1
|
Shulman DS, Merriam P, Choy E, Guenther LM, Cavanaugh KL, Kao P, Posner A, Bhushan K, Fairchild G, Barker E, Klega K, Stegmaier K, Crompton BD, London WB, DuBois SG. Phase 2 trial of palbociclib and ganitumab in patients with relapsed Ewing sarcoma. Cancer Med 2023; 12:15207-15216. [PMID: 37306107 PMCID: PMC10417097 DOI: 10.1002/cam4.6208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Ewing sarcoma (EWS) is an aggressive sarcoma with few treatment options for patients with relapsed disease. Cyclin-dependent kinase 4 (CDK4) is a genomic vulnerability in EWS that is synergistic with IGF-1R inhibition in preclinical studies. We present the results of a phase 2 study combining palbociclib (CDK4/6 inhibitor) with ganitumab (IGF-1R monoclonal antibody) for patients with relapsed EWS. PATIENTS AND METHODS This open-label, non-randomized, phase 2 trial enrolled patients ≥12 years with relapsed EWS. All patients had molecular confirmation of EWS and RECIST measurable disease. Patients initially received palbociclib 125 mg orally on Days 1-21 and ganitumab 18 mg/kg intravenously on Days 1 and 15 of a 28-day cycle. The primary endpoints were objective response (complete or partial) per RECIST and toxicity by CTCAE. An exact one-stage design required ≥4 responders out of 15 to evaluate an alternative hypothesis of 40% response rate against a null of 10%. The study was closed following enrollment of the 10th patient due to discontinuation of ganitumab supply. RESULTS Ten evaluable patients enrolled [median age 25.7 years (range 12.3-40.1)]. The median duration of therapy was 2.5 months (range 0.9-10.8). There were no complete or partial responders. Three of 10 patients had stable disease for >4 cycles and 2 had stable disease at completion of planned therapy or study closure. Six-month progression-free survival was 30% (95% CI 1.6%-58.4%). Two patients had cycle 1 hematologic dose-limiting toxicities (DLTs) triggering palbociclib dose reduction to 100 mg daily for 21 days. Two subsequent patients had cycle 1 hematologic DLTs at the reduced dose. Eighty percent of patients had grade 3/4 AEs, including neutropenia (n = 8), white blood cell decreased (n = 7), and thrombocytopenia (n = 5). Serum total IGF-1 significantly increased (p = 0.013) and ctDNA decreased during the first cycle. CONCLUSIONS This combination lacks adequate therapeutic activity for further study, though a subset of patients had prolonged stable disease.
Collapse
Affiliation(s)
- David S. Shulman
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Priscilla Merriam
- Dana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Edwin Choy
- Massachusetts General HospitalMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | | | - Kerri L. Cavanaugh
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Pei‐Chi Kao
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Posner
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ketki Bhushan
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Grace Fairchild
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Emma Barker
- Dana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kelly Klega
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kimberly Stegmaier
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian D. Crompton
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Wendy B. London
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven G. DuBois
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
DuBois SG, Krailo MD, Glade-Bender J, Buxton A, Laack N, Randall RL, Chen HX, Seibel NL, Boron M, Terezakis S, Hill-Kayser C, Hayes A, Reid JM, Teot L, Rakheja D, Womer R, Arndt C, Lessnick SL, Crompton BD, Kolb EA, Daldrup-Link H, Eutsler E, Reed DR, Janeway KA, Gorlick RG. Randomized Phase III Trial of Ganitumab With Interval-Compressed Chemotherapy for Patients With Newly Diagnosed Metastatic Ewing Sarcoma: A Report From the Children's Oncology Group. J Clin Oncol 2023; 41:2098-2107. [PMID: 36669140 PMCID: PMC10082251 DOI: 10.1200/jco.22.01815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 12/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Monoclonal antibodies directed against insulin-like growth factor-1 receptor (IGF-1R) have shown activity in patients with relapsed Ewing sarcoma. The primary objective of Children's Oncology Group trial AEWS1221 was to determine if the addition of the IGF-1R monoclonal antibody ganitumab to interval-compressed chemotherapy improves event-free survival (EFS) in patients with newly diagnosed metastatic Ewing sarcoma. METHODS Patients were randomly assigned 1:1 at enrollment to standard arm (interval-compressed vincristine/doxorubicin/cyclophosphamide alternating once every 2 weeks with ifosfamide/etoposide = VDC/IE) or to experimental arm (VDC/IE with ganitumab at cycle starts and as monotherapy once every 3 weeks for 6 months after conventional therapy). A planned sample size of 300 patients was projected to provide 81% power to detect an EFS hazard ratio of 0.67 or smaller for the experimental arm compared with the standard arm with a one-sided α of .025. RESULTS Two hundred ninety-eight eligible patients enrolled (148 in standard arm; 150 in experimental arm). The 3-year EFS estimates were 37.4% (95% CI, 29.3 to 45.5) for the standard arm and 39.1% (95% CI, 31.3 to 46.7) for the experimental arm (stratified EFS-event hazard ratio for experimental arm 1.00; 95% CI, 0.76 to 1.33; 1-sided, P = .50). The 3-year overall survival estimates were 59.5% (95% CI, 50.8 to 67.3) for the standard arm and 56.7% (95% CI, 48.3 to 64.2) for the experimental arm. More cases of pneumonitis after radiation involving thoracic fields and nominally higher rates of febrile neutropenia and ALT elevation were reported on the experimental arm. CONCLUSION Ganitumab added to interval-compressed chemotherapy did not significantly reduce the risk of EFS event in patients with newly diagnosed metastatic Ewing sarcoma, with outcomes similar to prior trials without IGF-1R inhibition or interval compression. The addition of ganitumab may be associated with increased toxicity.
Collapse
Affiliation(s)
- Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Mark D. Krailo
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allen Buxton
- Children's Oncology Group Statistics and Data Center, Monrovia, CA
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - R. Lor Randall
- Department of Orthopedic Surgery, UC Davis Medical Center, Sacramento, CA
| | - Helen X. Chen
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Nita L. Seibel
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Matthew Boron
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN
| | - Christine Hill-Kayser
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrea Hayes
- Department of Surgery, Howard University College of Medicine, Washington, DC
| | - Joel M. Reid
- Department of Oncology, Mayo Clinic, Rochester, MN
| | - Lisa Teot
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Richard Womer
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carola Arndt
- Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Stephen L. Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH
- The Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH
| | - Brian D. Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - E. Anders Kolb
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA
| | - Heike Daldrup-Link
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA
| | - Eric Eutsler
- Department of Radiology, Washington University School of Medicine, St Louis, MO
| | - Damon R. Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Katherine A. Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
3
|
Morales E, Olson M, Iglesias F, Dahiya S, Luetkens T, Atanackovic D. Role of immunotherapy in Ewing sarcoma. J Immunother Cancer 2021; 8:jitc-2020-000653. [PMID: 33293354 PMCID: PMC7725096 DOI: 10.1136/jitc-2020-000653] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ewing sarcoma (ES) is thought to arise from mesenchymal stem cells and is the second most common bone sarcoma in pediatric patients and young adults. Given the dismal overall outcomes and very intensive therapies used, there is an urgent need to explore and develop alternative treatment modalities including immunotherapies. In this article, we provide an overview of ES biology, features of ES tumor microenvironment (TME) and review various tumor-associated antigens that can be targeted with immune-based approaches including cancer vaccines, monoclonal antibodies, T cell receptor-transduced T cells, and chimeric antigen receptor T cells. We highlight key reasons for the limited efficacy of various immunotherapeutic approaches for the treatment of ES to date. These factors include absence of human leukocyte antigen class I molecules from the tumor tissue, lack of an ideal surface antigen, and immunosuppressive TME due to the presence of myeloid-derived suppressor cells, F2 fibrocytes, and M2-like macrophages. Lastly, we offer insights into strategies for novel therapeutics development in ES. These strategies include the development of gene-modified T cell receptor T cells against cancer–testis antigen such as XAGE-1, surface target discovery through detailed profiling of ES surface proteome, and combinatorial approaches. In summary, we provide state-of-the-art science in ES tumor immunology and immunotherapy, with rationale and recommendations for future therapeutics development.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Olson
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Fiorella Iglesias
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Saurabh Dahiya
- Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tim Luetkens
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA.,Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Djordje Atanackovic
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA .,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Casey DL, Lin TY, Cheung NKV. Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma. Front Oncol 2019; 9:537. [PMID: 31275859 PMCID: PMC6593481 DOI: 10.3389/fonc.2019.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ewing sarcoma (ES) family of tumors includes bone and soft tissue tumors that are often characterized by a specific translocation between chromosome 11 and 22, resulting in the EWS-FLI1 fusion gene. With the advent of multi-modality treatment including cytotoxic chemotherapy, surgery, and radiation therapy, the prognosis for patients with ES has substantially improved. However, a therapeutic plateau is now reached for both localized and metastatic disease over the last two decades. Burdened by the toxicity limits associated with the current frontline systemic therapy, there is an urgent need for novel targeted therapeutic strategies. In this review, we discuss the current treatment paradigm of ES, and explore preclinical evidence and emerging treatments directed at tumor signaling pathways and immune targets.
Collapse
Affiliation(s)
- Dana L Casey
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tsung-Yi Lin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
5
|
Vormoor B, Schlosser YT, Blair H, Sharma A, Wilkinson S, Newell DR, Curtin N. Sensitizing Ewing sarcoma to chemo- and radiotherapy by inhibition of the DNA-repair enzymes DNA protein kinase (DNA-PK) and poly-ADP-ribose polymerase (PARP) 1/2. Oncotarget 2017; 8:113418-113430. [PMID: 29371919 PMCID: PMC5768336 DOI: 10.18632/oncotarget.21300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 11/25/2022] Open
Abstract
Background DNA-PK and PARP inhibitors sensitize cancer cells to chemo- and radiotherapy. ETS transcription factors (EWS-FLI1) have been described as biomarkers for PARP-inhibitor sensitivity. Sensitivity to single agent PARP inhibitors has so far been limited to homologous recombination repair (HRR) deficient tumors, exploiting synthetic lethality. Results In clonogenic assays, single agent rucaparib LD50 values for continuously exposed cells were similar to those observed in HRR-defective cells (CAPAN-1 cell line, BRCA2 defective); however, both ES cell lines (TC-71, CADO-ES1) had functional HRR. In vivo rucaparib administration (10 mg/kg daily) showed no responses. In clonogenic assays, rucaparib enhanced temozolomide, camptothecin and radiation cytotoxicity, which was most profound for temozolomide (15–29 fold enhancement). NU7441 increased the cytotoxicity of etoposide, doxorubicin and radiation. Materials and Methods We assessed PARP1/2 (rucaparib) and DNA-PK (NU7441) inhibitors in Ewing sarcoma (ES) cell lines by performing growth inhibition and clonogenic assays. HRR was measured by RAD51 focus formation. Single agent rucaparib was assessed in an in vivo orthotopic model. Conclusions Single agent rucaparib ES sensitivity in vitro was not replicated in vivo. DNA-PK and PARP inhibitors are good chemo-/radiosensitizers in ES. The future of these inhibitors lies in their combination with chemo-/radiotherapy, which needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Britta Vormoor
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.,Department of Paediatric and Adolescent Haematology and Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yvonne T Schlosser
- German Cancer Research Center, DKFZ, Cell Cycle Control and Carcinogenesis, Heidelberg, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Abhishek Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sarah Wilkinson
- Northumbria University, Department of Health and Life Sciences, Newcastle upon Tyne, UK
| | - David R Newell
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, UK
| | - Nicola Curtin
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol 2016; 55:91-100. [PMID: 27246176 DOI: 10.1016/j.humpath.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Vo KT, Edwards JV, Epling CL, Sinclair E, Hawkins DS, Grier HE, Janeway KA, Barnette P, McIlvaine E, Krailo MD, Barkauskas DA, Matthay KK, Womer RB, Gorlick RG, Lessnick SL, Mackall CL, DuBois SG. Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: A Report from the Children's Oncology Group. Clin Cancer Res 2016; 22:3643-50. [PMID: 26861456 DOI: 10.1158/1078-0432.ccr-15-2516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Flow cytometry and RT-PCR can detect occult Ewing sarcoma cells in the blood and bone marrow. These techniques were used to evaluate the prognostic significance of micrometastatic disease in Ewing sarcoma. EXPERIMENTAL DESIGN Newly diagnosed patients with Ewing sarcoma were enrolled on two prospective multicenter studies. In the flow cytometry cohort, patients were defined as "positive" for bone marrow micrometastatic disease if their CD99(+)/CD45(-) values were above the upper limit in 22 control patients. In the PCR cohort, RT-PCR on blood or bone marrow samples classified the patients as "positive" or "negative" for EWSR1/FLI1 translocations. The association between micrometastatic disease burden with clinical features and outcome was assessed. Coexpression of insulin-like growth factor-1 receptor (IGF-1R) on detected tumor cells was performed in a subset of flow cytometry samples. RESULTS The median total bone marrow CD99(+)CD45(-) percent was 0.0012% (range 0%-1.10%) in the flow cytometry cohort, with 14 of 109 (12.8%) of Ewing sarcoma patients defined as "positive." In the PCR cohort, 19.6% (44/225) patients were "positive" for any EWSR1/FLI1 translocation in blood or bone marrow. There were no differences in baseline clinical features or event-free or overall survival between patients classified as "positive" versus "negative" by either method. CD99(+)CD45(-) cells had significantly higher IGF-1R expression compared with CD45(+) hematopoietic cells (mean geometric mean fluorescence intensity 982.7 vs. 190.9; P < 0.001). CONCLUSIONS The detection of micrometastatic disease at initial diagnosis by flow cytometry or RT-PCR is not associated with outcome in newly diagnosed patients with Ewing sarcoma. Flow cytometry provides a tool to characterize occult micrometastatic tumor cells for proteins of interest. Clin Cancer Res; 22(14); 3643-50. ©2016 AACR.
Collapse
Affiliation(s)
- Kieuhoa T Vo
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, California
| | - Jeremy V Edwards
- Department of Pediatrics, Walter Reed Army Medical Center, Washington, DC
| | - C Lorrie Epling
- Division of Experimental Medicine Core Immunology Laboratory, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, California
| | - Elizabeth Sinclair
- Division of Experimental Medicine Core Immunology Laboratory, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, California
| | - Douglas S Hawkins
- Division of Hematology/Oncology, Seattle Children's Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Holcombe E Grier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Phillip Barnette
- Department of Pediatric Hematology/Oncology, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elizabeth McIlvaine
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mark D Krailo
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Donald A Barkauskas
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Katherine K Matthay
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, California
| | - Richard B Womer
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard G Gorlick
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders at Nationwide Children's Hospital and the Division of Hematology, Oncology, and BMT at The Ohio State University, Columbus, Ohio
| | - Crystal L Mackall
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Steven G DuBois
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco School of Medicine, San Francisco, California.
| |
Collapse
|
8
|
Giorgi C, Boro A, Rechfeld F, Lopez-Garcia LA, Gierisch ME, Schäfer BW, Niggli FK. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1. Oncotarget 2015; 6:28895-910. [PMID: 26336820 PMCID: PMC4745699 DOI: 10.18632/oncotarget.5000] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ~50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (-2239/+67) using various deletion constructs identified two 14 bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Binding Sites
- Bone Neoplasms/drug therapy
- Bone Neoplasms/enzymology
- Bone Neoplasms/genetics
- Bone Neoplasms/pathology
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imidazoles/pharmacology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phosphatidylinositol 3-Kinase/genetics
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Quinolines/pharmacology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/enzymology
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/pathology
- Signal Transduction/drug effects
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- Chiara Giorgi
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Aleksandar Boro
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Florian Rechfeld
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Laura A. Lopez-Garcia
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Maria E. Gierisch
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Felix K. Niggli
- Department of Oncology and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
9
|
Rivera-Valentin RK, Zhu L, Hughes DPM. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr Drugs 2015; 17:257-71. [PMID: 26002157 PMCID: PMC4516866 DOI: 10.1007/s40272-015-0134-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pediatric bone sarcomas osteosarcoma and Ewing sarcoma represent a tremendous challenge for the clinician. Though less common than acute lymphoblastic leukemia or brain tumors, these aggressive cancers account for a disproportionate amount of the cancer morbidity and mortality in children, and have seen few advances in survival in the past decade, despite many large, complicated, and expensive trials of various chemotherapy combinations. To improve the outcomes of children with bone sarcomas, a better understanding of the biology of these cancers is needed, together with informed use of targeted therapies that exploit the unique biology of each disease. Here we summarize the current state of knowledge regarding the contribution of receptor tyrosine kinases, intracellular signaling pathways, bone biology and physiology, the immune system, and the tumor microenvironment in promoting and maintaining the malignant phenotype. These observations are coupled with a review of the therapies that target each of these mechanisms, focusing on recent or ongoing clinical trials if such information is available. It is our hope that, by better understanding the biology of osteosarcoma and Ewing sarcoma, rational combination therapies can be designed and systematically tested, leading to improved outcomes for a group of children who desperately need them.
Collapse
Affiliation(s)
- Rocio K. Rivera-Valentin
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Limin Zhu
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Dennis P. M. Hughes
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
10
|
Simmons JK, Hildreth BE, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ. Animal Models of Bone Metastasis. Vet Pathol 2015; 52:827-41. [PMID: 26021553 DOI: 10.1177/0300985815586223] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.
Collapse
Affiliation(s)
- J K Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B E Hildreth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - W Supsavhad
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - S M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B B Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - R E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Patel M, Gomez NC, McFadden AW, Moats-Staats BM, Wu S, Rojas A, Sapp T, Simon JM, Smith SV, Kaiser-Rogers K, Davis IJ. PTEN deficiency mediates a reciprocal response to IGFI and mTOR inhibition. Mol Cancer Res 2014; 12:1610-20. [PMID: 24994750 DOI: 10.1158/1541-7786.mcr-14-0006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing sarcoma, a highly malignant bone and soft-tissue tumor that primarily affects children and young adults. Despite promising results from preclinical studies of therapies that target this pathway, early-phase clinical trials have shown that a significant fraction of patients do not benefit, suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors, PTEN deficiency was observed in a large subset of cases, although not mediated by large chromosomal deletions. PTEN loss resulted in hyperactivation of the AKT signaling pathway. PTEN rescue led to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, PTEN loss decreased sensitivity to IGF1R inhibitors but increased responsiveness to temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results suggest that PTEN is lost in a significant fraction of primary tumors, and this deficiency may have therapeutic consequences by concurrently attenuating responsiveness to IGF1R inhibition while increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients with recurrent disease could help guide the selection of therapies. IMPLICATIONS PTEN status in Ewing sarcoma affects cellular responses to IGFI and mTOR-directed therapy, thus justifying its consideration as a biomarker in future clinical trials.
Collapse
Affiliation(s)
- Mukund Patel
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas C Gomez
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew W McFadden
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Billie M Moats-Staats
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sam Wu
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andres Rojas
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Travis Sapp
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremy M Simon
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott V Smith
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Kaiser-Rogers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ian J Davis
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
12
|
Vormoor B, Knizia HK, Batey MA, Almeida GS, Wilson I, Dildey P, Sharma A, Blair H, Hide IG, Heidenreich O, Vormoor J, Maxwell RJ, Bacon CM. Development of a preclinical orthotopic xenograft model of ewing sarcoma and other human malignant bone disease using advanced in vivo imaging. PLoS One 2014; 9:e85128. [PMID: 24409320 PMCID: PMC3883696 DOI: 10.1371/journal.pone.0085128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing.
Collapse
Affiliation(s)
- Britta Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Henrike K. Knizia
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A. Batey
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gilberto S. Almeida
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian Wilson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Petra Dildey
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Abhishek Sharma
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - I. Geoff Hide
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ross J. Maxwell
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Shukla N, Schiffman J, Reed D, Davis IJ, Womer RB, Lessnick SL, Lawlor ER. Biomarkers in Ewing Sarcoma: The Promise and Challenge of Personalized Medicine. A Report from the Children's Oncology Group. Front Oncol 2013; 3:141. [PMID: 23761859 PMCID: PMC3674398 DOI: 10.3389/fonc.2013.00141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/19/2013] [Indexed: 11/13/2022] Open
Abstract
A goal of the COG Ewing Sarcoma (ES) Biology Committee is enabling identification of reliable biomarkers that can predict treatment response and outcome through the use of prospectively collected tissues and correlative studies in concert with COG therapeutic studies. In this report, we aim to provide a concise review of the most well-characterized prognostic biomarkers in ES, and to provide recommendations concerning design and implementation of future biomarker studies. Of particular interest and potentially high clinical relevance are studies of cell-cycle proteins, sub-clinical disease, and copy number alterations. We discuss findings of particular interest from recent biomarker studies and examine factors important to the success of identifying and validating clinically relevant biomarkers in ES. A number of promising biomarkers have demonstrated prognostic significance in numerous retrospective studies and now need to be validated prospectively in larger cohorts of equivalently treated patients. The eventual goal of refining the discovery and use of clinically relevant biomarkers is the development of patient specific ES therapeutic modalities.
Collapse
Affiliation(s)
- Neerav Shukla
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center , New York, NY , USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N. Children's Oncology Group's 2013 blueprint for research: bone tumors. Pediatr Blood Cancer 2013; 60:1009-15. [PMID: 23255238 PMCID: PMC4610028 DOI: 10.1002/pbc.24429] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022]
Abstract
In the US, approximately 650 children are diagnosed with osteosarcoma and Ewing sarcoma (ES) each year. Five-year survival ranges from 65% to 75% for localized disease and <30% for patients with metastases. Recent findings include interval-compressed five drug chemotherapy improves survival with localized ES. In osteosarcoma a large international trial investigating the addition of ifosfamide/etoposide or interferon to standard therapy has completed accrual. For ES an ongoing trial explores the addition of cyclophosphamide/topotecan to interval-compressed chemotherapy. Trials planned by the Children's Oncology Group will investigate new target(s) including IGF-1R and mTOR in ES, and RANKL and GD2 in osteosarcoma.
Collapse
Affiliation(s)
- Richard Gorlick
- The Department of Pediatrics and Molecular Pharmacology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10467, USA.
| | - Katherine Janeway
- Department of Pediatric Hematology-Oncology, Dana-Farber/Children’s Hospital Cancer Center, Boston, Massachusetts
| | - Stephen Lessnick
- Division of Pediatric Hematology/Oncology, Department of Oncological Sciences, University of Utah School of Medicine, Center for Children’s Cancer Research at Huntsman Cancer Institute, Salt Lake City, Utah
| | - R. Lor Randall
- Orthopaedics Huntsman Cancer Institute & Primary Children’s Medical Center, University of Utah, Salt Lake City, Utah
| | - Neyssa Marina
- Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital & Stanford University, Palo Alto, California
| | | |
Collapse
|
15
|
Abstract
Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma.
Collapse
Affiliation(s)
- Babu Jully
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Insulin-like growth factor 1 receptor as a therapeutic target in ewing sarcoma: lack of consistent upregulation or recurrent mutation and a review of the clinical trial literature. Sarcoma 2013; 2013:450478. [PMID: 23431249 PMCID: PMC3569907 DOI: 10.1155/2013/450478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/05/2012] [Accepted: 12/09/2012] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) has been considered an important therapeutic target in Ewing sarcoma (ES), generating a need to identify the subset of patients most likely to respond to IGF-1R inhibitors. We assessed IGF-1R expression in ES cell lines and patient tumors to understand the variable clinical responses to anti-IGF-1R therapy. Using ligand-binding displacement, we measured between 13,000 and 40,000 receptors per cell in ES cell lines. We used ELISA to quantify IGF-1R in patient tumors, which expressed 4.8% ± 3.7 to 20.0% ± 0.2 of the levels in a positive control cell line overexpressing IGF-1R. Flow cytometry showed markedly reduced IGF-1R expression in ES cell lines compared to a standard positive control cell line. The IGF1R gene was sequenced in 47 ES tumor samples and 8 ES cell lines; only one tumor sample showed a nonsynonymous mutation, R1353H, in a region with low functional impact. Finally, we assessed IGF-1R pathway activity in the ES stem cell (ESSC) population, to characterize its potential for resistance to anti-IGF-1R therapy, using Luminex technology. We found no significant differences in IGF-1R pathway activity between ESSCs and the total cell population. Overall, our findings suggest that IGF-1R as a therapeutic target in this sarcoma may require reevaluation.
Collapse
|
17
|
A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells. Sarcoma 2012; 2012:782970. [PMID: 23091403 PMCID: PMC3469244 DOI: 10.1155/2012/782970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/15/2012] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) reputedly opposes chemotoxicity in Ewing sarcoma family of tumor (ESFT) cells. However, the effect of IGF1 on apoptosis induced by apoptosis ligand 2 (Apo2L)/tumor necrosis factor (TNF-) related apoptosis-inducing ligand (TRAIL) remains to be established. We find that opposite to the partial survival effect of short-term IGF1 treatment, long-term IGF1 treatment amplified Apo2L/TRAIL-induced apoptosis in Apo2L/TRAIL-sensitive but not resistant ESFT cell lines. Remarkably, the specific IGF1 receptor (IGF1R) antibody α-IR3 was functionally equivalent to IGF1. Short-term IGF1 incubation of cells stimulated survival kinase AKT and increased X-linked inhibitor of apoptosis (XIAP) protein which was associated with Apo2L/TRAIL resistance. In contrast, long-term IGF1 incubation resulted in repression of XIAP protein through ceramide (Cer) formation derived from de novo synthesis which was associated with Apo2L/TRAIL sensitization. Addition of ceramide synthase (CerS) inhibitor fumonisin B1 during long-term IGF1 treatment reduced XIAP repression and Apo2L/TRAIL-induced apoptosis. Noteworthy, the resistance to conventional chemotherapeutic agents was maintained in cells following chronic IGF1 treatment. Overall, the results suggest that chronic IGF1 treatment renders ESFT cells susceptible to Apo2L/TRAIL-induced apoptosis and may have important implications for the biology as well as the clinical management of refractory ESFT.
Collapse
|
18
|
Riedel RF, Maki RG, Wagner AJ. Targeted therapy in sarcoma: should we be lumpers or splitters? Am Soc Clin Oncol Educ Book 2012:652-657. [PMID: 24451813 DOI: 10.14694/edbook_am.2012.32.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The identification of KIT as a critical driver in the pathogenesis of GI stromal tumor (GIST), and its subsequent inhibition with imatinib, have resulted in tremendous efforts to identify other potential therapeutic targets for the heterogeneous group of diseases known as sarcomas. Because of the rarity of sarcoma and the often limited number of patients per individual sarcoma subtype, clinical trials to date have often utilized unselected patient populations including multiple subtypes. Although this strategy increases the ease with which a particular trial may accrue patients, statistically significant therapeutic responses across an unselected patient population are often limited. Furthermore, in the absence of biologic correlatives, the identification of significant activity and subsequent interpretation of clinical trial results utilizing targeted therapies for this patient population have been challenging. However, hints have emerged, on the basis of preclinical and clinical observations, to suggest that certain targeted therapeutic approaches are appropriate in select histologic subtypes. This brief review will highlight data supporting the use of targeted therapy in both unselected and selected sarcoma patient populations.
Collapse
Affiliation(s)
- Richard F Riedel
- From the Duke Cancer Institute, Duke University Medical Center, Durham, NC; Mount Sinai School of Medicine, New York, NY; Dana Farber Cancer Institute, Boston, MA
| | - Robert G Maki
- From the Duke Cancer Institute, Duke University Medical Center, Durham, NC; Mount Sinai School of Medicine, New York, NY; Dana Farber Cancer Institute, Boston, MA
| | - Andrew J Wagner
- From the Duke Cancer Institute, Duke University Medical Center, Durham, NC; Mount Sinai School of Medicine, New York, NY; Dana Farber Cancer Institute, Boston, MA
| |
Collapse
|
19
|
Akram SK, Carlsson-Skwirut C, Bhutta ZA, Söder O. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth. Acta Paediatr 2011; 100:1504-9. [PMID: 21539604 DOI: 10.1111/j.1651-2227.2011.02336.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. METHODS Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. RESULTS Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). CONCLUSION Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies.
Collapse
|
20
|
Abstract
Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor specificity and variability of this aberration have been matters of intense investigation in recent years. A number of related alterations have also been found in other malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted transcription factors interacting with either the EWS or the ETS portion may influence target selection. Minimal domains of both fusion partners were defined that have proved necessary for the in vitro transformation of murine fibroblasts. These functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric
transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and consequently DNA binding specificity. Recent evidence suggests that EWS, when fused to a transcription factor, interacts with different partners than germ-line EWS. Variability in EWS–ETS gene fusions has recently been demonstrated to correlate with clinical outcome. This finding may reflect functional differences of the individual chimeric transcription
factors. Alternatively, type and availability of specific recombinases at different time-points of stem cell development or in different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS–ETS antagonists do suggest a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of additional aberrations varying in number and type that may account for immortalization and full transformation is
postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for treatment stratification.
Collapse
Affiliation(s)
- H Kovar
- Children's Cancer Research Institute (CCRI) St Anna Kinderspital Kinderspitalgasse 6 Vienna A-1090 Austria
| |
Collapse
|
21
|
Zumkeller W. The role of insulin-like growth factor system in soft tissue sarcomas: from physiopathology to targeted therapeutic approaches. Sarcoma 2011; 2:69-76. [PMID: 18521237 PMCID: PMC2395388 DOI: 10.1080/13577149878028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose/Results. Although surgical, chemo- and radiotherapeutic treatment regimens in patients with soft tissue sarcomas have constantly been refined over the past two decades, the survival rate for these patients is rather low. Discussion. There is a great need to investigate the mechanisms for oncogenesis and to identify the factors involved in malignant transformation in sarcomas. Among these factors, IGFs are thought to play a pivotal role as progression factors in various types of sarcomas. The dysregulation of the IGF-II synthesis, e.g. by loss of imprinting which occurs in most
types of sarcomas, is a permissive effect through the suppression of cell death. In addition, cells that overexpress the type I IGF receptors are more susceptible to transformation by oncogenes. As TP53 suppresses the activity of IGF-II P3 and P4, as well as the type I IGF receptor promoter, mutations of TP53 in sarcomas may alternatively lead to the activation of these factors. Finally, the phenomenon of non-islet cell tumour hypoglycaemia that occurs in patients with sarcomas, and which is related to the secretion of IGF-II prohormones, is discussed. Future therapeutic strategies may be based upon the application of antibodies or antisense oligonucleotides directed against the type I IGF receptors, with the common goal of inducing apoptosis in sarcoma cells. Ultimately, these and other therapeutic approaches may lead to a better outcome in patients suffering from sarcoma.
Collapse
Affiliation(s)
- W Zumkeller
- Department of Hematology/Oncology Children's University Hospital Heidelberg Germany
| |
Collapse
|
22
|
Spaniol K, Boos J, Lanvers-Kaminsky C. An in-vitro evaluation of the polo-like kinase inhibitor GW843682X against paediatric malignancies. Anticancer Drugs 2011; 22:531-42. [PMID: 21637161 DOI: 10.1097/cad.0b013e3283454526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polo-like kinase 1 (PLK1) is a regulator of mitosis and its upregulation in tumours is often associated with poor prognosis. Although PLK1 inhibitors have already entered phase 1 clinical trials, little is known about their impact on the treatment of paediatric malignancies. Thus, we evaluated the concept of PKL1 inhibition by testing the effects of the PLK1 inhibitor GW843682X alone and in combination with the topoisomerase 1 inhibitor, camptothecin, against a panel of 18 paediatric tumour cell lines. Cytotoxicity was evaluated by MTT test and by caspase 3/7 activation. Expression of target was confirmed by western blot analysis. Expression of ATP binding cassette transporters was analysed by quantitative real-time reverse transcription PCR. GW843682X significantly inhibited cell growth in all 18 cell lines. Concentrations, which inhibited cell growth by 50% compared with untreated controls after 72 h, ranged from 0.02 to 11.7 μmol/l. Apart from the N-Myc-amplified neuroblastoma cell lines, the osteosarcoma cell lines MNNG-HOS and OST, which are highly resistant to standard anticancer drugs, were sensitive to GW843682X. The toxicity of GW843682X was dependent neither on the ATP binding cassette drug transporter expression nor on the p53 mutation status. Neither synergistic nor antagonistic effects were observed for the combination of GW843682X and camptothecin in 14 cell lines. GW843682X showed considerable toxicity against a panel of paediatric tumour cell lines suggesting that PLK1 inhibitors under clinical development should be evaluated against paediatric malignancies too.
Collapse
Affiliation(s)
- Kristina Spaniol
- Department of Paediatric Haematology and Oncology, University Children's Hospital, Muenster, Germany
| | | | | |
Collapse
|
23
|
Wahl J, Bogatyreva L, Boukamp P, Rojewski M, van Valen F, Fiedler J, Hipp N, Debatin KM, Beltinger C. Ewing's sarcoma cells with CD57-associated increase of tumorigenicity and with neural crest-like differentiation capacity. Int J Cancer 2010; 127:1295-307. [PMID: 20104521 DOI: 10.1002/ijc.25163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ewing family of tumors (EFT) is an important group of pediatric malignancies with a guarded prognosis. Little is known about the heterogeneity of EFT cells, and the cellular origin of EFT is disputed. We now add evidence that EFT are heterogeneous by showing that EFT cells from spheres growing in serum-free medium are markedly more tumorigenic than adherently growing EFT cells. Furthermore, EFT cells strongly expressing CD57 (HNK-1), a surface marker for migrating and proliferating neural crest cells, are more tumorigenic than cells with low expression of CD57, possibly mediated in part by enhanced adhesion and invasion. We contribute to the controversy about the cellular origin of EFT by clonal analysis, showing that EFT cells can differentiate similar to neural crest cells. These data increase our knowledge about the pathogenesis and heterogeneity of EFT.
Collapse
|
24
|
Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 2010; 29:4504-16. [PMID: 20543858 PMCID: PMC3555143 DOI: 10.1038/onc.2010.205] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 12/17/2022]
Abstract
Tumor development is a complex process resulting from interplay between mutations in oncogenes and tumor suppressors, host susceptibility factors, and cellular context. Great advances have been made by studying rare tumors with unique clinical, genetic, or molecular features. Ewing's sarcoma serves as an excellent paradigm for understanding tumorigenesis because it exhibits some very useful and important characteristics. For example, nearly all cases of Ewing's sarcoma contain the (11;22)(q24;q12) chromosomal translocation that encodes the EWS/FLI oncoprotein. Besides the t(11;22), however, many cases have otherwise simple karyotypes with no other demonstrable abnormalities. Furthermore, it seems that an underlying genetic susceptibility to Ewing's sarcoma, if it exists, must be rare. These two features suggest that EWS/FLI is the primary mutation that drives the development of this tumor. Finally, Ewing's sarcoma is an aggressive tumor that requires aggressive treatment. Thus, improved understanding of the pathogenesis of this tumor will not only be of academic interest, but may also lead to new therapeutic approaches for individuals afflicted with this disease. The purpose of this review is to highlight recent advances in understanding the molecular pathogenesis of Ewing's sarcoma, while considering the questions surrounding this disease that still remain and how this knowledge may be applied to developing new treatments for patients with this highly aggressive disease.
Collapse
Affiliation(s)
- Elizabeth C. Toomey
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Joshua D. Schiffman
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| | - Stephen L. Lessnick
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
25
|
Isakoff MS, Marina N. Anti-insulin growth factor receptor therapy in Ewing sarcoma. F1000 MEDICINE REPORTS 2009; 1. [PMID: 20948718 PMCID: PMC2948310 DOI: 10.3410/m1-62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The insulin-like growth factor (IGF) signal transduction pathway appears to play a key role in the development and proliferation of the Ewing sarcoma family of tumors. Integration of anti-IGF-1 receptor therapy into the standard treatment for these patients is a novel approach that will likely be incorporated into future treatment to determine whether such agents will improve the outcome for patients with this malignancy.
Collapse
Affiliation(s)
- Michael S Isakoff
- Division of Hematology-Oncology, Connecticut Children's Medical Center282 Washington Street, Hartford, CT 06092USA
| | - Neyssa Marina
- Division of Hematology-Oncology, Stanford University and Lucile Packard Children's HospitalMail Code 5798, 1000 Welch Road, Suite 300, Palo Alto, CA 94304-1812USA
| |
Collapse
|
26
|
Franzius C, Hotfilder M, Poremba C, Hermann S, Schäfers K, Gabbert HE, Jürgens H, Schober O, Schäfers M, Vormoor J. Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model. Eur J Nucl Med Mol Imaging 2006; 33:1432-41. [PMID: 16896672 DOI: 10.1007/s00259-006-0106-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 02/07/2006] [Indexed: 02/07/2023]
Abstract
PURPOSE As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model. METHODS Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2-7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) or 9.4 MBq (mean) [(18)F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions. RESULTS Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [(18)F]fluoride PET by virtue of decreased [(18)F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically. CONCLUSION Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.
Collapse
Affiliation(s)
- Christiane Franzius
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hotfilder M, Sondermann P, Senß A, van Valen F, Jürgens H, Vormoor J. PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death. Br J Cancer 2005; 92:705-10. [PMID: 15685229 PMCID: PMC3216036 DOI: 10.1038/sj.bjc.6602384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml(-1) FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo.
Collapse
Affiliation(s)
- M Hotfilder
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - P Sondermann
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - A Senß
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - F van Valen
- Department of Orthopedics, 48129 Münster, Germany
| | - H Jürgens
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - J Vormoor
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
- Universitätsklinikum Münster, Klinik und Poliklinik für Kinderheilkunde – Pädiatrische Hämatologie/Onkologie, Albert-Schweitzer-Str. 33, 48149 Münster, Germany. E-mail:
| |
Collapse
|
28
|
Schaefer KL, Brachwitz K, Wai DH, Braun Y, Diallo R, Korsching E, Eisenacher M, Voss R, Van Valen F, Baer C, Selle B, Spahn L, Liao SK, Lee KAW, Hogendoorn PCW, Reifenberger G, Gabbert HE, Poremba C. Expression Profiling of t(12;22) Positive Clear Cell Sarcoma of Soft Tissue Cell Lines Reveals Characteristic Up-Regulation of Potential New Marker Genes Including ERBB3. Cancer Res 2004; 64:3395-405. [PMID: 15150091 DOI: 10.1158/0008-5472.can-03-0809] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clear cell sarcoma of soft tissue (CCSST), also known as malignant melanoma of soft parts, represents a rare lesion of the musculoskeletal system usually affecting adolescents and young adults. CCSST is typified by a chromosomal t(12;22)(q13;q12) translocation resulting in a fusion between the Ewing sarcoma gene (EWSR1) and activating transcription factor 1 (ATF1), of which the activity in nontransformed cells is regulated by cyclic AMP. Our aim was to identify critical differentially expressed genes in CCSST tumor cells in comparison with other solid tumors affecting children and young adults to better understand signaling pathways regulating specific features of the development and progression of this tumor entity. We applied Affymetrix Human Genome U95Av2 oligonucleotide microarrays representing approximately 12,000 genes to generate the expression profiles of the CCSST cell lines GG-62, DTC-1, KAO, MST2, MST3, and Su-CC-S1 in comparison with 8 neuroblastoma, 7 Ewing tumor, and 6 osteosarcoma cell lines. Subsequent hierarchical clustering of microarray data clearly separated all four of the tumor types from each other and identified differentially expressed transcripts, which are characteristically up-regulated in CCSST. Statistical analysis revealed a group of 331 probe sets, representing approximately 300 significant (P < 0.001) differentially regulated genes, which clearly discriminated between the CCSST and other tumor samples. Besides genes that were already known to be highly expressed in CCSST, like S100A11 (S100 protein) or MITF (microphthalmia-associated transcription factor), this group shows an obvious portion of genes that are involved in cyclic AMP response or regulation, in pigmentation processes, or in neuronal structure and signaling. Comparison with other expression profile analyses on neuroectodermal childhood tumors confirms the high robustness of this strategy to characterize tumor entities based on their gene expression. We found the avian erythroblastic leukemia viral oncogene homologue 3 (ERBB3) to be one of the most dramatically up-regulated genes in CCSST. Quantitative real-time PCR and Northern blot analysis verified the mRNA abundance and confirmed the absence of the inhibitory transcript variant of this gene. The protein product of the member of the epidermal growth factor receptor family ERBB3 could be shown to be highly present in all of the CCSST cell lines investigated, as well as in 18 of 20 primary tumor biopsies. In conclusion, our data demonstrate new aspects of the phenotype and the biological behavior of CCSST and reveal ERBB3 to be a useful diagnostic marker.
Collapse
MESH Headings
- Blotting, Northern
- Cell Line, Tumor
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 22/genetics
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, erbB/genetics
- Genetic Markers/genetics
- Humans
- Male
- Middle Aged
- Neuroblastoma/genetics
- Polymerase Chain Reaction/methods
- RNA-Binding Protein EWS/genetics
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Sarcoma, Clear Cell/genetics
- Sarcoma, Clear Cell/metabolism
- Sarcoma, Ewing/genetics
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/metabolism
- Translocation, Genetic
- Up-Regulation
Collapse
|
29
|
Uren A, Merchant MS, Sun CJ, Vitolo MI, Sun Y, Tsokos M, Illei PB, Ladanyi M, Passaniti A, Mackall C, Toretsky JA. Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing's sarcoma cells. Oncogene 2003; 22:2334-42. [PMID: 12700668 DOI: 10.1038/sj.onc.1206330] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Ewing's sarcoma family of tumors (ESFT) contain a translocation, t(11;22), which results in the novel oncogenic fusion protein EWS/FLI1. Platelet-derived growth factors (PDGF) and their receptors (PDGFR) are involved in the induction and proliferation of numerous solid tumors and are the potential candidates for novel targeted antitumor therapy. Since a relation was reported between PDGF-C and EWS/FLI1, we sought to characterize the PDGF signaling pathway in ESFT. Eight out of nine ESFT cell lines were found to express significant levels of beta-PDGFR. Interestingly, none of the tested cell lines expressed alpha-PDGFR, which is the receptor isotype required for PDGF-C binding. By immunohistochemical staining 47 of 52 (90.4%) archival tumor samples from patients with ESFT were positive for beta-PDGFR. ESFT cell lines were treated with PDGF-AA or PDGF-BB ligands to evaluate downstream signaling. Autophosphorylation of beta-PDGFR and tyrosine phosphorylation of PLC-gamma, PI3Kp85 and Shc were detected only in PDGF-BB-stimulated cells that express beta-PDGFR. Receptor function was further evaluated using chemotaxis assays that showed TC-32 cell migration towards PDGF-BB. A specific PDGFR kinase inhibitor AG1295 blocked beta-PDGFR activation, downstream signaling, growth in cell culture and chemotaxis of TC-32 cells. AG1295 also delayed tumor formation and prolonged survival in an ESFT animal model. We conclude that ESFT express beta-PDGFR and that this is a functional and potentially crucial signaling pathway. Therefore, beta-PDGFRs may provide a novel therapeutic target in ESFT that can be utilized to design better treatment modalities.
Collapse
MESH Headings
- Animals
- Becaplermin
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Division/drug effects
- Chemotaxis/drug effects
- Class Ib Phosphatidylinositol 3-Kinase
- Disease Progression
- Enzyme Inhibitors/pharmacology
- Humans
- Isoenzymes/metabolism
- Mice
- Mice, SCID
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphatidylinositol 3-Kinases/metabolism
- Phospholipase C gamma
- Phosphorylation/drug effects
- Platelet-Derived Growth Factor/pharmacology
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins c-sis
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/drug effects
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Recombinant Proteins/pharmacology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Signal Transduction/drug effects
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
- Type C Phospholipases/metabolism
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- A Uren
- Lombardi Cancer Center, Georgetowm University Medical Center, Washington, DC 20057-1469, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V, Strammiello R, Baldini N, Lollini PL, Nanni P, Nicoletti G, Picci P. Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther 2002; 9:296-307. [PMID: 11896447 DOI: 10.1038/sj.cgt.7700442] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Indexed: 11/08/2022]
Abstract
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype of Ewing's sarcoma (ES) cells, and interference with the IGF-IR pathways by a neutralizing antibody causes reversal of the malignant potential of this neoplasm. In this paper, we stably transfected an IGF-IR antisense mRNA expression plasmid in an ES cell line to determine the effectiveness of antisense strategies against the in vitro and in vivo growth of ES cells. Doxorubicin sensitivity of TC-71 cells expressing antisense targeted to IGF-IR mRNA was also examined. Cells carrying antisense IGF-IR had a reduced expression of the receptor, a modest decrease in cell proliferation, a significant increase in anoikis-induced apoptosis, and a severely reduced ability to form colonies in soft agar. Moreover, TC/AS cells showed a marked reduction in their motility. In vivo, when cells carrying antisense IGF-IR were injected subcutaneously in nude mice, tumor formation was delayed and survival increased. Metastatic ability of ES cells was also significantly reduced. Furthermore, TC/AS clones showed a significantly higher sensitivity to doxorubicin - a major drug in the treatment of ES. These results indicate that inhibiting IGF-IR by antisense strategies may be relevant to the clinical treatment of ES patients by reducing the malignant potential of these cells and enhancing the effectiveness of chemotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Bone Neoplasms/chemistry
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- DNA Primers/chemistry
- Down-Regulation
- Doxorubicin/pharmacology
- Female
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Mice
- Mice, Nude
- Neoplasm Metastasis/pathology
- Neoplasm Metastasis/therapy
- Polyhydroxyethyl Methacrylate/metabolism
- RNA, Antisense/therapeutic use
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/chemistry
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/therapy
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Katia Scotlandi
- Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Vormoor J, Baersch G, Decker S, Hotfilder M, Schäfer KL, Pelken L, Rübe C, Van Valen F, Jürgens H, Dockhorn-Dworniczak B. Establishment of an in vivo model for pediatric Ewing tumors by transplantation into NOD/scid mice. Pediatr Res 2001; 49:332-41. [PMID: 11228258 DOI: 10.1203/00006450-200103000-00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ewing tumors are a clinically heterogeneous group of childhood sarcomas that represent a paradigm for understanding solid tumor biology, as they are the first group of sarcomas for which a chromosome translocation has been characterized at the molecular level. However, the biologic organization of the tumor, especially the processes that govern proliferation, differentiation, and metastasis of primitive tumor stem cells is poorly understood. Therefore, to develop a biologically relevant in vivo model, five different Ewing tumor cell lines and primary tumor cells from three patients were transplanted into immune-deficient mice via intravenous injection. NOD/scid mice that carry a complex immune deficiency and thus nearly completely lack the ability to reject human cells were used as recipients. Overall, 26 of 52 mice (50%) transplanted with VH-64, WE-68, CADO-ES1, TC-71, and RM-82 cells and 4 of 10 mice (40%) transplanted with primary tumor cells engrafted. Moreover, primary cells that did not grow in vitro proliferated in mice. The pattern of metastasis was similar to that in patients with frequent metastases in lungs (62%), bone marrow (30%), and bone (23%). Using limiting dilution experiments, the frequency of the engraftment unit was estimated at 1 Ewing tumor-initiating cell in 3 x 10(5) VH-64 cells. These data demonstrate that we have been able to establish an in vivo model that recapitulates many aspects of growth and progression of human Ewing tumors. For the first time, this model provides the opportunity to identify and characterize primitive in vivo clonogenic solid tumor stem cells. This model will, therefore, be instrumental in studying many aspects of tumor cell biology, including organ-selective metastasis and tumor angiogenesis.
Collapse
Affiliation(s)
- J Vormoor
- Department of Pediatric Hematology/Oncology, University of Münster, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Girnita L, Girnita A, Wang M, Meis-Kindblom JM, Kindblom LG, Larsson O. A link between basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing's sarcoma cells. Oncogene 2000; 19:4298-301. [PMID: 10980604 DOI: 10.1038/sj.onc.1203755] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The EWS/FLI-1 fusion gene is characteristic of most cases of Ewing's sarcoma and has been shown to be crucial for tumor transformation and cell growth. In this study we demonstrate a drastic down-regulation of the EWS/FLI-1 protein, and a growth arrest, following serum depletion of Ewing's sarcoma cells. This indicates that growth factor circuits may be involved in regulation of the fusion gene product. Of four different growth factors tested, basic fibroblast growth factor (bFGF) was found to be of particular significance. In fact, upon treatment of serum-depleted cells with bFGF, expression of the EWS/FLI-1 protein and growth of the Ewing's sarcoma cells were restored. In addition, a bFGF-neutralizing antibody, which was confirmed to inhibit FGF receptor (FGFR) phosphorylation, caused down-regulation of EWS/FLI-1. Experiments using specific cell cycle blockers (thymidine and colcemide) suggest that EWS/FLI-1 is directly linked to bFGF stimulation, and not indirectly to cell proliferation. We also demonstrated expression of FGFRs in several tumor samples of Ewing's sarcoma. Taken together, our data suggest that expression of FGFR is a common feature of Ewing's sarcoma and, in particular, that the bFGF pathway may be important for the maintenance of a malignant phenotype of Ewing's sarcoma cells through up-regulating the EWS/FLI-1 protein. Oncogene (2000) 19, 4298 - 4301
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Antibodies, Monoclonal/pharmacology
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Cycle/drug effects
- Cell Division/drug effects
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 22/ultrastructure
- Culture Media, Serum-Free
- Demecolcine/pharmacology
- Drug Synergism
- Epidermal Growth Factor/pharmacology
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/immunology
- Fibroblast Growth Factor 2/physiology
- Fibroblasts/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Platelet-Derived Growth Factor/pharmacology
- Prostatic Neoplasms/pathology
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Receptors, Fibroblast Growth Factor/drug effects
- Receptors, Fibroblast Growth Factor/physiology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Thymidine/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Patel N, Brinkman-Van der Linden EC, Altmann SW, Gish K, Balasubramanian S, Timans JC, Peterson D, Bell MP, Bazan JF, Varki A, Kastelein RA. OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 1999; 274:22729-38. [PMID: 10428856 DOI: 10.1074/jbc.274.32.22729] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report the expression cloning of a novel leptin-binding protein of the immunoglobulin superfamily (OB-BP1) and a cross-hybridizing clone (OB-BP2) that is identical to a recently described sialic acid-binding I-type lectin called Siglec-5. Comparisons to other known Siglec family members (CD22, CD33, myelin-associated glycoprotein, and sialoadhesin) show that OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 constitute a unique related subgroup with a high level of overall amino acid identity: OB-BP1 versus Siglec-5 (59%), OB-BP1 versus CD33 (63%), and OB-BP2/Siglec-5 versus CD33 (56%). The cytoplasmic domains are not as highly conserved, but display novel motifs which are putative sites of tyrosine phosphorylation, including an immunoreceptor tyrosine kinase inhibitory motif and a motif found in SLAM and SLAM-like proteins. Human tissues showed high levels of OB-BP1 mRNA in placenta and moderate expression in spleen, peripheral blood leukocytes, and small intestine. OB-BP2/Siglec-5 mRNA was detected in peripheral blood leukocytes, lung, spleen, and placenta. A monoclonal antibody specific for OB-BP1 confirmed high expression in the cyto- and syncytiotrophoblasts of the placenta. Using this antibody on peripheral blood leukocytes showed an almost exclusive expression pattern on B cells. Recombinant forms of the extracellular domains of OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 were assayed for specific binding of leptin. While OB-BP1 exhibited tight binding (K(d) 91 nM), the other two showed weak binding with K(d) values in the 1-2 microM range. Studies with sialylated ligands indicated that OB-BP1 selectively bound Neu5Acalpha2-6GalNAcalpha (sialyl-Tn) allowing its formal designation as Siglec-6. The identification of OB-BP1/Siglec-6 as a Siglec family member, coupled with its restricted expression pattern, suggests that it may mediate cell-cell recognition events by interacting with sialylated glycoprotein ligands expressed on specific cell populations. We also propose a role for OB-BP1 in leptin physiology, as a molecular sink to regulate leptin serum levels.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/genetics
- Antigens, CD/isolation & purification
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/isolation & purification
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- Evolution, Molecular
- Female
- Gene Expression
- Humans
- Immunoglobulins/genetics
- Lectins
- Leptin
- Ligands
- Molecular Sequence Data
- Multigene Family
- N-Acetylneuraminic Acid/metabolism
- Placenta/chemistry
- Pregnancy
- Protein Binding
- Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 3
- Tissue Distribution
Collapse
Affiliation(s)
- N Patel
- Molecular Biology Department, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Borowski A, van Valen F, Ulbrecht M, Weiss EH, Blasczyk R, Jürgens H, Göbel U, Schneider EM. Monomorphic HLA class I-(non-A, non-B) expression on Ewing's tumor cell lines, modulation by TNF-alpha and IFN-gamma. Immunobiology 1999; 200:1-20. [PMID: 10084692 DOI: 10.1016/s0171-2985(99)80029-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, the expression of polymorphic and non-polymorphic MHC antigens in Ewing's tumor (ET) cells was examined by surface staining, Western blots and transcriptional analysis. Cell lines derived from Ewing's tumors largely lack polymorphic HLA class Ia antigens of both the HLA-A and the HLA-B loci but binding of monomorphic HLA antibodies indicates significant expression of HLA-C locus antigens and/or HLA class Ib molecules. HLA Ib molecules encoded by the HLA-E, -F or -G loci with a molecular mass of less than 44 kDa were not detected in lysates of either constitutive or TNF-alpha plus IFN-gamma treated ET cells. Two representative ET cell lines with either detectable HLA-A, -B antigens (A673) or absolutely non-detectable HLA-A, -B antigens (SK-ES-1) were further subjected to transcriptional analysis. A673 mRNA hybridized with HLA-A, -B, -C and HLA-E-specific probes in Northern blots. By contrast, mRNA specific for HLA-A, -B, -C was negative in SK-ES-1 but TNF-alpha plus IFN-gamma reconstituted HLA-A, -B, -C transcription in this cell line. HLA-E was transcribed in A673 but not in SK-ES-1. Combining mRNA and surface expression of HLA class Ia molecules results in a highly variable pattern of defective HLA class I expression in this type of neuroectodermal tumor. The involvement of the ET-specific fusion transcript EWS/Fli-1 in modulating the HLA-A and -B locus antigens is likely to occur by the upregulation of c-myc in these tumors. The exceptionally constant expression of HLA-C or some other non-A, non-B antigens (reactive with defined monoclonal antibodies) implies important consequences on tumor-cell resistance against specific CTL and NK activity in vivo.
Collapse
Affiliation(s)
- A Borowski
- Immunological Laboratory, Institute of Hemostaseology and Transfusion-Medicine, Düsseldorf University, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pollock RE. Molecular determinants of soft tissue sarcoma proliferation. SEMINARS IN SURGICAL ONCOLOGY 1994; 10:315-22. [PMID: 7997725 DOI: 10.1002/ssu.2980100503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Soft tissue sarcoma is an extremely rare malignant disease that includes more than 15 distinct histologic subtypes. While all share a propensity for metastasis to the lungs, the clinical presentation and pattern of spread for the specific subtypes are remarkably viable. Little is known about the etiology of soft tissue sarcoma other than several well described epidemiological associations between ionizing and other toxic agents and several of the soft tissue sarcoma histologic subtypes. The key to understanding the etiologic factors driving soft tissue sarcoma proliferation and dissemination lies in understanding the molecular mechanisms underlying these oncologic processes. Progress in this regard has been difficult because of the rarity of this disease. This report reviews the current state of knowledge for three of the most important considerations involving the molecular etiology of soft tissue sarcoma: growth factors and their receptors, nuclear and cytoplasmic oncogenes, and tumor suppressor genes. As we learn more about these molecular mechanisms leading to proliferation and dissemination of soft tissue sarcoma, molecularly based genetic therapies will become a reality for this all too devastating, albeit rare, disease.
Collapse
Affiliation(s)
- R E Pollock
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| |
Collapse
|
37
|
van Valen F, Winkelmann W, Burdach S, Göbel U, Jürgens H. Interferon gamma and tumour necrosis factor alpha induce a synergistic antiproliferative response in human Ewing's sarcoma cells in vitro. J Cancer Res Clin Oncol 1993; 119:615-21. [PMID: 8335680 DOI: 10.1007/bf01372725] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three human cell lines derived from Ewing's sarcoma (RM-82, VH-64, and WE-68) were investigated to establish the influence of recombinant human interferon gamma (rhIFN gamma) and tumour necrosis factor alpha (rhTNF alpha) on cell proliferation and survival and to characterize IFN gamma and TNF alpha receptor expression. Incorporation of [3H]thymidine into cells was inhibited by rhIFN gamma after 24 h of incubation. Half-maximal inhibition was observed with 10-80 U/ml rhIFN gamma. A maximal effect (50%-70% inhibition of cell proliferation) was achieved by treatment of cells with 250 U/ml rhIFN gamma. The influence of rhTNF alpha on proliferation was found to differ among cell lines and varied with the concentration and the duration of exposure of cells to this cytokine. In WE-68 and VH-64 cells [3H]thymidine incorporation was not affected by rhTNF alpha up to 2000 U/ml after 96 h of incubation, whereas in RM-82 cells the incorporation was inhibited by 35% after 48 h of incubation with 100 U/ml rhTNF alpha. However, all cell lines showed a synergistic antiproliferative response to the combination of rhIFN gamma and rhTNF alpha after 24 h of incubation. The human recombinant cytokines interleukin(IL)-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-6 and granulocyte/macrophage-colony-stimulating factor, tested alone and in combination with rhIFN gamma and rhTNF alpha, had no influence on cell proliferation. Binding studies in the cell lines with 125I-rhIFN gamma revealed a dissociation constant (Kd) of 160-306 pM and approximately 8000-13,500 receptors/cell. Binding experiments with 125I-rhTNF alpha indicated 430-1250 receptors/cell with Kd ranging from 13 pM to 162 pM. These data indicate that, among various cytokines, only IFN and TNF alpha are capable of potently reducing Ewing's sarcoma cell growth in vitro. Our data suggest that IFN alone or in combination with TNF alpha may be useful in the design of novel strategies in Ewing's sarcoma therapy.
Collapse
Affiliation(s)
- F van Valen
- Abt. für Pädiatrische Hämatologie und Onkologie, Westfälische-Wilhelms-Universität, Münster, Germany
| | | | | | | | | |
Collapse
|