, Ontario M1C1A4, Canada
| | | | | | | |
Collapse
|
34
|
Watson AH, Bevengut M, Pearlstein E, Cattaert D. GABA and glutamate-like immunoreactivity at synapses on depressor motorneurones of the leg of the crayfish, Procambarus clarkii. J Comp Neurol 2000; 422:510-20. [PMID: 10861523 DOI: 10.1002/1096-9861(20000710)422:4<510::aid-cne3>3.0.co;2-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To investigate their synaptic relationships, depressor motorneurones of the crayfish leg were impaled with microelectrodes, intracellularly injected with horseradish peroxidase, and prepared for electron microscopy. Post-embedding immunogold labelling with antibodies against gamma-aminobutyric acid (GABA) or glutamate was carried out either alone or together on the same section and allowed the identification of three classes of input synapses: 51% were immunoreactive for glutamate and contained round agranular vesicles, 31% were immunoreactive for GABA and contained pleomorphic agranular vesicles, and the remainder were immunoreactive for neither and also predominantly contained pleomorphic agranular vesicles. Output synapses were abundant in some of the motorneurones but were not seen in others, suggesting that members of the motor pool differ in their connectivity.
Collapse
Affiliation(s)
- A H Watson
- School of Biosciences, University of Wales Cardiff, Cardiff, CF10 3US, United Kingdom
| | | | | | | |
Collapse
|
35
|
Highly localized Ca(2+) accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J Neurosci 2000. [PMID: 10729332 DOI: 10.1523/jneurosci.20-07-02523.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium is essential for synaptic transmission and the control of the intrinsic firing properties of neurons; this makes Ca(2+) channels a prime target for neuromodulators. A combination of multiphoton microscopy and voltage-clamp recording was used to determine the localization of voltage-dependent Ca(2+) accumulation in the two pyloric dilator (PD) neurons of the pyloric network in the spiny lobster, Panulirus interruptus, and its modulation by dopamine. We monitored [Ca(2+)](i) in fine distal branches in the neuropil >350 microm below the surface of the ganglion during controlled voltage steps in voltage clamp. Ca(2+) accumulation originated mostly from small, fairly rare, spatially restricted varicosities on distal neuritic arborizations. Ca(2+) diffused from these point sources into adjacent regions. Varicosities with similar morphology in the PD neuron have been shown previously to be sites of synaptic contacts. We have demonstrated in earlier studies that dopamine inhibits activity and greatly reduces synaptic transmission from the PD neuron. In approximately 60% of the varicosities, the voltage-activated Ca(2+) accumulation was reduced by exogenous dopamine (DA) (10(-4) M). DA decreased the peak amplitude of Ca(2+) accumulation but had no effect on the rise and decay time. We conclude that DA reduces chemical synaptic transmission from the PD neurons at least in part by decreasing Ca(2+) entry at neurotransmitter release sites.
Collapse
|
36
|
Skiebe P, Ganeshina O. Synaptic neuropil in nerves of the crustacean stomatogastric nervous system: An immunocytochemical and electron microscopical study. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000508)420:3<373::aid-cne8>3.0.co;2-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Cabirol-Pol MJ, Mizrahi A, Simmers J, Meyrand P. Combining laser scanning confocal microscopy and electron microscopy to determine sites of synaptic contact between two identified neurons. J Neurosci Methods 2000; 97:175-81. [PMID: 10788671 DOI: 10.1016/s0165-0270(00)00184-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report a double labelling method for correlative confocal and electron microscopy (EM) which allows selective characterisation of structural relationships between two single identified neurons in the same preparation. Using the lobster stomatogastric nervous system, we labelled pairs of identified, synaptically-connected neurons by intracellular injection of Lucifer Yellow (LY) in one neuron and a mixture of Rhodamine (Rdh) and Horseradish Peroxidase (HRP) in its partner. First, whole-mounts of LY- and Rdh-stained neurons were visualized using laser scanning confocal microscopy (LSCM) in order to isolate neuropilar regions of possible synaptic contact. Second, after conventional treatment for electron microscopy (LY was revealed with immunogold and HRP with DAB), areas of close appositions were viewed in EM. This technique allowed us to determine all the regions of close contact between two cells, and then to use electron microscopy to determine the presence or absence of synaptic contact within each of these restricted areas. These techniques enabled us to show that there were few areas of apposition and that only an extremely small proportion of these areas was in fact regions of synaptic contact between the two labelled neurons.
Collapse
Affiliation(s)
- M J Cabirol-Pol
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux I and CNRS UMR 5816, Avenue des Facultés, 33405, Talence, France
| | | | | | | |
Collapse
|
38
|
Selverston A. General principles of rhythmic motor pattern generation derived from invertebrate CPGs. PROGRESS IN BRAIN RESEARCH 2000; 123:247-57. [PMID: 10635721 DOI: 10.1016/s0079-6123(08)62861-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Selverston
- Institute of Neurobiology, University of Peurto Rico, San Juan.
| |
Collapse
|
39
|
Skiebe P, Dietel C, Schmidt M. Immunocytochemical localization of FLRFamide-, proctolin-, and CCAP-like peptides in the stomatogastric nervous system and neurohemal structures of the crayfish,Cherax destructor. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991129)414:4<511::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Skiebe P. Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crabCancer pagurus, the lobster Homarus americanus, and the crayfishCherax destructor andProcambarus clarkii. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990105)403:1<85::aid-cne7>3.0.co;2-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Fénelon VS, Casasnovas B, Faumont S, Meyrand P. Ontogenetic alteration in peptidergic expression within a stable neuronal population in lobster stomatogastric nervous system. J Comp Neurol 1998; 399:289-305. [PMID: 9733079 DOI: 10.1002/(sici)1096-9861(19980928)399:3<289::aid-cne1>3.0.co;2-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the adult lobster, Homarus gammarus, the stomatogastric ganglion (STG) contains two well-defined motor pattern generating networks that receive numerous modulatory peptidergic inputs from anterior ganglia. We are studying the appearance of extrinsic peptidergic inputs to these networks during ontogenesis. Neuron counts indicate that as early as 20% of development (E20) the STG neuronal population is quantitatively established. By using immunocytochemical detection of 5-bromo-2'-deoxyuridine incorporation, we found no immunopositive cells in the STG by E70. We concluded that the STG neuronal population remains quantitatively stable from mid-embryonic life until adulthood. We then investigated the ontogeny of FLRFamide- and proctolin-like peptides in the stomatogastric nervous system, from their first appearance until adulthood by using whole mount immunocytochemistry. Numerous FLRFamide-like-immunoreactive STG neuropilar ramifications were observable as early as E45 and remain thereafter. From E50 to the first larval stage, one to three STG somata stained, while somatic staining was not observed in larval stage II and subsequent stages. From E50 and thereafter, the STG neuropilar area was immunopositive for proctolin. One to two proctolinergic somata were detected in the STG of the three larval stages but were not seen in embryos, the post-larval stage or in adults. Thus, peptidergic inputs to the STG are present from mid-embryonic life. Moreover, whereas in the adult, STG neurons only contain glutamate or acetylcholine, some neurons transiently express peptidergic phenotypes during development. Although this system expresses an ontogenetic peptidergic plasticity, the STG neurons produce a single stable embryonic-larval motor output (Casasnovas and Meyrand [1995] J. Neurosci. 15:5703-5718).
Collapse
Affiliation(s)
- V S Fénelon
- Laboratoire de Neurobiologie des Réseaux, CNRS et Université de Bordeaux I, Arcachon, France.
| | | | | | | |
Collapse
|
42
|
Pearlstein E, Watson A, B�vengut M, Cattaert D. Inhibitory connections between antagonistic motor neurones of the crayfish walking legs. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980921)399:2<241::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Cleland TA, Selverston AI. Inhibitory glutamate receptor channels in cultured lobster stomatogastric neurons. J Neurophysiol 1998; 79:3189-96. [PMID: 9636118 DOI: 10.1152/jn.1998.79.6.3189] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inhibitory glutamate receptor channels (IGluRs) are ligand-gated ionotropic receptors related to ionotropic gamma-aminobutyric acid (GABA) and glycine receptors and expressed in neural and muscular tissues. In the crustacean stomatogastric ganglion (STG), IGluRs mediate recurrent synaptic inhibition central to the rhythmogenic capabilities of its embedded neural circuits. IGluRs expressed in cultured spiny lobster STG neurons exhibited an EC50 of 1.2 mM and a Hill coefficient of 1.4. They were neither cross-activated nor cross-desensitized by GABA, although a distinct GABA-gated chloride current was observed. Glycine did not evoke any current from STG neurons. The IGluR was weakly blocked by the chloride channel blocker furosemide and the excitatory glutamate receptor antagonist6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but was not inhibited by bicuculline methiodide, strychnine, kynurenic acid, gamma--glutamylglycine, or aspartate. Outside-out patch-clamp recordings were analyzed using the mean-variance histogram technique. Under excised-patch conditions, the receptor exhibited only a single open state with an estimated unitary conductance of 80 +/- 8. 6 (SD) pS. The distinct GABA receptor also displayed a single open state with a conductance of 72 +/- 10 pS.
Collapse
Affiliation(s)
- T A Cleland
- Department of Biology, University of California San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|
44
|
Hurley LM, Graubard K. Pharmacologically and functionally distinct calcium currents of stomatogastric neurons. J Neurophysiol 1998; 79:2070-81. [PMID: 9535969 DOI: 10.1152/jn.1998.79.4.2070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have suggested the presence of different types of calcium channels in different regions of stomatogastric neurons. We sought to pharmacologically separate these calcium channel types. We used two different preparations from different regions of stomatogastric neurons to screen a range of selective calcium channel blockers. The two preparations were isolated cell bodies in culture, in which calcium current was measured directly, and isolated neuromuscular junction, in which synaptic transmission was the indirect assay for presynaptic calcium influx. The selective blockers were two different dihydropyridines, omega-Agatoxin IVA, and omega-Conotoxin GVIA. Cultured cell bodies possessed both high-threshold calcium current and calcium-activated outward current, similar to intact neurons. The calcium current had transient and maintained components, but both components had the same voltage dependence of activation and inactivation. Dihydropyridines at >/=10 microM blocked both high-threshold calcium current and calcium-activated outward current. Nanomolar doses of omega-Agatoxin IVA did not block calcium current, but micromolar doses did. omega-Conotoxin GVIA did not block either current. In contrast, at the neuromuscular junction, dihydropyridines reduced the amplitude of postsynaptic potentials by only a modest amount, whereas omega-Agatoxin IVA at doses as low as 64 nM reduced the amplitude of postsynaptic potentials almost entirely. These effects were presynaptic. omega-Conotoxin GVIA did not change the amplitude of postsynaptic potentials. The different pharmacological profiles of the two isolated preparations suggest that there are at least two different types of calcium channel in stomatogastric neurons and that omega-Agatoxin IVA and dihydropridines can be used to pharmacologically distinguish them.
Collapse
Affiliation(s)
- L M Hurley
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
45
|
Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the mothManduca sexta: a study using thin sections and freeze-fracture. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rspb.1981.0067] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antennal lobe of the brain ofManduca sextacomprises a central area of coarse neuropil surrounded by dense, spheroidal glomeruli, where all synaptic interactions between antennal-nerve axons and the second-order neurons of the lobe occur. Neuronal interactions in the glomeruli are complex, involving several types of neuritic profiles and mediated by synapses with a one-to-many ratio of pre- to postsynaptic elements. Presynaptic profiles in the glomeruli have been categorized into three types, containing round clear vesicles, large numbers of large dense-cored vesicles, and pleiomorphic clear vesicles, respectively. Preliminary studies of horseradish peroxidase-filled axons and neurons indicate that antennal-nerve axons form synapses without large numbers of dense-cored vesicles and that antennal-lobe neurons not only receive synapses but also may synapse onto other elements in the antennal lobe. A typical synaptic contact involves multiple postsynaptic elements apposed in pairs to an individual presynaptic element. The presynaptic element contains a bar-shaped membrane-associated density, which follows a shallow groove in the membrane and is flanked by synaptic vesicles. Postsynaptic elements are lined by membrane-associated densities in the region opposite to the synaptic bar, and may be observed to participate in serial synapses. Freeze-fracture replicas of the glomerular neuropil contain many membrane specializations that are thought to be presynaptic, some of which resemble those of vertebrate excitatory synapses. At these apparently presynaptic regions, large particles cluster in the P face of the membrane and are often surrounded by plasmalemmal deformations presumably representing sites of exo- or endocytosis. The shape of the predominant type of presynaptic membrane specialization (a plaque) does not match the shape of the presynaptic membrane-associated density (a bar); this raises the possibility that vesicle release occurs at isolated ‘active zones’ along the presynaptic bar. Postsynaptic sites are represented by clusters of large particles in the E face of the postsynaptic membrane.
Collapse
|
46
|
Abstract
The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains the neural networks responsible for rhythmic pattern generation of the foregut. Neuron counts indicate that the STG of C. borealis has 25-26 neurons, 4-5 fewer than that found in lobsters. We describe the ultrastructural features of the ganglion by focusing on those that may be involved in storage, release, or range of action of peptide modulators, including a lacunar system and multiple types of intercellular junctions. In the neuropil, we identify five synaptic profile classes that contain the invertebrate presynaptic apparatus (dense bars, small clear vesicles), two of which also contain dense core (modulator-containing) vesicles. These latter two are comprised of multiple immunocytochemical classes that are not easily distinguished by structural criteria. In addition, we find neurohemal-like profiles that contain primarily dense core vesicles. Our finding that multiple profile types in the STG possess modulator-containing vesicles coincides with immunocytochemical results better than do previous ultrastructural studies that report only one such profile type. We show that a single modulatory input, stomatogastric nerve axon 1, makes only classical synapses and not neurohemal-like profiles, although some modulators are found in both these profile types. These data provide the groundwork for understanding the architecture of modulatory input-target interactions and suggest ways that the specificity of modulatory effects within a complex neuropil may be attained.
Collapse
Affiliation(s)
- V L Kilman
- Volen Center, Brandeis University, Waltham, Massachusetts 02254, USA
| | | |
Collapse
|
47
|
Abstract
Although a large body of literature has been devoted to the role of O2 in the CNS, how neural networks function during long-term exposures to low but physiological O2 partial pressure (PO2) has never been studied. We addressed this issue in crustaceans, where arterial blood PO2 is set in the 1-3 kPa range, a level that is similar to the most frequently measured tissue PO2 in the vertebrate CNS. We demonstrate that over its physiological range, O2 can reversibly modify the activity of the pyloric network in the lobster Homarus gammarus. This network is composed of 12 identified neurons that spontaneously generate a triphasic rhythmic motor output in vitro as well as in vivo. When PO2 decreased from 20 to 1 kPa, the pyloric cycle period increased by 30-40%, and the neuronal pattern was modified. These effects were all dose- and state-dependent. Specifically, we found that the single lateral pyloric (LP) neuron was responsible for the O2-mediated changes. At low PO2, the LP burst duration increased without change in its intraburst firing frequency. Because LP inhibits the pyloric pacemaker neurons, the increased LP burst duration delayed the onset of each rhythmic pacemaker burst, thereby reducing significantly the cycling frequency. When we deleted LP, the network was no longer O2-sensitive. In conclusion, we propose that (1) O2 has specific neuromodulator-like actions in the CNS and that (2) the physiological role of this reduction of activity and energy expenditure could be a key adaptation for tolerating low but physiological PO2 in sensitive neural networks.
Collapse
|
48
|
Baldwin DH, Graubard K. Distribution of fine neurites of stomatogastric neurons of the crab Cancer borealis: evidence for a structured neuropil. J Comp Neurol 1995; 356:355-67. [PMID: 7642799 DOI: 10.1002/cne.903560304] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neuropil of the stomatogastric ganglion of the crab Cancer borealis contains many neuronal processes that may be arranged either at random or in some form of orderly structure. In this study, we provide evidence for two types of order in the neuropil, a segregation of the processes based on their size and a cell-specific distribution to the fine neurites. Identified neurons were injected with Lucifer yellow, fixed, and imaged as whole mounts with a confocal microscope. Four cell types were analyzed using the serial images, two pyloric neurons, one mixed pyloric/gastric neuron, and one gastric neuron. All of the neurons consisted of a approximately 60-microns-diameter soma, a approximately 20-microns-diameter primary neurite projecting into the center of the neuropil, a number of < 10-microns-diameter medium-sized neurites radiating away from the center, and many < 3-microns-diameter fine neurites around the periphery of the neuropil. The neuropil can, therefore, be divided into three layers, a central core containing the largest neurites, an intermediate region containing both medium-sized and fine neurites, and a peripheral neuropil containing mostly fine neurites. The distribution of the fine neurites was mapped using a three-dimensional grid. We found that the fine neurites were distributed not at random within the neuropil but in consistent, cell-specific patterns.
Collapse
Affiliation(s)
- D H Baldwin
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
49
|
Zirpel L, Baldwin D, Graubard K. Nickel induces oscillatory behavior and enhanced synaptic and electrotonic transmission between stomatogastric neurons of Panulirus interruptus. Brain Res 1993; 617:205-13. [PMID: 8402148 DOI: 10.1016/0006-8993(93)91087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pyloric pattern generator network of the stomatogastric ganglion uses a mixture of burst-inducing plateau potentials, synaptic transmission, and electrical coupling to produce its patterned output. This study examines the effects of two divalent, calcium channel blockers, nickel and cadmium, on voltage oscillations, synaptic transmission, and electrical coupling between the two pyloric dilator (PD) neurons and lateral pyloric (LP) neuron of Panulirus interruptus. The in vitro stomatogastric ganglion was bathed in saline containing tetrodotoxin (TTX) to eliminate Na-spikes and the spontaneous voltage oscillations of the pyloric rhythm, resulting in a steady resting potential. Addition of 50-100 microM Ni2+ to the TTX-saline induced voltage oscillations of similar amplitude and frequency as the endogenous rhythmic activity (before the application of TTX). 25-50 microM nickel enhanced graded synaptic transmission and electrical coupling and altered voltage waveforms, while producing little change in the input resistance measured in the soma. 10-1000 microM Cd2+ acted as a dose-dependent blocker of graded synaptic transmission, but had no other detectable effects. We propose that nickel, in contrast to cadmium, exerts a modulator-like effect deep in the pyloric neuropil.
Collapse
Affiliation(s)
- L Zirpel
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
50
|
pH regulation in the stomatogastric ganglion of the crab Cancer pagurus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993. [DOI: 10.1007/bf00213680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|