1
|
Kincaid AE, Denkers ND, McNulty EE, Kraft CN, Bartz JC, Mathiason CK. Expression of the cellular prion protein by mast cells in white-tailed deer carotid body, cervical lymph nodes and ganglia. Prion 2024; 18:94-102. [PMID: 39285618 PMCID: PMC11409499 DOI: 10.1080/19336896.2024.2402225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic wasting disease (CWD) is a transmissible and fatal prion disease that affects cervids. While both oral and nasal routes of exposure to prions cause disease, the spatial and temporal details of how prions enter the central nervous system (CNS) are unknown. Carotid bodies (CBs) are structures that are exposed to blood-borne prions and are densely innervated by nerves that are directly connected to brainstem nuclei, known to be early sites of prion neuroinvasion. All CBs examined contained mast cells expressing the prion protein which is consistent with these cells playing a role in neuroinvasion following prionemia.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Caitlyn N Kraft
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Morinaga R, Nakamuta N, Yamamoto Y. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat. Acta Histochem 2016; 118:806-817. [PMID: 27825705 DOI: 10.1016/j.acthis.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O2). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons.
Collapse
|
3
|
Co-localisation of markers for glycinergic and GABAergic neurones in rat nucleus of the solitary tract: implications for co-transmission. J Chem Neuroanat 2010; 40:160-76. [PMID: 20434539 DOI: 10.1016/j.jchemneu.2010.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 01/12/2023]
Abstract
Immunoreactive structures visualised with antibodies to glycine were prominent in areas of the nucleus of the solitary tract (NTS) surrounding the tractus solitarius, but scarcer in medial and ventral areas of the nucleus. This contrasted with a higher density, more homogenous distribution of structures labelled for gamma-aminobutyric acid (GABA). Immunolabelling of adjacent semi-thin sections nonetheless indicated a close correspondence between cells and puncta labelled by glycine and GABA antisera in certain NTS areas. With post-embedding electron microscopic immunolabelling, synaptic terminals with high, presumed transmitter levels of glycine were discriminated from terminals containing low, metabolic levels by quantitative analysis of gold particle labelling densities. In a random sample of terminals, 28.5% qualified on this basis as glycinergic (compared to 44.4% GABAergic); these glycinergic terminals targeted mainly dendritic structures and contained pleomorphic vesicles and symmetrical synapses. Serial section analysis revealed few terminals (5.2%) immunoreactive for glycine alone, with 82% of glycinergic terminals also containing high levels of GABA immunoreactivity. No evidence for co-localisation of glycine and glutamate was found. Light, confocal and electron microscopic labelling with antibodies to proteins specific for glycine and GABA synthesis, release and uptake confirmed that glycinergic terminals also containing GABA are found predominantly in more lateral areas of NTS, despite glycine receptors and the 'glial' glycine transporter (GLYT1) being expressed throughout all areas of the nucleus. The data suggest that synaptic terminals in certain functionally distinct areas of NTS co-release both inhibitory amino acids, which may account for the previously reported differential inhibitory effects of glycine and GABA on NTS neurones.
Collapse
|
4
|
Yarkov A, Montero S, Lemus M, Roces de Alvarez-Buylla E, Alvarez-Buylla R. Arginine-vasopressin in nucleus of the tractus solitarius induces hyperglycemia and brain glucose retention. Brain Res 2001; 902:212-22. [PMID: 11384615 DOI: 10.1016/s0006-8993(01)02404-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypothalamic arginine-vasopressin (AVP) plays an important role both as a neurotransmitter and hormone in the regulation of blood glucose and feeding behavior. AVP-containing axons from the parvocellular subdivision of paraventricular nucleus of the hypothalamus terminate in the nucleus of the tractus solitarius (NTS), but the function of this projection is not known. Interestingly, the NTS also receives afferent information from the carotid body and other peripheral receptors involved in glucose homeostasis. We have previously reported that stimulation of the carotid body receptors initiates a hyperglycemic reflex and increases brain glucose retention. Here we show that direct administration of micro-doses of AVP into the NTS of anesthetized or awake rats rapidly increased the levels of blood glucose concentration and brain arterio-venous (A-V) glucose difference. This effect was not observed when the same doses of AVP were injected in the brainstem outside NTS. Arginine-vasopressin antagonist microinjections alone produced a small but significant reduction in brain A-V glucose. Pre-administered VP1-receptor antagonist [beta-mercapto-beta,beta-cyclopentamethylene-propionyl(1),O-Me-Tyr(2),Arg(8)]vasopressin blocked the effects of AVP. These results indicate that AVP acting on its receptors locally within the NTS participates in glucose homeostasis, increasing both blood glucose concentration and brain A-V glucose differences. Hypothalamic AVP may facilitate hyperglycemic responses initiated by peripheral signals processed at the level of the NTS.
Collapse
Affiliation(s)
- A Yarkov
- CUIB, Universidad de Colima, Ave. 25 de Julio s/n, Col. 28045, Colima, Mexico.
| | | | | | | | | |
Collapse
|
5
|
Seagard JL, Dean C, Hopp FA. Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Res Bull 2000; 51:111-8. [PMID: 10709956 DOI: 10.1016/s0361-9230(99)00235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Baroreceptor activation has been found to produce different types of discharge patterns in neurons in the nucleus tractus solitarius (NTS). The contribution of different glutamate receptor subtypes, neuropeptide modulators and input from different baroreceptor subtypes to the generation of firing patterns in NTS barosensitive neurons was examined in a series of studies. Results from these studies indicate that both subtypes of ionotropic glutamate receptors contribute to discharge in barosensitive neurons, and the role of each subtype can vary for different neurons. The neuropeptide neurotensin was found to modulate baroreceptor control of BP and discharge of central barosensitive neurons, both through modulation of baroreceptor afferent input and possibly through release of neurotensin by baroreceptor afferent fibers in the NTS. Finally, selective modulation of input from baroreceptor subtypes indicates that there is some degree of divergent baroreceptor innervation of NTS neurons that could contribute to initiation of their different discharge patterns in response to baroreceptor input.
Collapse
Affiliation(s)
- J L Seagard
- Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
6
|
|
7
|
Saha S, Batten TF, McWilliam PN. Glycine-immunoreactive synaptic terminals in the nucleus tractus solitarii of the cat: ultrastructure and relationship to GABA-immunoreactive terminals. Synapse 1999; 33:192-206. [PMID: 10420167 DOI: 10.1002/(sici)1098-2396(19990901)33:3<192::aid-syn4>3.0.co;2-k] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Postembedding immunogold labeling methods applied to ultrathin and semithin sections of cat dorsomedial medulla showed that neuronal perikarya, dendrites, myelinated and nonmyelinated axons, and axon terminals in the nucleus tractus solitarii contain glycine immunoreactivity. Light microscopic observations on semithin sections revealed that these immunoreactive structures were unevenly distributed throughout the entire nucleus. At the electron microscopic level, synaptic terminals with high levels of glycine-immunoreactivity, assumed to represent those releasing glycine as a neurotransmitter, were discriminated from terminals containing low, probably metabolic levels of glycine-immunoreactivity, by a quantitative analysis method. This compared the immunolabeling of randomly sampled terminals with a reference level of labeling derived from sampling the perikarya of dorsal vagal neurones. The vast majority of these "glycinergic" terminals contained pleomorphic vesicles, formed symmetrical synaptic active zones, and targeted dendrites. They appeared to be more numerous in areas of the nucleus tractus solitarii adjoining the tractus solitarius, but rather scarce caudally, medially, ventrally, and in the dorsal motor vagal nucleus. In a random analysis of the entire nucleus tractus solitarii, 26.2% of sampled terminals were found to qualify as glycine-immunoreactive. In contrast, boutons immunoreactive for gamma-aminobutyric acid (GABA) were more evenly distributed throughout the dorsal vagal complex and accounted for 33.7% of the synaptic terminals sampled. A comparison of serial ultrathin sections suggested three subpopulations of synaptic terminals: one containing high levels of both GABA- and glycine-immunoreactivities (21% of all terminals sampled), one containing only GABA-immunoreactivity (12.7%), and relatively few terminals (5.2%) that were immunoreactive for glycine alone. These results were confirmed by dual labeling of sections using gold particles of different sizes. This study reports the first analysis of the ultrastructure of glycinergic nerve terminals in the cat dorsal vagal complex, and the pattern of coexistence of glycine and GABA observed provides an anatomical explanation for our previously reported inhibitory effects of glycine and GABA on neurones with cardiovascular and respiratory functions in the nucleus tractus solitarii.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
8
|
Torrealba F, Müller C. Ultrastructure of glutamate and GABA immunoreactive axon terminals of the rat nucleus tractus solitarius, with a note on infralimbic cortex afferents. Brain Res 1999; 820:20-30. [PMID: 10023027 DOI: 10.1016/s0006-8993(98)01326-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The principal fast neurotransmitters in the CNS are glutamate and GABA. Our aim was to provide a baseline account on the ultrastructure of the axon terminals immunoreactive to glutamate or GABA present in the nucleus tractus solitarius (NTS) of the rat. In addition, we wanted to complete our study of cortico-solitary afferents at the electron microscopic level, by analyzing the inputs from the infralimbic cortex. Using post-embedding immunogold, we found that nearly 61% of the axon terminals were glutamatergic, and 36% were GABAergic in the rat visceral NTS. In general, axons making asymmetric synaptic contacts were enriched in glutamate, compared to axons involved in symmetric synapses. In contrast, the vast majority of the GABAergic axon terminals made symmetric synaptic contacts. We could discern five types of glutamatergic and two types of GABAergic axon terminals that differed in their fine structure. Afferents from the infralimbic cortex were small, with clear synaptic vesicles and no dense core vesicles; they made asymmetric contacts with fine dendrites, and were glutamatergic. We conclude that most axon terminals in the NTS use glutamate or GABA as fast transmitters, in addition to being a heterogeneous population of morphological types.
Collapse
Affiliation(s)
- F Torrealba
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile
| | | |
Collapse
|
9
|
Abstract
In New Zealand white rabbits, cholera-toxin HRP was injected into the carotid sinus nerve just proximal to the carotid sinus. After survival periods of 3-5 days the rabbits were anesthetized and the brain fixed with aldehyde solution. Transverse sections were cut on a sledge microtome and the sections reacted with the tetramethylbenzidine procedure. HRP-positive fibers entered the ipsilateral dorsolateral medulla at the level of the acoustic tubercle, joining the tractus solitarius. Positive fibres were found principally ipsilaterally in four regions of the medulla: in the caudal two thirds of the nucleus tractus solitarius, in its dorsolateral regions and, more caudally, in its commissural subdivision; in the dorsolateral aspect of the spinal nucleus of the trigeminal nerve; in the region ventral and ventrolateral to the tractus solitarius (extending beyond the nucleus tractus solitarius); and in the ventrolateral medulla oblongata.
Collapse
Affiliation(s)
- W W Blessing
- Department of Medicine, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | | | |
Collapse
|
10
|
Hopp FA, Seagard JL. Respiratory responses to selective blockade of carotid sinus baroreceptors in the dog. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R10-8. [PMID: 9688954 DOI: 10.1152/ajpregu.1998.275.1.r10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of carotid sinus (CS) baroreceptors has been shown to increase inspiratory time (TI) and expiratory time (TE) and to have a varied effect on tidal volume. The contribution of two functionally different types of baroreceptors to changes in respiratory function were examined in the current study. The techniques of DC anodal block and bupivacaine anesthetic block were used to selectively block fibers, from largest (type I) to smallest (type II) and smallest to largest, respectively, in the CS nerve (CSN) from an isolated CS in an anesthetized, paralyzed, vagotomized, artificially ventilated dog. Anodal blocking currents from 25 to 60 microA, which blocked primarily large A fibers, produced significant decreases in TI and TE and increased the slope of the average phrenic neurogram [PNG(t)], with no change in peak PNG(t). Further increases in blocking current to levels that also blocked small C fibers did not result in additional changes. Bupivacaine blockade using concentrations that blocked primarily C fibers did not block changes in TI and TE to step CS pressure changes. Increasing bupivacaine concentration to 20 mg/100 ml blocked all CSN conduction, and respiratory responses were eliminated. Therefore respiratory responses arising from CS baroreceptors appear to originate from the larger type I baroreceptors.
Collapse
Affiliation(s)
- F A Hopp
- Veterans Affairs Medical Center and Department of Anesthesia, The Medical College of Wisconsin, Milwaukee, Wisconsin 53295, USA
| | | |
Collapse
|
11
|
Kawano H, Masuko S. Synaptic contacts of substance P-immunoreactive axon terminals in the nucleus tractus solitarius onto neurons projecting to the caudal ventrolateral medulla oblongata in the rat. Brain Res 1997; 754:315-20. [PMID: 9134991 DOI: 10.1016/s0006-8993(97)00171-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The possibility that substance P (SP)-immunoreactive axon terminals in the nucleus tractus solitarius (NTS) make synaptic contacts onto NTS neurons projecting to the catecholaminergic cell region in the caudal ventrolateral medulla oblongata (CVLM) was examined in the rat using a retrograde tract-tracing method combined with immunohistochemistry. After injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase-colloidal gold complex (WGA-HRP-gold), into the CVLM region where tyrosine hydroxylase-immunoreactive neurons were situated, many retrogradely labeled neurons were detected in the dorsal parts of the NTS, especially at levels between 1.0 mm caudal and 0.5 mm rostral to the obex. Immunoelectron microscopy revealed synaptic contacts between SP-immunoreactive axon terminals and WGA-HRP-gold-labeled neurons in the NTS. These findings indicated that SP regulates NTS neurons which project to the catecholaminergic cell region of the CVLM.
Collapse
Affiliation(s)
- H Kawano
- Department of Anatomy, Saga Medical School, Japan.
| | | |
Collapse
|
12
|
Castillo-Meléndez M, Jarrott B, Lawrence AJ. Markers of adenosine removal in normotensive and hypertensive rat nervous tissue. Hypertension 1996; 28:1026-33. [PMID: 8952592 DOI: 10.1161/01.hyp.28.6.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenosine mechanisms are altered in brain stem nuclei associated with cardiovascular control in spontaneously hypertensive rats (SHR). Therefore, in the present study we used a number of techniques to compare the binding of the adenosine transport inhibitor [3H]nitrobenzylthioinosine ([3H]NBMPR) as well as adenosine deaminase immunoreactivity (ADA-IR) in brain stems and nodose ganglia of SHR and age-matched normotensive Donryu rats (DRY). Saturation binding revealed a single class of [3H]NBMPR binding sites in the dorsal brain stem of both strains, with Kd and Bmax values of 65 +/- 9 pmol/L and 282 +/- 31 fmol/mg protein, respectively, in SHR and 129 +/- 2 pmol/L and 217 +/- 23 fmol/mg protein in DRY. The Kd for [3H]NBMPR was significantly lower in SHR than in DRY. In competition assays, NBMPR, dilazep, dipyridamole, and adenosine displaced [3H]NBMPR binding, with Kd values of 0.21 +/- 0.04, 57.16 +/- 16.20, 1340 +/- 100, and 87000 +/- 12500 nmol/L, respectively, in DRY and 0.17 +/- 0.04, 28.24 +/- 3.60, 621 +/- 100, and 32000 +/- 6820 in SHR. Kd values for all displacers were lower in SHR; however, only values for dipyridamole and adenosine reached statistical significance. Autoradiography of adenosine transport sites with [3H]NBMPR revealed that unilateral nodose ganglionectomy reduced [3H]NBMPR binding on the denervated side of the nucleus tractus solitarius by 20.6 +/- 1.1% in DRY and 18.7 +/- 2.3% in SHR. The density of [3H]NBMPR binding in nodose ganglia was significantly lower in SHR (0.99 +/- 0.06 Bq/mm2) than in DRY (1.25 +/- 0.08). Immunohistochemical studies demonstrated ADA-IR in the dorsal vagal complex, associated with both nerve cells and fibers. Measurement of ADA-IR in the dorsal vagal complex with an 125I-labeled secondary antibody revealed a significantly higher level of ADA-IR in SHR (122%) than in DRY. In the nodose ganglia, ADA-IR was associated with a population of vagal perikarya. The present study helps provide a molecular explanation for the previously reported impaired cardiovascular responses to intra-nucleus tractus solitarius microinjection of adenosine in hypertensive rats.
Collapse
Affiliation(s)
- M Castillo-Meléndez
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Torrealba F, Müller C. Glutamate immunoreactivity of insular cortex afferents to the nucleus tractus solitarius in the rat: a quantitative electron microscopic study. Neuroscience 1996; 71:77-87. [PMID: 8834393 DOI: 10.1016/0306-4522(95)00426-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Corticosolitary axons and their terminals were labeled by the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase, after injections into the rat insular cortex. The ultrastructure of these cortical afferents was analysed in the medial and commissural subnuclei of the nucleus tractus solitarius. Cortical terminals had a mean area of 0.36 microns 2, and were among the smallest terminals in the nucleus. They made single, asymmetric synaptic contacts with thin dendritic stems or with spines. The average diameter of the dendrites postsynaptic to cortical axons was 0.59 microns, and significantly smaller (P < 0.01, Kolmogorov-Smirnov test) than the mean (0.87 microns) of the population of dendrites in the same region of the nucleus tractus solitarius. Cortical boutons contained closely packed round and clear synaptic vesicles of diameter ca. 28 nm, a few mitochondria, and no dense core vesicles. Postembedding immunogold analysis showed that the anterogradely labeled cortical axon terminals were immunoreactive to glutamate, but not to GABA. Cortical afferents had on average four times the glutamate immunoreactivity (assessed by gold particle density) than local dendrites or terminals making symmetric synaptic contacts. Similarly, most of the unlabeled axon terminals participating in asymmetric synaptic contacts were highly enriched in glutamate immunoreactivity, suggesting that glutamate may be a most prevalent transmitter in the nucleus tractus solitarius. Terminals immunoreactive to GABA always made symmetric synapses, mostly with dendritic shafts and perikarya. We concluded that insular cortex axons made single, asymmetric synaptic contacts with thin, probably distal dendrites in the nucleus tractus solitarius. Cortical terminals are immunoreactive to glutamate, and morphologically different from primary afferents and from terminals immunoreactive to GABA.
Collapse
Affiliation(s)
- F Torrealba
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago
| | | |
Collapse
|
14
|
Gatti PJ, Shirahata M, Johnson TA, Massari VJ. Synaptic interactions of substance P immunoreactive nerve terminals in the baro- and chemoreceptor reflexes of the cat. Brain Res 1995; 693:133-47. [PMID: 8653401 DOI: 10.1016/0006-8993(95)00728-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The neurochemical anatomy and synaptic interactions of morphologically identified chemoreceptor or baroreceptor afferents in the nucleus of the solitary tract (NTS) are poorly understood. A substantial body of physiological and light microscopic evidence suggests that substance P (SP) may be a neurotransmitter contained in first order sensory chemo- or baroreceptor afferents, however ultrastructural support of this hypothesis is lacking. In the present report we have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase. Medullary tissues including the commissural NTS (cNTS) were processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical detection of SP by dual labeling light and electron microscopic methods. At the light microscopic level, dense bilateral labeling with TMB was found in the tractus solitarius (TS) and cNTS, caudal to the obex. Rostral to the obex, significant ipsilateral TMB labeling was detected in the dorsal, dorso-lateral, and medial subnuclei of the NTS, as well as in the TS. Significant staining of SP immunoreactive processes was detected in most subnuclei of the NTS. The cNTS was examined by electron microscopy. Either HRP or SP were readily identified in single labeled unmyelinated axons, myelinated axons, and nerve terminals in the cNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the cNTS which were simultaneously identified as CSN primary afferents. These ultrastructural data support the hypothesis that SP immunoreactive first order neurons are involved in the origination of the chemo- and baroreceptor reflexes. Axo-axonic synapses were observed between CSN primary afferent terminals and: (a) unlabeled nerve terminals; (b) other CSN primary afferent terminals; and (c) terminals containing SP. Axo-axonic synapses were also observed between CSN primary afferents which contained SP, and other SP terminals. These observations may mediate the morphological bases for multiple forms of presynaptic inhibition in the cNTS, including those involved in cardiorespiratory integration. In conclusion, our results indicate that SP immunoreactive nerve terminals may be important in both the origination and the modulation of the chemo- and/or baroreceptor reflexes.
Collapse
Affiliation(s)
- P J Gatti
- Department of Pharmacology, Howard University, College of Medicine, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
15
|
Toney GM, Mifflin SW. Time-dependent inhibition of hindlimb somatic afferent transmission within nucleus tractus solitarius: an in vivo intracellular recording study. Neuroscience 1995; 68:445-53. [PMID: 7477955 DOI: 10.1016/0306-4522(95)00156-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In a previous study we demonstrated that hindlimb somatic afferent stimulation evokes excitatory responses from neurons in nucleus tractus solitarius. When paired electrical stimuli were delivered to hindlimb somatic afferents, the unit response to the second stimulus was significantly reduced compared with responses to the first. This temporal response pattern has been termed time-dependent inhibition since responses to the second stimulus recover as the interval separating the first and second stimuli is increased. To examine possible synaptic mechanisms for somatic afferent-evoked time-dependent inhibition, intracellular recordings were made from nucleus tractus solitarius neurons in anesthetized, paralysed rats. Skeletal muscle afferent fibers were activated by electrically stimulating the right tibial nerve in the hindlimb and neuronal responses recorded in the contralateral nucleus of the solitary tract. Time-dependent inhibition of tibial nerve-evoked unit discharge was studied using a conditioning-test stimulation procedure, with the first (conditioning) and second (test) stimuli separated by intervals of 50, 150 and 250 ms. In 49 units that responded to tibial nerve stimulation, 46 were excited and three were inhibited. Among units excited, 25 displayed a unimodal response that had an onset latency of 21.3 +/- 5.9 ms. The remaining 21 units responded with a bimodal discharge pattern characterized by both a short-latency and a long-latency response. The onset latency of the early response was 23.7 +/- 5.3 ms and was not statistically different from the unimodal response onset latency. The onset latency of the late response was 143 +/- 23.9 ms.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G M Toney
- Department of Pharmacology, University of Texas Health Science Center at San Antonio 78284-7764, USA
| | | |
Collapse
|
16
|
Kawano H, Masuko S. Substance P innervation of neurons projecting to the paraventricular hypothalamic nucleus in the rat nucleus tractus solitarius. Brain Res 1995; 689:136-40. [PMID: 8528697 DOI: 10.1016/0006-8993(95)00501-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After injection of WGA-HRP-colloidal gold in the rat paraventricular nucleus (PVN), retrogradely labeled neurons were found mainly in the medial and commissural subnuclei of the nucleus tractus solitarius (NTS) around 0.5 mm caudal to the obex which is closely related to cardiovascular function. Electron microscopic immunohistochemistry in these areas demonstrated synaptic contacts between retrogradely labeled neurons and substance P-immunoreactive terminals. Innervation of NTS-PVN projection systems by substance P is suggested.
Collapse
Affiliation(s)
- H Kawano
- Department of Anatomy, Saga Medical School, Japan
| | | |
Collapse
|
17
|
Satoda T, Takahashi O, Uchida T, Mizuno N. An anterograde-retrograde labeling study of the carotid sinus nerve of the Japanese monkey (Macaca fuscata). Neurosci Res 1995; 22:381-7. [PMID: 7478303 DOI: 10.1016/0168-0102(95)00918-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sites of origin and termination of efferent and afferent fibers in the carotid sinus nerve (CSN) were investigated in the Japanese monkey. After application of a mixture of horseradish peroxidase (HRP) and wheat germ aggulutinin-conjugated HRP to the central cut end of the CSN, sensory ganglion neurons were labeled in the jugular ganglion of the vagus nerve, as well as in the superior and petrosal ganglia of the glossopharyngeal nerve. Many sympathetic ganglion neurons were also labeled retrogradely in the superior cervical ganglion. In the brain, many labeled terminals were seen ipsilaterally in the lateral division of the nucleus of the solitary tract (NST). A few neuronal cell bodies were also labeled ipsilaterally in a reticular region dorsomedial to the caudal one-third of the facial nucleus. The results indicate that the CSN of the Japanese monkey is composed mainly of afferent fibers terminating in the NST, that the afferent fibers in the CSN originate not only from the superior and petrosal ganglia of the glossopharyngeal nerve but also from the jugular ganglion of the vagus nerve, and that efferent fibers contained in the CSN arise from the medullary reticular formation and superior cervical ganglion.
Collapse
Affiliation(s)
- T Satoda
- Department of Oral Anatomy (2nd division), School of Dentistry, Hiroshima University, Japan
| | | | | | | |
Collapse
|
18
|
Seagard JL, Dean C, Hopp FA. Discharge patterns of baroreceptor-modulated neurons in the nucleus tractus solitarius. Neurosci Lett 1995; 191:13-8. [PMID: 7659279 DOI: 10.1016/0304-3940(95)11545-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activity of baroreceptor-modulated neurons in the nucleus tractus solitarius (NTS) was recorded extracellularly during selective pressure stimulation of carotid baroreceptors, using an isolated carotid sinus preparation in anesthetized dogs. One of two different patterns of activity was recorded from individual baro-sensitive neurons in response to slow ramp increases in carotid sinus pressure. The cause of these two distinct firing patterns is not known but preliminary results indicate that it may be due in part to input from different functional types of baroreceptors. These results suggest that some differentiation in blood pressure control may be encoded in the responses of central baro-sensitive neurons in the NTS.
Collapse
Affiliation(s)
- J L Seagard
- Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | | | | |
Collapse
|
19
|
Soulier V, Dalmaz Y, Cottet-Emard JM, Kitahama K, Pequignot JM. Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia. Brain Res 1995; 674:188-95. [PMID: 7796097 DOI: 10.1016/0006-8993(94)01441-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In vivo and in vitro activity of tyrosine hydroxylase (TH) was estimated in the catecholaminergic A2 cell group of the nucleus tractus solitarius (NTS) in rats exposed to normobaric hypoxia (10% O2 in nitrogen) for 2 h, 3, 7, 14 or 21 days. The A2 cell group was subdivided into two subgroups. In the caudal A2 subgroup located caudal to the calamus scriptorius, long-term but not acute hypoxia elicited an increase of in vivo tyrosine hydroxylation rate after 7 days of exposure (+60% above normoxic controls). The increase of in vivo TH activity was maintained at the same level at the end of hypoxic exposure. In vitro TH activity was increased transiently after 7 days of hypoxia (+92% above normoxic (controls). In thr rostral A2 subgroup, hypoxia elicited a significant increase of in vivo tyrosine hydroxylation at 7 days (+38%) but did not alter in vitro TH activity throughout the whole exposure. Hypoxia produced no detectable change in TH activity in other noradrenergic cell groups of the brain stem (locus coeruleus, A5) except for a transient inhibition of in vivo TH activity in A5 after 2 h. Immunocytochemical analyses confirmed that the catecholaminergic neurons in the caudal A2 area are not only of a noradrenergic nature. The neurons were located in the commissural subnucleus of the NTS. On the other hand, the rostral A2 area contains noradrenergic neurons intermingled with a small number of adrenergic cell bodies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Soulier
- CNRS URA 1195, Laboratoire de Médecine Expérimentale, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Saha S, Batten TF, Mcwilliam PN. Glutamate, gamma-aminobutyric acid and tachykinin-immunoreactive synapses in the cat nucleus tractus solitarii. JOURNAL OF NEUROCYTOLOGY 1995; 24:55-74. [PMID: 7769401 DOI: 10.1007/bf01370160] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurophysiological and pharmacological evidence suggests that glutamate, gamma-aminobutyric acid and tachykinins (substance P and neurokinin A) each have a role in cardiovascular regulation in the nucleus tractus solitarii. This study describes the ultrastructural relationships between nerve terminals immunoreactive for these substances in the nucleus tractus solitarii of the cat using post-embedding immunogold (single and double) labelling techniques on sections of tissue embedded in LR White resin. The technique combines a high specificity of labelling with good ultrastructural and antigenic preservation. Glutamate-immunoreactive terminals, recognized by their high density of gold particle labelling compared to the mean tissue level of labelling, accounted for about 40% of all synaptic terminals in the region of the nucleus tractus solitarii analysed (medial, dorsal, interstitial, gelatinosus and dorsolateral subnuclei). They appeared to comprise several morphological types, but formed mainly asymmetrical synapses, most often with dendrites of varying size, and contained spherical clear vesicles together with fewer dense-cored vesicles. Substance P- and neurokinin A-immunoreactive terminals were fewer in number (9% of all terminals) but similar in appearance, with the immunoreaction restricted to the dense-cored vesicles. Analysis of serial- and double-labelled sections showed a co-existence of substance P and neurokinin A-immunoreactivity in 21% of glutamate-immunoreactive terminals. Immunoreactivity for gamma-aminobutyric acid was found in 33% of all terminals in the nucleus tractus solitarii. These predominantly contained pleomorphic vesicles and formed symmetrical synapses on dendrites and somata. Possible sites of axo-axonic contact by gamma-aminobutyric acid-immunoreactive terminals onto glutamate-or tachykinin-immunoreactive terminals were rare, but examples of adjacent glutamate and gamma-aminobutyric acid-immunoreactive terminals synapsing on the same dendritic profile were frequent. These results provide an anatomical basis for a gamma-aminobutyric acid mediated inhibition of glutamatergic excitatory inputs to the nucleus tractus solitarii at a post-synaptic level.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, Research School of Medicine, University of Leeds, UK
| | | | | |
Collapse
|
21
|
Chen IL, Cusick CG, Weber JT, Yates RD. Synaptic morphology of substance P terminals on catecholamine neurons in the commissural subnucleus of the nucleus tractus solitarii in the rat. Microsc Res Tech 1994; 29:177-83. [PMID: 7529071 DOI: 10.1002/jemt.1070290216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ultrastructure of substance P-containing nerve terminals synapsing on catecholamine neurons in the rat commissural subnucleus of the nucleus tractus solitarii (NTScom) was studied using a double immunocytochemical labeling technique. Although there were numerous tyrosine hydroxylase-immunoreactive (TH-I) somata present, substance P immunoreactive (SP-I) cell bodies were only occasionally found in the NTScom. At the light microscopic level, many SP-I terminals were seen closely associated with TH-I dendrites and somata. At the electron microscopic level, SP-I terminals synapsing on TH-I structures were also readily encountered. SP-I terminals contained small, clear, and predominantly spherical vesicles (32 +/- 4 nm diameter), as well as large dense-cored vesicles approximately 100 nm in diameter. Postsynaptic TH-I dendritic profiles of various calibers and somata were encountered. These postsynaptic TH-I structures often showed postsynaptic densities. The morphological features of the SP-TH synapses in the present study, that is, the size of synaptic vesicles and the presence of postsynaptic densities, are quite different from those of central carotid sinus afferent synapses reported in our previous study [Chen et al. (1992), J. Neurocytol., 21:137-147]. Therefore, most of the SP terminals of the SP-TH synapses in the NTScom appear not to originate from the carotid sinus afferents. SP-I second-order neurons of the carotid sinus afferent pathway [Chen et al. (1991), J. Auton. Nerv. Syst., 33:97-98] may be one of the possible sources of such terminals.
Collapse
Affiliation(s)
- I L Chen
- Department of Anatomy, Tulane Medical School, New Orleans, Louisiana 70112
| | | | | | | |
Collapse
|
22
|
Chen IL, Weber JT, Yates RD. Synaptic connections of central carotid sinus afferents in the nucleus of the tractus solitarius of the rat. II. Connections with substance P-immunoreactive neurons. JOURNAL OF NEUROCYTOLOGY 1994; 23:313-22. [PMID: 7522269 DOI: 10.1007/bf01188499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A combined transganglionic transport and immunocytochemical technique was used to study the synaptic morphology of central carotid sinus afferents and substance P-immunoreactive neurons in the commissural subnucleus of the nucleus of the tractus solitarius in rats. A large population of substance P-immunoreactive neurons (88.32%) were seen in close association with central carotid sinus afferents by light microscopy. However, many labelled central carotid sinus afferents appeared not associated with substance P-immunoreactive neurons in the nucleus of the tractus solitarius. Substance P-immunoreactive neurons were spindle, pear, or oval-shaped with a short axis ranging from 5 to 11 microns. Their long axis was oriented predominantly in a lateral-medial direction along the path of the central carotid sinus afferents from the solitary tract to the midline. Synaptic contacts between central carotid sinus afferents and substance P-structures, including dendritic profiles of different calibers and somas, were readily found by electron microscopy. Many central carotid sinus afferents were also found in synaptic contact with non-immunoreactive dendrites and somas. Appositions between central carotid sinus afferents and unlabelled axon terminals were common, but only in a few cases were morphological manifestations of synapses revealed. In the latter, the substance P-immunoreactive terminals appeared mostly presynaptic but postsynaptic ones were also encountered. Our data provide the evidence that some of the substance P-immunoreactive cells in the nucleus of the tractus solitarius are 2nd order neurons of the carotid sinus afferent pathway. The possibility that some of the substance P-immunoreactive neurons in the nucleus of the tractus solitarius may be interneurons and mediate carotid sinus afferent inputs to catecholaminergic neurons in the nucleus of the tractus solitarius is considered. Our findings also provide an anatomical substrate for a possible presynaptic modulatory role of central carotid sinus afferents on the inputs from other brain centers to the substance P-neurons in the nucleus of the tractus solitarius.
Collapse
Affiliation(s)
- I L Chen
- Department of Anatomy, Tulane Medical School, New Orleans, LA 70112
| | | | | |
Collapse
|
23
|
Dun NJ, Dun SL, Chiaia NL. Hemorrhage induces Fos immunoreactivity in rat medullary catecholaminergic neurons. Brain Res 1993; 608:223-32. [PMID: 8098648 DOI: 10.1016/0006-8993(93)91462-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In urethane anesthetized rats one hour after lowering the systolic blood pressure to 70-75 mmHg by withdrawing 3-4 ml of blood, Fos immunoreactivity (Fos-IR), confined to the cell nucleus, was detected bilaterally in numerous cells of the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). A few Fos-IR neurons were observed in the lateral reticular nucleus, dorsal medullary reticular nucleus, spinal trigeminal nucleus, medial inferior olive, interfasciculus hypoglossi and paramedian rostral medulla. In sham-operated animals, a much smaller number of Fos-IR neurons were scattered in the NTS, VLM and other nuclei mentioned above. Double labeling with antisera to tyrosine-hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT) showed that 60% of TH-positive neurons in the NTS contained Fos-IR, and 70-80% of TH-positive neurons in the caudal VLM and 50-60% of PMNT-positive neurons in the rostral VLM expressed Fos-IR. Only a few TH- or PNMT-positive neurons in the C2, C3 (paramedian rostral medulla) areas and within the medial longitudinal fasciculus were Fos-IR. About 40% of PNMT/Fos-IR neurons in the rostral VLM contained the retrograde tracer fluorogold, which was injected (< 1 microliter) into the white matter dorsolateral to the intermediolateral cell column of T2-T3 segments 2 to 3 days prior to hemorrhagic experiments. Very few TH-positive neurons in the caudal VLM contained fluorogold. Finally, clusters of Fos-IR neurons, which also labeled with antisera to choline acetyltransferase, were detected in the intermediolateral cell column of the spinal cord. The results indicate that during hemorrhage aminergic neurons in the caudal and rostral VLM and in the NTS are activated insofar as c-fos expression is concerned. As a corollary, the monoaminergic neurons in the medulla constitute an essential component in the ascending as well as descending reflex pathway involved in the adjustment of cardiovascular dynamics during hemorrhage.
Collapse
Affiliation(s)
- N J Dun
- Department of Anatomy, Medical College of Ohio, Toledo 43614
| | | | | |
Collapse
|