1
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Bortolini M, Winkler PA, Moreno JCD, Sato MT, Guareschi BLV, Petersen-Jones SM, Montiani-Ferreira F. Preliminary characterization of a novel form of progressive retinal atrophy in the German Spitz dog associated with a frameshift mutation in GUCY2D. Vet Ophthalmol 2023; 26:532-547. [PMID: 36872573 DOI: 10.1111/vop.13079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE To describe the clinical, preliminary electroretinographic and optical coherence tomography features of a newly identified form of progressive retinal atrophy (PRA) in German Spitzes, and identify the causal gene mutation. ANIMALS Thirty-three client-owned German Spitz dogs were included. PROCEDURES All animals underwent a full ophthalmic examination, including vision testing. In addition, fundus photography, ERG, and OCT were performed. A DNA-marker-based association analysis was performed to screen potential candidate genes and the whole genomes of four animals were sequenced. RESULTS Initial fundus changes were pale papilla and mild vascular attenuation. Oscillatory nystagmus was noted in 14 of 16 clinically affected puppies. Vision was impaired under both scotopic and photopic conditions. Rod-mediated ERGs were unrecordable in all affected dogs tested, reduced cone-mediated responses were present in one animal at 3 months of age and unrecordable in the other affected animals tested. Multiple small retinal bullae were observed in three clinically affected animals (two with confirmed genetic diagnosis). OCT showed that despite loss of function, retinal structure was initially well-preserved, although a slight retinal thinning developed in older animals with the ventral retina being more severely affected. Pedigree analysis supported an autosomal recessive inheritance. A mutation was identified in GUCY2D, which segregated with the disease (NM_001003207.1:c.1598_1599insT; p.(Ser534GlufsTer20)). Human subjects with GUCY2D mutations typically show an initial disconnect between loss of function and loss of structure, a feature recapitulated in the affected dogs in this study. CONCLUSION We identified early-onset PRA in the German Spitz associated with a frameshift mutation in GUCY2D.
Collapse
Affiliation(s)
- Mariza Bortolini
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Puerto Rico, Brazil
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Mario Teruo Sato
- Department of Ophthalmology, Federal University of Paraná, Curitiba, Paraná, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
3
|
Annear MJ, Mowat FM, Occelli LM, Smith AJ, Curran PG, Bainbridge JW, Ali RR, Petersen-Jones SM. A Comprehensive Study of the Retinal Phenotype of Rpe65-Deficient Dogs. Cells 2021; 10:cells10010115. [PMID: 33435495 PMCID: PMC7827248 DOI: 10.3390/cells10010115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/09/2023] Open
Abstract
The Rpe65-deficient dog has been important for development of translational therapies of Leber congenital amaurosis type 2 (LCA2). The purpose of this study was to provide a comprehensive report of the natural history of retinal changes in this dog model. Rpe65-deficient dogs from 2 months to 10 years of age were assessed by fundus imaging, electroretinography (ERG) and vision testing (VT). Changes in retinal layer thickness were assessed by optical coherence tomography and on plastic retinal sections. ERG showed marked loss of retinal sensitivity, with amplitudes declining with age. Retinal thinning initially developed in the area centralis, with a slower thinning of the outer retina in other areas starting with the inferior retina. VT showed that dogs of all ages performed well in bright light, while at lower light levels they were blind. Retinal pigment epithelial (RPE) inclusions developed and in younger dogs and increased in size with age. The loss of photoreceptors was mirrored by a decline in ERG amplitudes. The slow degeneration meant that sufficient photoreceptors, albeit very desensitized, remained to allow for residual bright light vision in older dogs. This study shows the natural history of the Rpe65-deficient dog model of LCA2.
Collapse
Affiliation(s)
- Matthew J Annear
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Freya M Mowat
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
| | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
| | - Paul G Curran
- Center for Statistical Consulting, Michigan State University, East Lansing, MI 48824, USA;
| | - James W Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (A.J.S.); (J.W.B.); (R.R.A.)
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (M.J.A.); (F.M.M.); (L.M.O.)
- Correspondence:
| |
Collapse
|
4
|
Gardiner KL, Cideciyan AV, Swider M, Dufour VL, Sumaroka A, Komáromy AM, Hauswirth WW, Iwabe S, Jacobson SG, Beltran WA, Aguirre GD. Long-Term Structural Outcomes of Late-Stage RPE65 Gene Therapy. Mol Ther 2019; 28:266-278. [PMID: 31604676 DOI: 10.1016/j.ymthe.2019.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The form of hereditary childhood blindness Leber congenital amaurosis (LCA) caused by biallelic RPE65 mutations is considered treatable with a gene therapy product approved in the US and Europe. The resulting vision improvement is well accepted, but long-term outcomes on the natural history of retinal degeneration are controversial. We treated four RPE65-mutant dogs in mid-life (age = 5-6 years) and followed them long-term (4-5 years). At the time of the intervention at mid-life, there were intra-ocular and inter-animal differences in local photoreceptor layer health ranging from near normal to complete degeneration. Treated locations having more than 63% of normal photoreceptors showed robust treatment-related retention of photoreceptors in the long term. Treated regions with less retained photoreceptors at the time of the intervention showed progressive degeneration similar to untreated regions with matched initial stage of disease. Unexpectedly, both treated and untreated regions in study eyes tended to show less degeneration compared to matched locations in untreated control eyes. These results support the hypothesis that successful long-term arrest of progression with RPE65 gene therapy may only occur in retinal regions with relatively retained photoreceptors at the time of the intervention, and there may be heretofore unknown mechanisms causing long-distance partial treatment effects beyond the region of subretinal injection.
Collapse
Affiliation(s)
- Kristin L Gardiner
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Valérie L Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Simone Iwabe
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 2016; 55:32-51. [PMID: 27352937 PMCID: PMC5112133 DOI: 10.1016/j.preteyeres.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan A Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared C Gilliam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Petersen-Jones SM, Komáromy AM. Dog models for blinding inherited retinal dystrophies. HUM GENE THER CL DEV 2015; 26:15-26. [PMID: 25671556 DOI: 10.1089/humc.2014.155] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- 1 Department of Small Animal Clinical Sciences, Michigan State University , East Lansing, MI 48824
| | | |
Collapse
|
7
|
Petersen-Jones S, Komaromy AM. Dog Models for Blinding Inherited Retinal Degenerations. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Annear MJ, Mowat FM, Bartoe JT, Querubin J, Azam SA, Basche M, Curran PG, Smith AJ, Bainbridge JWB, Ali RR, Petersen-Jones SM. Successful gene therapy in older Rpe65-deficient dogs following subretinal injection of an adeno-associated vector expressing RPE65. Hum Gene Ther 2014; 24:883-93. [PMID: 24028205 DOI: 10.1089/hum.2013.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Young Rpe65-deficient dogs have been used as a model for human RPE65 Leber congenital amaurosis (RPE65-LCA) in proof-of-concept trials of recombinant adeno-associated virus (rAAV) gene therapy. However, there are relatively few reports of the outcome of rAAV gene therapy in Rpe65-deficient dogs older than 2 years of age. The purpose of this study was to investigate the success of this therapy in older Rpe65-deficient dogs. Thirteen eyes were treated in dogs between 2 and 6 years old. An rAAV2 vector expressing the human RPE65 cDNA driven by the human RPE65 promoter was delivered by subretinal injection. Twelve of the 13 eyes had improved retinal function as assessed by electroretinography, and all showed improvement in vision at low lighting intensities. Histologic examination of five of the eyes was performed but found no correlation between electroretinogram (ERG) rescue and numbers of remaining photoreceptors. We conclude that functional rescue is still possible in older dogs and that the use of older Rpe65-deficient dogs, rather than young Rpe65-deficient dogs that have very little loss of photoreceptors, more accurately models the situation when treating human RPE65-LCA patients.
Collapse
Affiliation(s)
- Matthew J Annear
- 1 Department of Small Animal Clinical Sciences, Michigan State University , East Lansing, MI 48824
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mellersh CS. The genetics of eye disorders in the dog. Canine Genet Epidemiol 2014; 1:3. [PMID: 26401320 PMCID: PMC4574392 DOI: 10.1186/2052-6687-1-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022] Open
Abstract
Inherited forms of eye disease are arguably the best described and best characterized of all inherited diseases in the dog, at both the clinical and molecular level and at the time of writing 29 different mutations have been documented in the scientific literature that are associated with an inherited ocular disorder in the dog. The dog has already played an important role in the identification of genes that are important for ocular development and function as well as emerging therapies for inherited blindness in humans. Similarities in disease phenotype and eye structure and function between dog and man, together with the increasingly sophisticated genetic tools that are available for the dog, mean that the dog is likely to play an ever increasing role in both our understanding of the normal functioning of the eye and in our ability to treat inherited eye disorders. This review summarises the mutations that have been associated with inherited eye disorders in the dog.
Collapse
|
10
|
Klein D, Mendes-Madeira A, Schlegel P, Rolling F, Lorenz B, Haverkamp S, Stieger K. Immuno-histochemical analysis of rod and cone reaction to RPE65 deficiency in the inferior and superior canine retina. PLoS One 2014; 9:e86304. [PMID: 24466015 PMCID: PMC3897682 DOI: 10.1371/journal.pone.0086304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022] Open
Abstract
Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.
Collapse
Affiliation(s)
- Daniela Klein
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexandra Mendes-Madeira
- Translational Gene Therapy for Retinal and Neuromuscular Diseases, INSERM UMR 1089, Institut de Recherche Thérapeutique 1, Université de Nantes, Nantes, France
| | - Patrice Schlegel
- Department of Computational Intelligence, Faculty of Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Fabienne Rolling
- Translational Gene Therapy for Retinal and Neuromuscular Diseases, INSERM UMR 1089, Institut de Recherche Thérapeutique 1, Université de Nantes, Nantes, France
| | - Birgit Lorenz
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silke Haverkamp
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Knut Stieger
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
11
|
Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 2013; 110:E517-25. [PMID: 23341635 DOI: 10.1073/pnas.1218933110] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.
Collapse
|
12
|
Chen J, Sampath AP. Structure and Function of Rod and Cone Photoreceptors. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Annear MJ, Gornik KR, Venturi FL, Hauptman JG, Bartoe JT, Petersen-Jones SM. Reproducibility of an objective four-choice canine vision testing technique that assesses vision at differing light intensities. Vet Ophthalmol 2012; 16:324-8. [PMID: 23121436 DOI: 10.1111/j.1463-5224.2012.01076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The increasing importance of canine retinal dystrophy models means accurate vision testing is needed. This study was performed to evaluate a four-choice vision testing technique for any difference in outcome measures with repeated evaluations of the same dogs. ANIMALS STUDIED Four 11-month-old RPE65-deficient dogs. PROCEDURES Vision was evaluated using a previously described four-choice vision testing device. Four evaluations were performed at 2-week intervals. Vision was assessed at six different white light intensities (bright through dim), and each eye was evaluated separately. The ability to select the one of the four exit tunnels that was open at the far end was assessed ('choice of exit') and recorded as correct or incorrect first tunnel choice. 'Time to exit' the device was also recorded. Both outcomes were analyzed for significance using anova. We hypothesized that performance would improve with repeated testing (more correct choices and more rapid time to exit). RESULTS 'Choice of exit' did not vary significantly between each evaluation (P = 0.12), in contrast 'time to exit' increased significantly (P = 0.012), and showed greater variability in dim light conditions. CONCLUSIONS We found no evidence to support the hypothesis that either measure of outcome worsened with repeated testing; in fact, the 'time to exit' outcome worsened rather than improved. The 'choice of exit' gave consistent results between trials. These outcome data indicate the importance of including a choice-based assessment of vision in addition to measurement of device transit time.
Collapse
Affiliation(s)
- Matthew J Annear
- Veterinary Clinical Sciences, The Ohio State University, 601 Vernon L. Tharp St, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Mowat FM, Breuwer AR, Bartoe JT, Annear MJ, Zhang Z, Smith AJ, Bainbridge JWB, Petersen-Jones SM, Ali RR. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther 2012; 20:545-55. [PMID: 22951453 DOI: 10.1038/gt.2012.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent clinical trials of retinal pigment epithelium gene (RPE65) supplementation therapy in Leber congenital amaurosis type 2 patients have demonstrated improvements in rod and cone function, but it may be some years before the effects of therapy on photoreceptor survival become apparent. The Rpe65-deficient dog is a very useful pre-clinical model in which to test efficacy of therapies, because the dog has a retina with a high degree of similarity to that of humans. In this study, we evaluated the effect of RPE65 gene therapy on photoreceptor survival in order to predict the potential benefit and limitations of therapy in patients. We examined the retinas of Rpe65-deficient dogs after RPE65 gene therapy to evaluate the preservation of rods and cone photoreceptor subtypes. We found that gene therapy preserves both rods and cones. While the moderate loss of rods in the Rpe65-deficient dog retina is slowed by gene therapy, S-cones are lost extensively and gene therapy can prevent that loss, although only within the treated area. Although LM-cones are not lost extensively, cone opsin mislocalization indicates that they are stressed, and this can be partially reversed by gene therapy. Our results suggest that gene therapy may be able to slow cone degeneration in patients if intervention is sufficiently early and also that it is probably important to treat the macula in order to preserve central function.
Collapse
Affiliation(s)
- F M Mowat
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Petersen-Jones SM, Annear MJ, Bartoe JT, Mowat FM, Barker SE, Smith AJ, Bainbridge JW, Ali RR. Gene augmentation trials using the Rpe65-deficient dog: contributions towards development and refinement of human clinical trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:177-82. [PMID: 22183331 DOI: 10.1007/978-1-4614-0631-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Miyadera K, Acland GM, Aguirre GD. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome 2012; 23:40-61. [PMID: 22065099 PMCID: PMC3942498 DOI: 10.1007/s00335-011-9361-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.
Collapse
Affiliation(s)
- Keiko Miyadera
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| | - Gregory M. Acland
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Gustavo D. Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Métrailler S, Schorderet DF, Cottet S. Early apoptosis of rod photoreceptors in Rpe65(-/-) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res 2011; 96:70-81. [PMID: 22227450 DOI: 10.1016/j.exer.2011.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/07/2011] [Accepted: 12/23/2011] [Indexed: 01/05/2023]
Abstract
RPE65-related Leber's congenital amaurosis (LCA) is a rod-cone dystrophy whose clinical outcome is mainly attributed to the loss of rod photoreceptors followed by cone degeneration. Pathogenesis in Rpe65(-/-) mice is characterized by a slow and progressive degeneration of rods dependent on the constitutive activation of unliganded opsin. We previously reported that this opsin-mediated apoptosis of rods was dependent on Bcl-2-apoptotic pathway and Bax-induced pro-death activity. In this study, we report early initial apoptosis in the newly differentiated retina of Rpe65(-/-) mice. Apoptotic photoreceptors were identified as rods and resulted from pathological phototransduction signaling. This wave of early apoptosis triggered Bcl-2-related pathway and Bax apoptotic activity, while activation of the caspases was not induced. Following cellular stress, multiple signaling pathways are initiated which either commit cells to death or trigger pro-survival responses including autophagy. We report that Bcl-2-related early rod apoptosis was associated with the upregulation of autophagy markers including chaperone-mediated autophagy (CMA) substrate receptor LAMP-2 and lysosomal hydrolases Cathepsin S and Lysozyme. This suggests that lysosomal-mediated autophagy may be triggered in response to early rod apoptosis in Rpe65-LCA disease. These results highlight that Rpe65-related primary stress induces early signaling events, which trigger Bax-induced-apoptotic pathway and autophagy-mediated cellular response. These events may determine retinal cell fate, progression and severity of the disease.
Collapse
|
18
|
Bonilha VL, Rayborn ME, Li Y, Grossman GH, Berson EL, Hollyfield JG. Histopathology and functional correlations in a patient with a mutation in RPE65, the gene for retinol isomerase. Invest Ophthalmol Vis Sci 2011; 52:8381-92. [PMID: 21931134 DOI: 10.1167/iovs.11-7973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Here the authors describe the structural features of the retina and retinal pigment epithelium (RPE) in postmortem donor eyes of a 56-year-old patient with a homozygous missense RPE65 mutation (Ala132Thr) and correlate the pathology with the patient's visual function last measured at age 51. METHODS Eyes were enucleated within 13.5 hours after death. Representative areas from the macula and periphery were processed for light and electron microscopy. Immunofluorescence was used to localize the distribution of RPE65, rhodopsin, and cone arrestin. The autofluorescence in the RPE was compared with that of two normal eyes from age-similar donors. RESULTS Histologic examination revealed the loss of rods and cones across most areas of the retina, attenuated retinal vessels, and RPE thinning in both eyes. A small number of highly disorganized cones were present in the macula that showed simultaneous labeling with cone arrestin and red/green or blue opsin. RPE65 immunoreactivity and RPE autofluorescence were reduced compared with control eyes in all areas studied. Rhodopsin labeling was observed in rods in the far periphery. The optic nerve showed a reduced number of axons. CONCLUSIONS The clinical findings of reduced visual acuity, constricted fields, and reduced electroretinograms (ERGs) 5 years before death correlated with the small number of cones present in the macula and the extensive loss of photoreceptors in the periphery. The absence of autofluorescence in the RPE suggests that photoreceptor cells were probably missing across the retina for extended periods of time. Possible mechanisms that could lead to photoreceptor cell death are discussed.
Collapse
Affiliation(s)
- Vera L Bonilha
- Cole Eye Institute, Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Ku CA, Chiodo VA, Boye SL, Goldberg AFX, Li T, Hauswirth WW, Ramamurthy V. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis. Hum Mol Genet 2011; 20:4569-81. [PMID: 21880665 DOI: 10.1093/hmg/ddr391] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in the LCA patient population are mimicked in a mouse model lacking AIPL1. Using this model, we evaluated if gene replacement therapy using recent advancements in adeno-associated viral vectors (AAV) provides advantages in preventing rapid retinal degeneration. Specifically, we demonstrated that the novel self-complementary Y733F capsid mutant AAV2/8 (sc-Y733F-AAV) provided greater preservation of photoreceptors and functional vision in Aipl1 null mice compared with single-stranded AAV2/8. The benefits of sc-Y733F-AAV were evident following viral administration during the active phase of retinal degeneration, where only sc-Y733F-AAV treatment achieved functional vision rescue. This result was likely due to higher and earlier onset of Aipl1 expression. Based on our studies, we conclude that the sc-Y733F-AAV2/8 viral vector, to date, achieves the best rescue for rapid retinal degeneration in Aipl1 null mice. Our results provide important considerations for viral vectors to be used in future gene therapy clinical trials targeting a wider severity spectrum of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Cristy A Ku
- Center for Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ku CA, Chiodo VA, Boye SL, Goldberg AFX, Li T, Hauswirth WW, Ramamurthy V. Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis. Hum Mol Genet 2011. [PMID: 21880665 DOI: 10.1093/hgm/ddr391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Defects in the photoreceptor-specific gene aryl hydrocarbon receptor interacting protein-like 1 (Aipl1) are associated with Leber congenital amaurosis (LCA), a childhood blinding disease with early-onset retinal degeneration and vision loss. Furthermore, Aipl1 defects are characterized at the most severe end of the LCA spectrum. The rapid photoreceptor degeneration and vision loss observed in the LCA patient population are mimicked in a mouse model lacking AIPL1. Using this model, we evaluated if gene replacement therapy using recent advancements in adeno-associated viral vectors (AAV) provides advantages in preventing rapid retinal degeneration. Specifically, we demonstrated that the novel self-complementary Y733F capsid mutant AAV2/8 (sc-Y733F-AAV) provided greater preservation of photoreceptors and functional vision in Aipl1 null mice compared with single-stranded AAV2/8. The benefits of sc-Y733F-AAV were evident following viral administration during the active phase of retinal degeneration, where only sc-Y733F-AAV treatment achieved functional vision rescue. This result was likely due to higher and earlier onset of Aipl1 expression. Based on our studies, we conclude that the sc-Y733F-AAV2/8 viral vector, to date, achieves the best rescue for rapid retinal degeneration in Aipl1 null mice. Our results provide important considerations for viral vectors to be used in future gene therapy clinical trials targeting a wider severity spectrum of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Cristy A Ku
- Center for Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med 2011; 10:802-23. [PMID: 21091424 DOI: 10.2174/156652410793937813] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/13/2010] [Indexed: 12/15/2022]
Abstract
Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
Collapse
Affiliation(s)
- J R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
22
|
Hernández M, Pearce-Kelling SE, Rodriguez FD, Aguirre GD, Vecino E. Altered expression of retinal molecular markers in the canine RPE65 model of Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2010; 51:6793-802. [PMID: 20671290 DOI: 10.1167/iovs.10-5213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. METHODS Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. RESULTS Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. CONCLUSIONS The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans.
Collapse
Affiliation(s)
- Maria Hernández
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | | | | | | | | |
Collapse
|
23
|
Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2010; 29:398-427. [PMID: 20399883 DOI: 10.1016/j.preteyeres.2010.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leber congenital amaurosis (LCA) is a rare hereditary retinal degeneration caused by mutations in more than a dozen genes. RPE65, one of these mutated genes, is highly expressed in the retinal pigment epithelium where it encodes the retinoid isomerase enzyme essential for the production of chromophore which forms the visual pigment in rod and cone photoreceptors of the retina. Congenital loss of chromophore production due to RPE65-deficiency together with progressive photoreceptor degeneration cause severe and progressive loss of vision. RPE65-associated LCA recently gained recognition outside of specialty ophthalmic circles due to early success achieved by three clinical trials of gene therapy using recombinant adeno-associated virus (AAV) vectors. The trials were built on multitude of basic, pre-clinical and clinical research defining the pathophysiology of the disease in human subjects and animal models, and demonstrating the proof-of-concept of gene (augmentation) therapy. Substantial gains in visual function of clinical trial participants provided evidence for physiologically relevant biological activity resulting from a newly introduced gene. This article reviews the current knowledge on retinal degeneration and visual dysfunction in animal models and human patients with RPE65 disease, and examines the consequences of gene therapy in terms of improvement of vision reported.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, University of Pennsylvania, 51 North 39th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Kurth I, Thompson DA, Rüther K, Feathers KL, Chrispell JD, Schroth J, McHenry CL, Schweizer M, Skosyrski S, Gal A, Hübner CA. Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. Mol Cell Biol 2007; 27:1370-9. [PMID: 17130236 PMCID: PMC1800705 DOI: 10.1128/mcb.01486-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/22/2006] [Accepted: 11/16/2006] [Indexed: 11/20/2022] Open
Abstract
RDH12 codes for a member of the family of short-chain alcohol dehydrogenases/reductases proposed to function in the visual cycle that supplies the chromophore 11-cis retinal to photoreceptor cells. Mutations in RDH12 cause severe and progressive childhood onset autosomal-recessive retinal dystrophy, including Leber congenital amaurosis. We generated Rdh12 knockout mice, which exhibited grossly normal retinal histology at 10 months of age. Levels of all-trans and 11-cis retinoids in dark- and light-adapted animals and scotopic and photopic electroretinogram (ERG) responses were similar to those for the wild type, as was recovery of the ERG response following bleaching, for animals matched for an Rpe65 polymorphism (p.L450M). Lipid peroxidation products and other measures of oxidative stress did not appear to be elevated in Rdh12(-/-) animals. RDH12 was localized to photoreceptor inner segments and the outer nuclear layer in both mouse and human retinas by immunohistochemistry. The present findings, together with those of earlier studies showing only minor functional deficits in mice deficient for Rdh5, Rdh8, or Rdh11, suggest that the activity of any one isoform is not rate limiting in the visual response.
Collapse
Affiliation(s)
- Ingo Kurth
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Butenfeld 42, 22529 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nilsson SEG. From basic to clinical research: a journey with the retina, the retinal pigment epithelium, the cornea, age-related macular degeneration and hereditary degenerations, as seen in the rear view mirror. ACTA ACUST UNITED AC 2006; 84:452-65; 451. [PMID: 16879565 DOI: 10.1111/j.1600-0420.2006.00751.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE This Acta Ophthalmologica Award and Gold Medal Honorary Lecture (the Lundsgaard Gold Medal Honorary Lecture) reviews some of the work I have carried out with my mentors and many of my wonderful collaborators and research students over more than 40 years, also including related work by other groups. It concentrates on the basic electrophysiology and ultrastructure of the retina and the retinal pigment epithelium (RPE), as well as covering basic and clinical aspects of the cornea, contact lenses, age-related macular degeneration (AMD) and hereditary diseases. METHODS The review describes research performed using light and electron microscopy, basic and clinical electrophysiology, genetics and biochemistry in animal experiments and in research on patients. It also outlines clinically used techniques, such as laser and photodynamic treatment and scanning laser ophthalmoscopy. RESULTS The paper reports on the following subjects: the mechanisms behind some of the electrical potentials originating in the retina and the RPE and the use of these potentials in hereditary diseases; corneal receptors for lectins and presumably for bacteria; the turnover of the photoreceptor outer segment and the formation of lipofuscin, including the relation of these processes to AMD; certain treatments for AMD, and hereditary degenerations in animal models, such as the RPE65 gene mutation in Briard dogs, which makes them a model of Leber's congenital amaurosis. The dogs are now treated successfully with gene therapy in the USA, and a clinical trial is in preparation. CONCLUSIONS During the last 40 years we have had the good fortune to experience a dramatic growth in knowledge and understanding within ophthalmic science of basic mechanisms. Huge progress has been made in diagnostics and clinical ophthalmological treatments, much to the benefit of our patients. Even a small contribution made by my group to these developments has been well worth the effort, particularly as scientific work is not just deeply satisfying: it is also fun!
Collapse
|
26
|
Nunnery C, Pickett JP, Zimmerman KL. Congenital stationary night blindness in a Thoroughbred and a Paso Fino. Vet Ophthalmol 2006; 8:415-9. [PMID: 16359365 DOI: 10.1111/j.1463-5224.2005.00416.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report documents congenital stationary night blindness (CSNB) in two non-Appaloosa horse breeds (Thoroughbred and Paso Fino). History of vision impairment since birth, normal ocular structures on ophthalmic examination, and electroretinographic findings were consistent with CSNB. In one horse (Thoroughbred), a 9-year follow-up was carried out. In the Paso Fino, severe vision impairment from birth to approximately 1 year of age in both dim and bright light situations led to humane euthanasia and histopathologic confirmation of the disorder.
Collapse
Affiliation(s)
- Catherine Nunnery
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0442, USA
| | | | | |
Collapse
|
27
|
Narfström K, Katz M, Bragadottir R, Rakoczy EP, Seeliger M. Assessment of Structure and Function Over a 3-year Period after Gene Transfer in RPE65−/− dogs. Doc Ophthalmol 2006; 111:39-48. [PMID: 16502306 DOI: 10.1007/s10633-005-3159-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
AIM To assess retinal structure and function over a 3-year period in a group of five RPE65-/- dogs treated by unilateral rAAV- mediated subretinal gene transfer. METHODS Post-operative functional follow-ups were performed using simultaneous, bilateral, full-field ERGs. Structure was evaluated by SLO using FL and ICG angiography and by EM. RESULTS Significant improvement of retinal function was observed through ERGs approximately 4 weeks following surgery. Scotopic b-wave amplitudes peaked 3 months after surgery. Then there was a successive reduction, although greater amplitudes than base-line values were observed at all post-operative time points. A-wave amplitudes increased at a later time than b-wave amplitudes and were sustained throughout the follow-up period. The increased cone function was preserved longer than the rod function. Angiography showed structural changes at the site of injection, corroborated by photoreceptor destruction observed ultrastructurally. Immediately adjacent to the subretinal injection area photoreceptor outer segments appeared normal. CONCLUSION Despite local structural alterations at the subretinal injection site, subretinal gene transfer in the RPE65 null mutation dog effectively increases retinal function for at least 3 years after surgery.
Collapse
Affiliation(s)
- Kristina Narfström
- College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Retinal dystrophies are a common cause of blindness in purebred dogs. Progressive retinal atrophy, the canine equivalent of retinitis pigmentosa in humans, is the most common dystrophy. Molecular studies have led to the identification of the genetic defect underlying some forms of progressive retinal atrophy and the mapping of the chromosomal location of others. Additionally, the gene mutation that causes a severe retinal dystrophy in the briard, which is the equivalent of Leber congenital amaurosis in humans, has been identified. These advances have led to the development of DNA-based diagnostic tests for some retinal dystrophies, thus facilitating their eradication. The study of these dystrophies in dogs has also provided useful information about the equivalent diseases in humans. Recently, gene therapy has been used to restore vision to dogs with a retinal dystrophy due to a mutation in the RPE65 gene. Such studies are important in the quest to develop therapies for similar conditions in humans.
Collapse
Affiliation(s)
- S Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, D-208 Veterinary Medical Center, East Lansing, MI 48864, USA
| |
Collapse
|
30
|
Lai CM, Yu MJT, Brankov M, Barnett NL, Zhou X, Redmond TM, Narfstrom K, Rakoczy PE. Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue. GENETIC VACCINES AND THERAPY 2004; 2:3. [PMID: 15109394 PMCID: PMC416492 DOI: 10.1186/1479-0556-2-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/27/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10-15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65-/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function. METHODS rAAV.RPE65 was injected into the subretinal space of Rpe65-/- knockout mice and control mice. Histological and immunohistological analyses were performed to evaluate any rescue of photoreceptors and to determine longevity and pattern of transgene expression. Electron microscopy was used to examine ultrastructural changes, and electroretinography was used to measure changes in visual function following rAAV.RPE65 injection. RESULTS rAAV-mediated RPE65 expression was detected for up to 18 months post injection. The delivery of rAAV.RPE65 to Rpe65-/- mouse retinas resulted in a transient improvement in the maximum b-wave amplitude under both scotopic and photopic conditions (76% and 59% increase above uninjected controls, respectively) but no changes were observed in a-wave amplitude. However, this increase in b-wave amplitude was not accompanied by any slow down in photoreceptor degeneration or apoptotic cell death. Delivery of rAAV.RPE65 also resulted in a decrease in retinyl ester lipid droplets and an increase in short wavelength cone opsin-positive cells, suggesting that the recovery of RPE65 expression has long-term benefits for retinal health. CONCLUSION This work demonstrated the potential benefits of using the Rpe65-/- mice to study the effects and mechanism of rAAV.RPE65-mediated gene delivery into the retina. Although the functional recovery in this model was not as robust as in the dog model, these experiments provided important clues about the long-term physiological benefits of restoration of RPE65 expression in the retina.
Collapse
Affiliation(s)
- Chooi-May Lai
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Meaghan JT Yu
- Department of Molecular Ophthalmology, Lions Eye Institute and The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Meliha Brankov
- Department of Molecular Ophthalmology, Lions Eye Institute and The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Nigel L Barnett
- Vision Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaohuai Zhou
- Virus Core Facility, Gene Therapy Center, University of North Carolina, North Carolina, 27599, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kristina Narfstrom
- Vision Science Group, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - P Elizabeth Rakoczy
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
31
|
Wrigstad A, Hanitzsch R. Pigment epithelial changes in a strain of pigmented rabbits with low ERG b-wave amplitudes. Vision Res 2003; 44:99-102. [PMID: 14599575 DOI: 10.1016/j.visres.2003.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinas from a strain of rabbits with low dark-adapted electroretinographic (ERG) b-wave amplitudes, and declining ERG responses with time, were examined by light and electron microscopy. Seven rabbits from the affected strain (13 months to 5 years old) and six control animals (6-26 months old) were included in the study. Small inclusions with an electron dense border, about 0.2-1.5 microm in diameter, were significantly (p<0.01) more numerous within the retinal pigment epithelial (RPE) cells in the affected rabbits than in the control animals. No morphological evidence of retinal degeneration was found. Further studies are needed to establish the functional defect in this strain of rabbits.
Collapse
Affiliation(s)
- Anders Wrigstad
- Department of Ophthalmology, Linköping University, SE-581 85 Linköping, Sweden.
| | | |
Collapse
|
32
|
Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 2003; 22:683-703. [PMID: 12892646 DOI: 10.1016/s1350-9462(03)00051-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the genes necessary for the metabolism of vitamin A (all-trans retinol) and cycling of retinoids between the photoreceptors and retinal pigment epithelium (RPE) (the visual cycle) have recently emerged as an important class of genetic defects responsible for retinal dystrophies and dysfunctions. Research into the causes and treatment of diseases resulting from defects in retinal vitamin A metabolism is currently the subject of intense interest, since disorders affecting the RPE are, in principle, more accessible to therapeutic intervention than those affecting the proteins of photoreceptor cells. This chapter presents an overview of the visual cycle, as well as the function of the RPE genes involved in the conversion of vitamin A to 11-cis retinal, the chromophore of the visual pigments. The identification of disease-causing mutations in this group of genes is described as well as the associated phenotypes that range from stationary night blindness to childhood-onset severe visual handicap. Consideration is also given to alternative genetic paradigms potentially relevant to defects in vitamin A metabolism, including a discussion of the relationship of this pathway to age-related macular degeneration, a non-Mendelian disease of late onset. Finally, progress and prospects for targeted therapeutic intervention in vitamin A metabolism are presented, including retinoid and gene replacement therapy. On the basis of early successes in animal models, and plans underway for Phase I/II clinical trials, it is hoped that the near future will bring effective therapies for many retinal dystrophy patients with defects in vitamin A metabolism.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
33
|
Prenatal Human Ocular Degeneration Occurs in Leber’s Congenital Amaurosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0067-4_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Lin CT, Gould DJ, Petersen-Jones SM, Sargan DR. Canine inherited retinal degenerations: update on molecular genetic research and its clinical application. J Small Anim Pract 2002; 43:426-432. [PMID: 12400639 DOI: 10.1111/j.1748-5827.2002.tb00008.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inherited retinal degenerations in the dog include generalised progressive retinal atrophy, retinal pigment epithelial dystrophy, congenital stationary night blindness and day blindness (hemeralopia). The clinical phenotype and pathology of these diseases closely resemble some types of human inherited retinal degeneration, in particular retinitis pigmentosa, one of the most common inherited causes of blindness in man. Molecular genetic investigations aim to identify the genetic mutations underlying the canine inherited retinal degenerations. Two major research strategies, candidate gene analysis and linkage analysis, have been used. To date, candidate gene analysis has definitively identified the genetic mutations underlying nine inherited retinal degenerations, each in a different breed of dog, and linkage studies have identified genetic markers for a further retinal degeneration which is found in at least six different breeds. This review outlines the research strategy behind candidate gene and linkage studies and summarises recent results in the search for genetic causes of canine inherited retinal degenerations. The aim is to increase awareness of this rapidly changing field and to show how the research can be used to develop genetic tests for these diseases and thereby reduce the incidence of inherited eye disease in dogs.
Collapse
Affiliation(s)
- C-T Lin
- Department of Veterinary Medicine, National Taiwan University, 142 Chou-San Road, Taipei 106, Taiwan
| | - D J Gould
- Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford BS40 5DU
| | - S M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, D208 Veterinary Medical Center, East Lansing, MI 48824-1314, USA
| | - D R Sargan
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES
| |
Collapse
|
35
|
Abstract
Inherited retinal degenerations are a common cause of blindness in Western countries. A mechanism for most retinal degenerations is still unknown; hence, a suitable treatment for most of these diseases has yet to be found. Before one can rationally design a treatment, it is necessary to understand the pathway from a gene mutation to the phenotype in patients. Animal models are crucial to understand this process and to develop a treatment. Some naturally occurring animal models are known. However, over the past few years, transgenic engineering has allowed the generation of a rapidly growing number of animal models. In this review, we give an overview of the broad variety of genetic animal models for retinal degeneration.
Collapse
|
36
|
Porto FBO, Perrault I, Hicks D, Rozet JM, Hanoteau N, Hanein S, Kaplan J, Sahel JA. Prenatal human ocular degeneration occurs in Leber's congenital amaurosis (LCA2). J Gene Med 2002; 4:390-6. [PMID: 12124981 DOI: 10.1002/jgm.278] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Leber's congenital amaurosis (LCA) encompasses the most precocious and severe forms of inherited retinal dystrophy, displaying very significant visual handicap at or soon after birth. Among the currently identified mutations, alterations in the gene coding for retinal pigment epithelium 65-kDa protein (RPE65) lead to LCA2. Existing animal models for LCA2 (RPE65(-/-) null mice and naturally occurring RPE65(-/-) Briard dogs) exhibit near normal retinal histology at birth, although no recordable photofunction can be detected. Structural degeneration in both cases occurs with delayed onset, cone death generally preceding that of rods. METHODS We obtained retinal tissue from a voluntarily aborted embryo of an LCA2 carrier in order to compare histopathology and immunohistochemistry with age-matched normal foetal retina. RESULTS Compared to normal retinas, affected retina displayed cell loss and thinning of the outer nuclear (photoreceptor) layer, decreased immunoreactivity for key phototransduction proteins, and aberrant synaptic and inner retinal organisation. The gene mutation abolished detectable expression of RPE65 within the retinal pigment epithelium (RPE) of affected eyes, and ultrastructural examination revealed the presence of lipid and vesicular inclusions not seen in normal RPE. In addition, mutant eyes demonstrated thickening, detachment and collagen fibril disorganisation in the underlying Bruch's membrane, and the choroid was distended and abnormally vascularised, in comparison with controls. CONCLUSIONS Such data contrast with the late-onset ocular changes observed in animal models, indicating caution should be exercised when inferring human retinal pathophysiology from information based on other species.
Collapse
Affiliation(s)
- Fernanda B O Porto
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM Université Louis Pasteur EMI 9918, Clinique Médicale A, CHUR Strasbourg, BP. 426, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The aim of this review is to introduce the reader to the world of clinical veterinary electroretinography. An important indication for ERG recordings in the dog is the early diagnosis of progressive retinal atrophy, an inherited form of photoreceptor degeneration, analogous to retinitis pigmentosa in humans. In most of the 20 canine breeds in which the disease has been studied electrophysiologically, changes in the ERG appear long before the appearance of clinical signs. This early diagnosis is a vital tool in efforts to eradicate the disease through preventive breeding. Pre-operative screening of canine cataract patients is another common indication for electroretinography in the dog. The ERG is also used to diagnose inherited and nutritional photoreceptor degenerations in the cat, and retinal disorders in a number of other animal species. The abundance of animal species (and breeds) seen by the veterinary ophthalmologist lends additional importance to the problem of a harmonized ERG recording protocol. The European College of Veterinary Ophthalmologists has set up a special committee to formulate guidelines for such a protocol. International meetings and wetlabs are also being organized as part of an effort to improve the quality of electrophysiological diagnosis that veterinary ophthalmologists provide their patients.
Collapse
Affiliation(s)
- Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
38
|
Flannery JG. Transgenic Animal Models for the Study of Inherited Retinal Dystrophies. ILAR J 2001; 40:51-58. [PMID: 11533514 DOI: 10.1093/ilar.40.2.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- John G. Flannery
- Department of Vision Science and Neurosciences, School of Optomertry, University of California, Berkley, California, USA
| |
Collapse
|
39
|
Narfström K. Retinal dystrophy or 'congenital stationary night blindness' in the Briard dog. Vet Ophthalmol 2001; 2:75-76. [PMID: 11397245 DOI: 10.1046/j.1463-5224.1999.00042.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K. Narfström
- Department of Medicine and Surgery, Swedish University of Agricultural Science, Uppsala, Sweden
| |
Collapse
|
40
|
Hafezi F, Grimm C, Simmen BC, Wenzel A, Remé CE. Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. Br J Ophthalmol 2000; 84:922-7. [PMID: 10906106 PMCID: PMC1723576 DOI: 10.1136/bjo.84.8.922] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- F Hafezi
- Department of Ophthalmology, University Clinic Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Lichtenberger T, Karbaum R, Flade A, Hanitzsch R. Low b-wave amplitudes in a strain of rabbits with a pigment epithelium defect. Vision Res 2000; 40:129-36. [PMID: 10768047 DOI: 10.1016/s0042-6989(99)00148-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When preparing isolated rabbit retinas we found in some animals fundi which were not uniformly dark but had abnormal areas of red coloration. The in situ electroretinograms (ERG) of 82 rabbits recorded after 1 h of dark adaptation were checked for abnormalities indicative of a degenerative disorder. The ERGs of eight rabbits with small dark adapted b-waves (< or = 250 microV) were re-recorded and their b-waves found to decline with time. The greatest reduction, in three rabbits, was > or = 150 microV over 2.5 years. After 1 year, however, the light adapted b-waves were similar to those of rabbits with normal dark adapted b-waves. The majority of the progeny of these rabbits also had small b-waves, which became still smaller in 2 years. Ultrastructural studies of two rabbit retinas of the first generation showed pathological changes of the pigment epithelium (Wrigstad, Hanitzsch & Nilsson, Ultrastructural and electrophysiological studies of the retina and the retinal pigment epithelium in rabbits with low b-wave amplitudes, in preparation). Evidently there is an inheritable defect in the pigment epithelium which first impairs the rod pathway.
Collapse
Affiliation(s)
- T Lichtenberger
- Klinik für Anästhesie und Intensivtherapie am Parkkrankenhaus Dösen, Leipzig, Germany
| | | | | | | |
Collapse
|
42
|
Veske A, Nilsson SE, Narfström K, Gal A. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics 1999; 57:57-61. [PMID: 10191083 DOI: 10.1006/geno.1999.5754] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RPE65 gene encodes a 65-kDa microsomal protein expressed exclusively in retinal pigment epithelium (RPE). Mutations in the human RPE65 gene have recently been identified in patients with autosomal recessive, severe, childhood-onset retinal dystrophy. Here we report the characterization of a 2.4-kb canine Rpe65 cDNA. The longest open reading frame predicts a 533-amino-acid protein with a calculated molecular mass of about 61 kDa prior to protein modification. Sequence comparison shows that RPE65 is highly conserved throughout mammalian evolution. We have identified a homozygous 4-bp deletion (485delAAGA) in putative exon 5 of the canine Rpe65 gene in affected animals of a highly inbred kinship of Swedish briard/briard-beagle dogs, in which an autosomal recessive, early-onset, and progressive retinal dystrophy segregates. The deletion results in a frameshift and leads to a premature stop codon after inclusion of 52 canine RPE65-unrelated amino acids from residue 153 onward. More than two-thirds of the wildtype polypeptide chain will be missing, and the mutant protein is most likely nonfunctional (null allele). Clinical features of the canine disease are quite similar to those described in human. Therefore this form of canine retinal dystrophy provides an attractive animal model of the corresponding human disorder with immediate significance for various therapeutic approaches, including RPE transplantation.
Collapse
Affiliation(s)
- A Veske
- Institut für Humangenetik, Universitäts-Klinikum Hamburg-Eppendorf, Butenfeld 42, Hamburg, D-22529, Germany
| | | | | | | |
Collapse
|
43
|
Veske A, Nilsson SE, Gal A. Organization of the canine gene encoding the E isoform of retinal guanylate cyclase (cGC-E) and exclusion of its involvement in the inherited retinal dystrophy of the Swedish Briard and Briard-beagle dogs. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:69-77. [PMID: 9651484 DOI: 10.1016/s0005-2736(98)00047-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular cyclic GMP concentration is known to change in response to a wide variety of agents, including hormones, neurotransmitters or light. In vertebrate photoreceptors, different membrane-bound guanylate cyclase isoforms are responsible for cGMP synthesis and thus directly involved in termination of light signalling via the phototransduction cascade and recovery of the dark state. We have characterized a 4.7 kb long cDNA for the canine retinal guanylate cyclase isoform E (cGC-E) predicting a polypeptide of 1109 amino acids. The genomic structure and the complete sequence of the canine GC-E gene, which consists of 20 exons and spans about 14.5 kb, has also been determined. Northern blot analysis showed that GC-E was expressed in the canine retina as a 4.7 and 6.1 kb large transcript. RT-PCR analysis also detected low expression in cerebrum (occipital lobe). We performed a sequence analysis of the cGC-E gene in animals of a Swedish Briard and Briard-Beagle dog kinship in which an inherited retinal dystrophy is segregating. Several intragenic DNA polymorphisms were identified and used for segregation analysis which excluded cGC-E as a candidate gene for this type of canine retinal dystrophy.
Collapse
Affiliation(s)
- A Veske
- Institut für Humangenetik, Universitäts-Krankenhaus Eppendorf, Butenfeld 42, D-22529, Hamburg, Germany
| | | | | |
Collapse
|
44
|
Nilsson SE, Wrigstad A. Electrophysiology in some animal and human hereditary diseases involving the retinal pigment epithelium. Eye (Lond) 1998; 11 ( Pt 5):698-706. [PMID: 9474321 DOI: 10.1038/eye.1997.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present paper surveys slow electrophysiological responses recorded by a d.c. technique in some hereditary eye diseases involving the retinal pigment epithelium (RPE) in animals (English setter dogs and Polish Owczarec Nizinny (PON) dogs with ceroid lipofuscinosis and Briard dogs with a slowly progressive rod-cone dystrophy associated with RPE inclusions) and in humans (Best's disease). The electroretinogram c-wave was typically either decreased in amplitude, lacking or replaced by a negative wave. These c-wave changes could be seen at fairly early stages of disease, when the a- and b-waves of the electroretinogram were still within normal limits.
Collapse
Affiliation(s)
- S E Nilsson
- Department of Ophthalmology, University of Linköping, Sweden
| | | |
Collapse
|
45
|
Veske A, Nilsson SE, Gal A. Characterization of canine rod photoreceptor cGMP-gated cation channel alpha-subunit gene and exclusion of its involvement in the hereditary retinal dystrophy of Swedish Briards. Gene 1997; 202:115-9. [PMID: 9427553 DOI: 10.1016/s0378-1119(97)00461-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence of the canine rod photoreceptor cGMP-gated cation channel alpha-subunit (cCNCG1) cDNA has been determined. The open reading frame consists of 2073 nucleotides, which encode a putative protein of 691 amino acids. In addition, we have established the exon/intron boundaries of the cCNCG1 gene and determined the complete sequence of six introns of a total of eight. The exon/intron organization (location and length of exons and introns) of the cCNCG1 gene is very similar to that of the human rod photoreceptor cGMP-gated cation channel alpha-subunit gene. We used single-strand conformation polymorphism analysis to search for potential pathogenic sequence changes in the cCNCG1 gene in a Swedish Briard and Briard-Beagle dog kindred, in which an autosomal recessive retinal dystrophy is segregating, a disease which shows phenotypic similarities to retinitis pigmentosa, a heterogeneous group of hereditary and progressive retinal degeneration in human. In intron 3, we found several DNA polymorphisms, which do not cosegregate with the affected status of the dogs, thus excluding cCNCG1 as a candidate gene for the retinal dystrophy in this strain of Swedish Briards.
Collapse
Affiliation(s)
- A Veske
- Institut für Humangenetik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
46
|
Veske A, Narfström K, Finckh U, Sargan DR, Nilsson SE, Gal A. Isolation of canine retinal arrestin cDNA and exclusion of three candidate genes for Swedish Briard retinal dystrophy. Curr Eye Res 1997; 16:270-4. [PMID: 9088745 DOI: 10.1076/ceyr.16.3.270.15413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Mutations of genes encoding various retina-specific proteins are known to cause a wide spectrum of inherited retinal dystrophies in different species. In the canine, several types of genetic retinal dystrophies have been described affecting primarily the photoreceptors and/or the retinal pigment epithelium. We are performing a systematic analysis of canine candidate genes for such diseases to identify the one mutated in the retinal dystrophy in Swedish Briard dogs. METHODS We isolated and characterised the full length cDNA of canine retinal arrestin by the method of rapid amplification of cDNA ends (RACE). RESULTS The full length cDNA isolated by us is 1,575 base pairs (bp) long and contains a 1,218 bp-long open reading frame. CONCLUSIONS The homology of the canine arrestin protein is highest with the human analogue (88.9%) and lowest with mouse arrestin (85.3%). The most obvious sequence differences among the different arrestins are in the extreme carboxyl terminus. PCR-SSCP (single strand conformation polymorphism) analysis and direct sequencing of retinal cDNA didn't provide any evidence that mutations in the canine arrestin gene are responsible for the retinal dystrophy seen in the Swedish strain of Briard dogs. Similar data were obtained for the genes encoding rhodopsin and the beta-subunit of photoreceptor-specific phosphodiesterase by segregation analysis.
Collapse
Affiliation(s)
- A Veske
- Institut für Humangenetik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|