1
|
Wang Y, Rozen V, Zhao Y, Wang Z. Oncogenic activation of PI K3 CA in cancers: Emerging targeted therapies in precision oncology. Genes Dis 2025; 12:101430. [PMID: 39717717 PMCID: PMC11665392 DOI: 10.1016/j.gendis.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 12/25/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of a p110 catalytic subunit and a p85 regulatory subunit. The PIK3CA gene, which encodes the p110α, is the most frequently mutated oncogene in cancer. Oncogenic PIK3CA mutations activate the PI3K pathway, promote tumor initiation and development, and mediate resistance to anti-tumor treatments, making the mutant p110α an excellent target for cancer therapy. PIK3CA mutations occur in two hotspot regions: one in the helical domain and the other in the kinase domain. The PIK3CA helical and kinase domain mutations exert their oncogenic function through distinct mechanisms. For example, helical domain mutations of p110α gained direct interaction with insulin receptor substrate 1 (IRS-1) to activate the downstream signaling pathways. Moreover, p85β proteins disassociate from helical domain mutant p110α, translocate into the nucleus, and stabilize enhancer of zeste homolog 1/2 (EZH1/2). Due to the fundamental role of PI3Kα in tumor initiation and development, PI3Kα-specific inhibitors, represented by FDA-approved alpelisib, have developed rapidly in recent decades. However, side effects, including on-target side effects such as hyperglycemia, restrict the maximum dose and thus clinical efficacy of alpelisib. Therefore, developing p110α mutant-specific inhibitors to circumvent on-target side effects becomes a new direction for targeting PIK3CA mutant cancers. In this review, we briefly introduce the function of the PI3K pathway and discuss how PIK3CA mutations rewire cell signaling, metabolism, and tumor microenvironment, as well as therapeutic strategies under development to treat patients with tumors harboring a PIK3CA mutation.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Valery Rozen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Icard P, Prieto M, Coquerel A, Fournel L, Gligorov J, Noel J, Mouren A, Dohan A, Alifano M, Simula L. Why and how citrate may sensitize malignant tumors to immunotherapy. Drug Resist Updat 2025; 78:101177. [PMID: 39612545 DOI: 10.1016/j.drup.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.
Collapse
Affiliation(s)
- Philippe Icard
- INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Laboratory, Université de Caen Normandie, Caen, France; Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France.
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Antoine Coquerel
- INSERM U1075, COMETE « Mobilités: Attention, Orientation, Chronobiologie », Université Caen, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris
| | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris
| | - Johanna Noel
- Oncology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Adrien Mouren
- Département d'Innovation Thérapeutique et d´Essais Précoces (DITEP), Institut Gustave Roussy, Villejuif 94805, France
| | - Anthony Dohan
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France; Radiology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, Paris-Descartes University, Paris, France
| | - Luca Simula
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France.
| |
Collapse
|
3
|
Wu Y, Jia C, Liu W, Zhan W, Chen Y, Lu J, Bao Y, Wang S, Yu C, Zheng L, Sun L, Song Z. Sodium citrate targeting Ca 2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer. J Adv Res 2024; 65:89-104. [PMID: 38724006 PMCID: PMC11518946 DOI: 10.1016/j.jare.2024.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION Ovarian cancer (OC) is known for its high mortality rate. Although sodium citrate has anti-tumor effects in various cancers, its effect and mechanism in OC remain unclear. OBJECTIVES To analyze the inhibitory effect of sodium citrate on ovarian cancer cells and the underlying mechanism. METHODS Cell apoptosis was examined by TUNEL staining, flow cytometry, and ferroptosis was examined intracellular Fe2+, MDA, LPO assays, respectively. Cell metabolism was examined by OCR and ECAR measurements. Immunoblotting and immunoprecipitation were used to elucidate the mechanism. RESULTS This study suggested that sodium citrate not only promoted ovarian cancer cell apoptosis but also triggeredferroptosis, manifested as elevated levels of Fe2+, LPO, MDA andlipid ROS production. On one hand, sodium citrate treatment led to a decrease of Ca2+ content in the cytosol by chelatingCa2+, which further inhibited the Ca2+/CAMKK2/AKT/mTOR signaling, thereby suppressing HIF1α-dependent glycolysis pathway and inducing cell apoptosis. On the other hand, the chelation of Ca2+ by sodium citrate resulted in inactivation of CAMKK2 and AMPK, leading to increase of NCOA4-mediated ferritinophagy, causing increased intracellular Fe2+ levels. More importantly, the inhibition of Ca2+/CAMKK2/AMPK signaling pathway reduced the activity of the MCU and Ca2+ concentration within the mitochondria, resulting in an increase in mitochondrial ROS. Additionally, metabolomic analysis indicated that sodium citrate treatment significantly increased de novo lipid synthesis. Altogether, these factors contributed to ferroptosis. As expected, Ca2+ supplementation successfully reversed the cell death and decreased tumor growth induced by sodium citrate. Inspiringly, it was found that coadministration of sodium citrate increased the sensitivity of OC cells to chemo-drugs. CONCLUSION These results revealed that the sodium citrate exerted its anti-cancer activity by inhibiting Ca2+/CAMKK2-dependent cell apoptosis and ferroptosis. Sodium citrate will hopefully serve as a prospective compound for OC treatment and for improvingthe efficacy of chemo-drugs.
Collapse
Affiliation(s)
- Yulun Wu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Chaoran Jia
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Wei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Wei Zhan
- The Hospital of Northeast Normal University, Changchun 130024, China
| | - Yao Chen
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Junlin Lu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China
| | - Lihua Zheng
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
| | - Zhenbo Song
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
4
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
7
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
8
|
Simula L, Alifano M, Icard P. How Phosphofructokinase-1 Promotes PI3K and YAP/TAZ in Cancer: Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14102478. [PMID: 35626081 PMCID: PMC9139230 DOI: 10.3390/cancers14102478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We propose that PFK1 promotes a positive feedback loop with PI3K/AKT and YAP/TAZ signaling pathways in cancer cells. Therefore, targeting PFK1 (or its product F-1,6-BP) could improve the efficacy of PI3K and YAP/TAZ inhibitors currently tested in clinical trials. To this aim, we suggest the use of citrate, which is a physiologic and potent inhibitor of PFK1. Abstract PI3K/AKT is one of the most frequently altered signaling pathways in human cancers, supporting the activation of many proteins sustaining cell metabolism, proliferation, and aggressiveness. Another important pathway frequently altered in cancer cells is the one regulating the YAP/TAZ transcriptional coactivators, which promote the expression of genes sustaining aerobic glycolysis (such as WNT, MYC, HIF-1), EMT, and drug resistance. Of note, the PI3K/AKT pathway can also regulate the YAP/TAZ one. Unfortunately, although PI3K and YAP inhibitors are currently tested in highly resistant cancers (both solid and hematologic ones), several resistance mechanisms may arise. Resistance mechanisms to PI3K inhibitors may involve the stimulation of alternative pathways (such as RAS, HER, IGFR/AKT), the inactivation of PTEN (the physiologic inhibitor of PI3K), and the expression of anti-apoptotic Bcl-xL and MCL1 proteins. Therefore, it is important to improve current therapeutic strategies to overcome these limitations. Here, we want to highlight how the glycolytic enzyme PFK1 (and its product F-1,6-BP) promotes the activation of both PI3K/AKT and YAP/TAZ pathways by several direct and indirect mechanisms. In turn, PI3K/AKT and YAP/TAZ can promote PFK1 activity and F-1,6-BP production in a positive feedback loop, thus sustaining the Warburg effect and drug resistance. Thus, we propose that the inhibition of PFK1 (and of its key activator PFK2/PFKFB3) could potentiate the sensitivity to PI3K and YAP inhibitors currently tested. Awaiting the development of non-toxic inhibitors of these enzymes, we propose to test the administration of citrate at a high dosage, because citrate is a physiologic inhibitor of both PFK1 and PFK2/PFKFB3. Consistently, in various cultured cancer cells (including melanoma, sarcoma, hematologic, and epithelial cancer cells), this “citrate strategy” efficiently inhibits the IGFR1/AKT pathway, promotes PTEN activity, reduces Bcl-xL and MCL1 expression, and increases sensitivity to standard chemotherapy. It also inhibits the development of sarcoma, pancreatic, mammary HER+ and lung RAS-driven tumors in mice without apparent toxicities.
Collapse
Affiliation(s)
- Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, 75014 Paris, France;
| | - Marco Alifano
- INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France;
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
| | - Philippe Icard
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
- UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France
- Correspondence:
| |
Collapse
|
9
|
Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021; 14:pharmaceutics14010010. [PMID: 35056904 PMCID: PMC8780674 DOI: 10.3390/pharmaceutics14010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
10
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
11
|
Icard P, Alifano M, Donnadieu E, Simula L. Fructose-1,6-bisphosphate promotes PI3K and glycolysis in T cells? Trends Endocrinol Metab 2021; 32:540-543. [PMID: 34016523 DOI: 10.1016/j.tem.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
We propose that fructose-1,6-bisphosphate (F-1,6-BP) promotes a feedback loop between phosphofructokinase-1 (PFK1), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and PFK2/PFKFB3, which enhances aerobic glycolysis and sustains effector T (Teff) cell activation, while oxidative metabolism is concomitantly downregulated. This regulation, promoted by low citrate and mitochondrial ATP synthesis, also sustains the Warburg effect in cancer cells.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, INSERM U1086, Biology and Innovative Therapeutics for Locally Aggressive Cancers, Caen 14000, France.
| | - Marco Alifano
- Université de Paris, INSERM UMR-S 1224, Cellular Homeostasis and Cancer, Paris 75014, France
| | - Emmanuel Donnadieu
- Department of Infection, Immunity, and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, University of Paris, Paris 75014, France
| | - Luca Simula
- Department of Infection, Immunity, and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, University of Paris, Paris 75014, France
| |
Collapse
|
12
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
13
|
Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20:74-88. [PMID: 31686003 PMCID: PMC7314312 DOI: 10.1038/s41568-019-0216-7] [Citation(s) in RCA: 1168] [Impact Index Per Article: 233.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett 2019; 471:125-134. [PMID: 31830561 DOI: 10.1016/j.canlet.2019.12.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
ACLY links energy metabolism provided by catabolic pathways to biosynthesis. ACLY, which has been found to be overexpressed in many cancers, converts citrate into acetyl-CoA and OAA. The first of these molecules supports protein acetylation, in particular that of histone, and de novo lipid synthesis, and the last one sustains the production of aspartate (required for nucleotide and polyamine synthesis) and the regeneration of NADPH,H+(consumed in redox reaction and biosynthesis). ACLY transcription is promoted by SREBP1, its activity is stabilized by acetylation and promoted by AKT phosphorylation (stimulated by growth factors and glucose abundance). ACLY plays a pivotal role in cancer metabolism through the potential deprivation of cytosolic citrate, a process promoting glycolysis through the enhancement of the activities of PFK 1 and 2 with concomitant activation of oncogenic drivers such as PI3K/AKT which activate ACLY and the Warburg effect in a feed-back loop. Pending the development of specific inhibitors and tailored methods for identifying which specific metabolism is involved in the development of each tumor, ACLY could be targeted by inhibitors such as hydroxycitrate and bempedoic acid. The administration of citrate at high level mimics a strong inhibition of ACLY and could be tested to strengthen the effects of current therapies.
Collapse
|
15
|
Yang H, Shu Z, Jiang Y, Mao W, Pang L, Redwood A, Jeter-Jones SL, Jennings NB, Ornelas A, Zhou J, Rodriguez-Aguayo C, Bartholomeusz G, Iles LR, Zacharias NM, Millward SW, Lopez-Berestein G, Le XF, Ahmed AA, Piwnica-Worms H, Sood AK, Bast RC, Lu Z. 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase-2 Regulates TP53-Dependent Paclitaxel Sensitivity in Ovarian and Breast Cancers. Clin Cancer Res 2019; 25:5702-5716. [PMID: 31391192 DOI: 10.1158/1078-0432.ccr-18-3448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Paclitaxel is an integral component of primary therapy for breast and epithelial ovarian cancers, but less than half of these cancers respond to the drug. Enhancing the response to primary therapy with paclitaxel could improve outcomes for women with both diseases.Experimental Design: Twelve kinases that regulate metabolism were depleted in multiple ovarian and breast cancer cell lines to determine whether they regulate sensitivity to paclitaxel in Sulforhodamine B assays. The effects of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) depletion on cell metabolomics, extracellular acidification rate, nicotinamide adenine dinucleotide phosphate, reactive oxygen species (ROS), and apoptosis were studied in multiple ovarian and breast cancer cell lines. Four breast and ovarian human xenografts and a breast cancer patient-derived xenograft (PDX) were used to examine the knockdown effect of PFKFB2 on tumor cell growth in vivo. RESULTS Knockdown of PFKFB2 inhibited clonogenic growth and enhanced paclitaxel sensitivity in ovarian and breast cancer cell lines with wild-type TP53 (wtTP53). Silencing PFKFB2 significantly inhibited tumor growth and enhanced paclitaxel sensitivity in four xenografts derived from two ovarian and two breast cancer cell lines, and prolonged survival in a triple-negative breast cancer PDX. Transfection of siPFKFB2 increased the glycolysis rate, but decreased the flow of intermediates through the pentose-phosphate pathway in cancer cells with wtTP53, decreasing NADPH. ROS accumulated after PFKFB2 knockdown, which stimulated Jun N-terminal kinase and p53 phosphorylation, and induced apoptosis that depended upon upregulation of p21 and Puma. CONCLUSIONS PFKFB2 is a novel target whose inhibition can enhance the effect of paclitaxel-based primary chemotherapy upon ovarian and breast cancers retaining wtTP53.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Zhang Shu
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Department of Geriatric Digestive Surgery, the Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongying Jiang
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Lan Pang
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Abena Redwood
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sabrina L Jeter-Jones
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Argentina Ornelas
- Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Jinhua Zhou
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA Cancer, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - LaKesla R Iles
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Niki M Zacharias
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Steven W Millward
- Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA Cancer, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA Cancer, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Icard P, Wu Z, Alifano M, Fournel L. Gluconeogenesis of Cancer Cells Is Disrupted by Citrate. Trends Cancer 2019; 5:265-266. [PMID: 31174837 DOI: 10.1016/j.trecan.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Philippe Icard
- Inserm UMR 1199, Biology and Innovative Therapies of Locally Advanced Cancers, Caen Normandie University, Caen, France; Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France.
| | - Zherui Wu
- Inserm UMR-S 1124, Toxicology, Pharmacology and Cell Signaling, Subunit Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France; Inserm U1138, Integrative Cancer Immunology, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France; Inserm UMR-S 1124, Toxicology, Pharmacology and Cell Signaling, Subunit Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| |
Collapse
|
17
|
Raben DM, Wolfgang MJ. Energy Metabolism | Phosphofructokinase-2/Fructose Bisphosphatase-2. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2019:162-165. [DOI: 10.1016/b978-0-12-819460-7.00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Icard P, Fournel L, Coquerel A, Gligorov J, Alifano M, Lincet H. Citrate targets FBPase and constitutes an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:175. [PMID: 30455595 PMCID: PMC6225682 DOI: 10.1186/s12935-018-0676-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/04/2018] [Indexed: 01/31/2023] Open
Abstract
Gao-Min Liu and Yao-Ming Zhang recently published a review entitled «Targeting FBPase is an emerging novel approach for cancer therapy» (Liu and Zhang in Cancer Cell Int 18:36, 2018). In this paper, the authors highlighted how the down regulation or inactivation of FBPase, a rate limiting enzyme of gluconeogenesis, can promote the Warburg effect and cancer growth. In contrast, activation of this enzyme demonstrates anti-cancer effects and may appear as emerging novel approach for cancer therapy. Among the potential activators of FBP listed by Liu and Zhang, citrate was surprisingly not mentioned although it is an activator of FBPase, also demonstrating various anti-cancer effects in pre-clinical studies. Thus, citrate should be tested as a new therapeutic strategy, in particular in clinical studies.
Collapse
Affiliation(s)
- Philippe Icard
- 1Thoracic Surgery Department, Cochin Hospital, Normandy University of Caen, Unité Inserm 1199, Paris, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Descartes University, Unité Inserm 1007, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Descartes University, Unité Inserm 1007, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Hubert Lincet
- 5Faculty of Pharmacy of Lyon, CRCL Lyon, Unité Inserm 1052, CNRS 5286, Lyon, France
| |
Collapse
|
19
|
Atsumi T. Diabetes and risk of cancer. Diabetol Int 2015. [DOI: 10.1007/s13340-015-0227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Abstract
Cancer cells exhibit profound metabolic alterations, allowing them to fulfill the metabolic needs that come with increased proliferation and additional facets of malignancy. Such a metabolic transformation is orchestrated by the genetic changes that drive tumorigenesis, that is, the activation of oncogenes and/or the loss of oncosuppressor genes, and further shaped by environmental cues, such as oxygen concentration and nutrient availability. Understanding this metabolic rewiring is essential to elucidate the fundamental mechanisms of tumorigenesis as well as to find novel, therapeutically exploitable liabilities of malignant cells. Here, we describe key features of the metabolic transformation of cancer cells, which frequently include the switch to aerobic glycolysis, a profound mitochondrial reprogramming, and the deregulation of lipid metabolism, highlighting the notion that these pathways are not independent but rather cooperate to sustain proliferation. Finally, we hypothesize that only those genetic defects that effectively support anabolism are selected in the course of tumor progression, implying that cancer-associated mutations may undergo a metabolically convergent evolution.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Mika Hilvo
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom; Biotechnology for Health and Well-Being, VTT Technical Research Centre of Finland, Espoo, Finland
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 2014; 50:10-23. [PMID: 24513530 DOI: 10.1016/j.biocel.2014.01.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico.
| | - Alvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Juan P Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, México D.F., Mexico
| | - Stephen J Ralph
- School of Medical Sciences, Griffith University, Gold Coast Campus, Qld, Australia
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico; Instituto Nacional de Cancerología, Laboratorio de Medicina Translacional, Tlalpan, México D.F., Mexico
| |
Collapse
|
22
|
Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 2013; 1:8. [PMID: 24280138 PMCID: PMC4178209 DOI: 10.1186/2049-3002-1-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023] Open
Abstract
The increased glucose metabolism in cancer cells is required to fulfill their high energetic and biosynthetic demands. Changes in the metabolic activity of cancer cells are caused by the activation of oncogenes or loss of tumor suppressors. They can also be part of the metabolic adaptations to the conditions imposed by the tumor microenvironment, such as the hypoxia response. Among the metabolic enzymes that are modulated by these factors are the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases (PFKFBs), a family of bifunctional enzymes that control the levels of fructose 2,6-bisphosphate (Fru-2,6-P2). This metabolite is important for the dynamic regulation of glycolytic flux by allosterically activating the rate-limiting enzyme of glycolysis phosphofructokinase-1 (PFK-1). Therapeutic strategies designed to alter the levels of this metabolite are likely to interfere with the metabolic balance of cancer cells, and could lead to a reduction in cancer cell proliferation, invasiveness and survival. This article will review our current understanding of the role of PFKFB proteins in the control of cancer metabolism and discuss the emerging interest in these enzymes as potential targets for the development of antineoplastic agents.
Collapse
Affiliation(s)
- Susana Ros
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | | |
Collapse
|
23
|
Archer MC. Role of sp transcription factors in the regulation of cancer cell metabolism. Genes Cancer 2012; 2:712-9. [PMID: 22207896 DOI: 10.1177/1947601911423029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/26/2022] Open
Abstract
Cancer cells exhibit altered metabolism characterized by the generation of adenosine triphosphate by glycolysis and generation of fatty acids by de novo synthesis. The majority of genes involved in these pathways have binding sites for specificity protein (Sp) transcription factors in their promoters. Studies showing that Sp transcription factors, particularly Sp1, are involved in the regulation in cancer cells of hexokinase, pyruvate kinase, lactate dehydrogenase, fatty acid synthase, and hypoxia-inducible factor-1α are reviewed. Glycolysis and lipogenesis in cancers are also known to be stimulated by the constitutive activation of the PI3K/Akt signaling pathway. Evidence is presented for the notion that Sp transcription factors may act in concert with Akt to regulate the abnormal metabolism of cancer cells.
Collapse
Affiliation(s)
- Michael C Archer
- Departments of Nutritional Sciences and of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Seo M, Kim JD, Neau D, Sehgal I, Lee YH. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One 2011; 6:e24179. [PMID: 21957443 PMCID: PMC3177832 DOI: 10.1371/journal.pone.0024179] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/02/2011] [Indexed: 01/03/2023] Open
Abstract
Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3•N4A complex to 2.4 Å resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts.
Collapse
Affiliation(s)
- Minsuh Seo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | | | | | | |
Collapse
|
25
|
McCue P, Shetty K. A Hypothetical Model for Action of Soybean Isoflavonoids Against Cancer Involving a Shift to Proline-Linked Energy Metabolism Through Activation of the Pentose-Phosphate Pathway. FOOD BIOTECHNOL 2007. [DOI: 10.1081/fbt-120030383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126:107-20. [PMID: 16839880 DOI: 10.1016/j.cell.2006.05.036] [Citation(s) in RCA: 1510] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/17/2006] [Accepted: 05/01/2006] [Indexed: 12/31/2022]
Abstract
The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
Collapse
Affiliation(s)
- Karim Bensaad
- The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M, Moreno-Sánchez R. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 2006; 273:1975-88. [PMID: 16640561 DOI: 10.1111/j.1742-4658.2006.05214.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control analysis of the glycolytic flux was carried out in two fast-growth tumor cell types of human and rodent origin (HeLa and AS-30D, respectively). Determination of the maximal velocity (V(max)) of the 10 glycolytic enzymes from hexokinase to lactate dehydrogenase revealed that hexokinase (153-306 times) and phosphofructokinase-1 (PFK-1) (22-56 times) had higher over-expression in rat AS-30D hepatoma cells than in normal freshly isolated rat hepatocytes. Moreover, the steady-state concentrations of the glycolytic metabolites, particularly those of the products of hexokinase and PFK-1, were increased compared with hepatocytes. In HeLa cells, V(max) values and metabolite concentrations for the 10 glycolytic enzyme were also significantly increased, but to a much lesser extent (6-9 times for both hexokinase and PFK-1). Elasticity-based analysis of the glycolytic flux in AS-30D cells showed that the block of enzymes producing Fru(1,6)P2 (i.e. glucose transporter, hexokinase, hexosephosphate isomerase, PFK-1, and the Glc6P branches) exerted most of the flux control (70-75%), whereas the consuming block (from aldolase to lactate dehydrogenase) exhibited the remaining control. The Glc6P-producing block (glucose transporter and hexokinase) also showed high flux control (70%), which indicated low flux control by PFK-1. Kinetic analysis of PFK-1 showed low sensitivity towards its allosteric inhibitors citrate and ATP, at physiological concentrations of the activator Fru(2,6)P2. On the other hand, hexokinase activity was strongly inhibited by high, but physiological, concentrations of Glc6P. Therefore, the enhanced glycolytic flux in fast-growth tumor cells was still controlled by an over-produced, but Glc6P-inhibited hexokinase.
Collapse
Affiliation(s)
- Alvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Juan Badiano no. 1, Colonia Sección XVI, Tlalpan, México, Mexico
| | | | | | | | | | | | | |
Collapse
|
28
|
Calvo MN, Bartrons R, Castaño E, Perales JC, Navarro-Sabaté A, Manzano A. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett 2006; 580:3308-14. [PMID: 16698023 DOI: 10.1016/j.febslet.2006.04.093] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/30/2022]
Abstract
The high rate of glycolysis despite the presence of oxygen in tumor cells (Warburg effect) suggests an important role for this process in cell division. The glycolytic rate is dependent on the cellular concentration of fructose 2,6-bisphosphate (Fru-2,6-P2), which, in turn, is controlled by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2). The ubiquitous PFK-2 isoenzyme (uPFK-2, alternatively named UBI2K5 or ACG) coded by the pfkfb3 gene is induced by different stimuli (serum, progesterone, insulin, hypoxia, etc.) and has the highest kinase/phosphatase activity ratio amongst all PFK-2 isoenzymes discovered to date, which is consistent with its role as a powerful activator of glycolysis. uPFK-2 is expressed in brain, placenta, transformed cells and proliferating cells. In the present work, we analyze the impact of small interfering RNA (siRNA)-induced silencing of uPFK-2 on the inhibition of cell proliferation. HeLa cells treated with uPFK-2 siRNA showed a decrease in uPFK-2 RNA levels measured at 24h. uPFK-2 protein levels were severely depleted at 48-72h when compared with cells treated with an unrelated siRNA, correlating with decreased glycolytic activity, Fru-2,6-P2, lactate and ATP concentrations. These metabolic changes led to reduced viability, cell-cycle delay and an increase in the population of apoptotic cells. Moreover, uPFK-2 suppression inhibited anchorage-independent growth. The results obtained highlight the importance of uPFK-2 on the regulation of glycolysis, on cell viability and proliferation and also on anchorage-independent growth. These data underscore the potential for uPFK-2 as an effective tumor therapeutic target.
Collapse
Affiliation(s)
- M N Calvo
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Campus de Ciències de la Salut, IDIBELL-Universitat de Barcelona, Feixa Llarga s/n E-08907 L'Hospitalet, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol Cell Biochem 2006; 280:227-34. [PMID: 16311927 DOI: 10.1007/s11010-005-8009-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 05/26/2005] [Indexed: 12/24/2022]
Abstract
The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining the cellular levels of fructose-2,6-bisphosphate which is a key regulator of glycolysis. Here we have studied the expression of PFKFB-4 isozyme in the DB-1 melanoma cells. An additional isoform of PFKFB-4 mRNA with 148 bases insert in the amino-terminal region at high constitutive levels was identified in these cells. The expression of this splice isoform as well as main isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was responsible to hypoxia and dimethyloxalylglycine, an inhibitor of HIF-1 alpha hydroxylase enzymes, suggesting that the hypoxia responsiveness of PFKFB-4 gene in these cells is regulated by HIF-1alpha protein. Hypoxic induction of PFKFB4 mRNA in the DB-1 melanoma cells correlates with the expression of PFKFB-3 and VEGF mRNA which are known as HIF-1 dependent genes. Thus, our results clearly demonstrated the existence of splice isoform of PFKFB-4 mRNA in the DB-1 melanoma cells and its overexpression under hypoxic conditions.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Street, Kyiv, 01601, Ukraine.
| | | | | | | | | |
Collapse
|
30
|
Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 2005; 11:5784-92. [PMID: 16115917 DOI: 10.1158/1078-0432.ccr-05-0149] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Fructose 2,6-bisphosphate (F2,6BP) is a potent activator of phosphofructokinase, which is a rate-limiting enzyme of glycolysis. The concentration of F2,6BP depends on the activity of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase). Four genes encoding PFK-2/FBPase have been identified and termed PFKFB1 to PFKFB4. PFKFB3 protein is expressed in high levels in human tumors in situ. The purpose of this study was to determine the role of functional interactions between the phosphorylation of PFKFB3 and activated glycolysis in human cancer cells. EXPERIMENTAL DESIGN cDNA from several human tumor cell lines and human colon carcinoma were analyzed by reverse transcription-PCR to identify different splicing variants of PFKFB3. The effect of phosphorylation of Ser461 was studied by recombinantly replacing this residue with glutamate (PFKFB3S461E). The phosphorylation of PFKFB3 protein in human cancer was determined by immunostaining using an anti-phospho-PFK-2(PFKFB3) antibody. RESULTS Two splicing variants of PFKFB3 are expressed in human cancer cell lines: PFKFB3-ACG and PFKFB3-AG. Quantitative, real-time PCR analysis confirmed the overexpression of PFKFB3 mRNA in colon carcinoma, with the dominant variant being the PFKFB3-ACG isoform that contains a phosphorylation site at Ser461. Forced expression of PFKFB3-ACG in COS-7 cells resulted in enhanced glycolysis. Introduction of PFKFB3-ACGS461E into COS-7 cells led to increased the lactate production and cell proliferation. Highly phosphorylated PFKFB3 protein was found in human tumor cells, vascular endothelial cells, and smooth muscle cells, as determined by immunostaining with an anti-phospho-PFK-2(PFKFB3) antibody. CONCLUSIONS These findings support a potential role for the phosphorylation of PFKFB3 protein in the progression of cancer and angiogenesis.
Collapse
Affiliation(s)
- Hidenori Bando
- Department of Medicine II, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Vaseghi S, Macherhammer F, Zibek S, Reuss M. Signal transduction dynamics of the protein kinase-A/phosphofructokinase-2 system in Saccharomyces cerevisiae. Metab Eng 2001; 3:163-72. [PMID: 11289792 DOI: 10.1006/mben.2000.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work focuses on the phosphofructokinase-2-system dynamics in Saccharomyces cerevisiae, in vivo. The investigations were dedicated to the development and implementation of appropriate theoretical and experimental methods toward evaluation of a quantitative strategy for the characterization of systemic mechanisms involved in the cAMP/protein kinase-A/phosphofructokinase-2 signal transduction cascade in yeast. Upon glucose pulse experiments, applied to glucose-limited continuous cultures of S. cerevisiae, the system response was determined with respect to alterations of intracellular metabolite concentrations or in vivo enzyme activities. Phosphofructokinase-2, in vivo, was found to be saturated with respect to both its substrates, F6P and ATP. This restriction results in an uncoupling of the enzyme activity and the signal transduction cascade from glycolytic flux, concluding that activation of phosphofructokinase-2 is exclusively a result of phosphorylation by protein kinase-A, which in turn is activated by increasing intracellular cAMP concentration after an extracellular glucose pulse. Signal processing from cAMP versus phosphofructokinase-2 also displays peculiar features implicated in a hysteresis behavior: when increasing cAMP concentration achieves a certain critical value, protein kinase-A switches into an active state. Posterior to this activation, the signal transform maintains autonomy and functional independence of further alterations of the intracellular cAMP concentration. Our observations, finally, allow the establishment of a representative model for the description of the signal transduction process via protein kinase-A in yeast.
Collapse
Affiliation(s)
- S Vaseghi
- baITec-Research, Alsterkrugchaussee 374, 22335 Hamburg, Germany.
| | | | | | | |
Collapse
|
33
|
Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A 1999; 96:3047-52. [PMID: 10077634 PMCID: PMC15892 DOI: 10.1073/pnas.96.6.3047] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cancer cells maintain a high glycolytic rate even in the presence of oxygen, a phenomenon first described over 70 years ago and known historically as the Warburg effect. Fructose 2,6-bisphosphate is a powerful allosteric regulator of glycolysis that acts to stimulate the activity of 6-phosphofructo-1-kinase (PFK-1), the most important control point in mammalian glycolysis. The steady state concentration of fructose 2,6-bisphosphate in turn depends on the activity of the enzyme 6-phosphofructo-2-kinase (PFK-2)/fructose-2, 6-bisphosphatase, which is expressed in several tissue-specific isoforms. We report herein the identification of a gene product for this enzyme that is induced by proinflammatory stimuli and which is distinguished by the presence of multiple copies of the AUUUA mRNA instability motif in its 3'-untranslated end. This inducible gene for PFK-2 is expressed constitutively in several human cancer cell lines and was found to be required for tumor cell growth in vitro and in vivo. Inhibition of inducible PFK-2 protein expression decreased the intracellular level of 5-phosphoribosyl-1-pyrophosphate, a product of the pentose phosphate pathway and an important precursor for nucleic acid biosynthesis. These studies identify a regulatory isoenzyme that may be essential for tumor growth and provide an explanation for long-standing observations concerning the apparent coupling of enhanced glycolysis and cell proliferation.
Collapse
Affiliation(s)
- J Chesney
- Laboratory of Medical Biochemistry, Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|