1
|
Yates PA, Burman R, Simpson J, Ponomoreva ON, Thayer MJ, Turker MS. Silencing of mouse Aprt is a gradual process in differentiated cells. Mol Cell Biol 2003; 23:4461-70. [PMID: 12808089 PMCID: PMC164859 DOI: 10.1128/mcb.23.13.4461-4470.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse Aprt constructs that are highly susceptible to DNA methylation-associated inactivation in embryonal carcinoma cells were transfected into differentiated cells, where they were expressed. Construct silencing was induced by either whole-cell fusion of the expressing differentiated cells with embryonal carcinoma cells or by treatment of the differentiated cells with the DNA demethylating agent 5-aza-2'-deoxycytidine. Induction of silencing was enhanced significantly by the presence of a methylation center fragment positioned upstream of a truncated promoter comprised of two functional Sp1 binding sites. Initial silencing of the Aprt constructs was unstable, as evidenced by high spontaneous reversion frequencies ( approximately 10(-2)). Stably silenced subclones with spontaneous reversion frequencies of <10(-5) were isolated readily from the unstably silenced clones. These reversion frequencies were enhanced significantly by treatment of the cells with 5-aza-2'-deoxycytidine. A bisulfite sequence analysis demonstrated that CpG methylation initiated within the methylation center region on expressing alleles and that the induction of silencing allowed methylation to spread towards and eventually into the promoter region. Combined with the induction of revertants by 5-aza-2'-deoxycytidine, this result suggested that stabilization of silencing was due to an increased density of CpG methylation. All allelic methylation patterns were variegated, which is consistent with a gradual and evolving process. In total, our results demonstrate that silencing of mouse Aprt is a gradual process in the differentiated cells.
Collapse
Affiliation(s)
- Phillip A Yates
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
2
|
Gage BM, Alroy D, Shin CY, Ponomareva ON, Dhar S, Sharma GG, Pandita TK, Thayer MJ, Turker MS. Spontaneously immortalized cell lines obtained from adult Atm null mice retain sensitivity to ionizing radiation and exhibit a mutational pattern suggestive of oxidative stress. Oncogene 2001; 20:4291-7. [PMID: 11466609 DOI: 10.1038/sj.onc.1204509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2001] [Revised: 03/29/2001] [Accepted: 04/04/2001] [Indexed: 11/08/2022]
Abstract
The study of Ataxia-telangiectasia (A-T) has benefited significantly from mouse models with knockout mutations for the Atm (A-T mutation) locus. While these models have proven useful for in vivo studies, cell cultures from Atm null embryos have been reported to grow poorly and then senesce. In this study, we initiated primary cultures from adult ears and kidneys of Atm homozygous mice and found that these cultures immortalized readily without loss of sensitivity to ionizing radiation and other Atm related cell cycle defects. A mutational analysis for loss of expression of an autosomal locus showed that ionizing radiation had a mutagenic effect. Interestingly, some spontaneous mutants exhibited a mutational pattern that is characteristic of oxidative mutagenesis. This result is consistent with chronic oxidative stress in Atm null cells. In total, the results demonstrate that permanent cell lines can be established from the tissues of adult mice homozygous for Atm and that these cell lines will exhibit expected and novel consequences of this deficiency.
Collapse
Affiliation(s)
- B M Gage
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon, OR 97201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol 1999; 9:329-37. [PMID: 10547341 DOI: 10.1006/scbi.1999.0133] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatic cell DNA methylation patterns in mammals are established during embryonic development and are then maintained somewhat faithfully for the remainder of the individual's lifetime. Pattern formation can be divided into a series of linked steps that include demethylation, de novo methylation, methylation spreading, methylation blocking, and maintenance methylation. In this review, these steps will be combined to present a model for the formation and maintenance of a methylation pattern in the 5' region of the mouse Aprt gene. This model suggests that an apparently 'stable' methylation pattern results from a dynamic equilibrium between forces that promote and inhibit methylation spreading.
Collapse
Affiliation(s)
- M S Turker
- Center for Research on Occupational and Environmental Toxicology (CROET), L606, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97201, USA.
| |
Collapse
|
4
|
Shao C, Deng L, Henegariu O, Liang L, Raikwar N, Sahota A, Stambrook PJ, Tischfield JA. Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice. Proc Natl Acad Sci U S A 1999; 96:9230-5. [PMID: 10430925 PMCID: PMC17762 DOI: 10.1073/pnas.96.16.9230] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mice heterozygous at Aprt (adenine phosphoribosyltransferase) were used as a model to study in vivo loss of heterozygosity (LOH) in normal fibroblasts. Somatic cell variants that exhibited functional loss of the wild-type Aprt in vivo were recovered as APRT-deficient cell colonies after culturing in selection medium containing 2, 6-diaminopurine (DAP), an adenine analog that is toxic only to cells with APRT enzyme activity. DAP-resistant (DAP(r)) fibroblast variants were recovered at a median frequency of 12 x 10(-5) from individual ears from progeny of crosses between mouse strains 129/Sv and C3H/HeJ. The frequency of DAP(r) variants varied greatly among individual ears, suggesting that they preexisted in vivo and arose at various times during development. Polymorphic molecular markers and a cytological marker on the centromere of chromosome 8 made it possible to discriminate between each of six possible mechanistic pathways of LOH. The majority (about 80%) of the DAP(r) variants were a consequence of mitotic recombination. The prevalence of mitotic recombination in regions proximal to Aprt did not correlate with meiotic map distances. In particular, there was a higher than expected frequency of crossovers within the interval 59 cM to 67 cM. The high spontaneous frequency of Aprt LOH, mediated primarily by mitotic recombination, is fully consistent with our previous results with human peripheral T cells from individuals known to be heterozygous at APRT. Thus, this Aprt heterozygote mouse is a valid model for studying somatic mutagenesis and mitotic recombination in vivo.
Collapse
Affiliation(s)
- C Shao
- Department of Medical and Molecular Genetics and The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mummaneni P, Yates P, Simpson J, Rose J, Turker MS. The primary function of a redundant Sp1 binding site in the mouse aprt gene promoter is to block epigenetic gene inactivation. Nucleic Acids Res 1998; 26:5163-9. [PMID: 9801314 PMCID: PMC147958 DOI: 10.1093/nar/26.22.5163] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The promoter region of the mouse adenine phosphoribosyltransferase (aprt) gene contains one non-consensus Sp1 binding site at its 5' end followed by three consensus Sp1 binding sites. The two 3'-most binding sites are sufficient for maximal expression of aprt , suggesting that the non-consensus and consensus binding sites at the 5' end are redundant. However, the two 3' sites are not sufficient to block epigenetic inactivation, which led to the hypothesis that the redundant consensus and/or non-consensus 5' Sp1 binding sites are required to block inactivation events. To test this hypothesis, promoter region constructs were made in which the two 5' Sp1 binding sites were mutated alone or in tandem, and then each construct was tested for its ability to withstand epigenetic inactivation. A cis -acting methylation center that is normally located 1.2 kb upstream of the promoter was used to induce inactivation. The results demonstrate that the presence of the redundant consensus Sp1 binding site is required to block methylation-associated gene inactivation. Therefore, the Sp1 binding sites comprising the mouse aprt promoter have evolved two distinct functions, one to promote transcription and the other to block epigenetic inactivation.
Collapse
Affiliation(s)
- P Mummaneni
- Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
6
|
Paulin RP, Ho T, Balzer HJ, Holliday R. Gene silencing by DNA methylation and dual inheritance in Chinese hamster ovary cells. Genetics 1998; 149:1081-8. [PMID: 9611215 PMCID: PMC1460210 DOI: 10.1093/genetics/149.2.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chinese hamster ovary (CHO) cells strain D422, which has one copy of the adenine phosphoribosyl transferase (APRT) gene, were permeabilized by electroporation and treated with 5-methyl deoxycytidine triphosphate. Cells with a silenced APRT gene were selected on 2, 6-diaminopurine. Colonies were isolated and shown to be reactivated to APRT+ by 5-aza-cytidine and by selection in medium containing adenine, aminopterin and thymidine. Genomic DNA was prepared from eight isolates of independent origin and subjected to bisulphite treatment. This deaminates cytosine to uracil in single-stranded DNA but does not deaminate 5-methyl cytosine. PCR, cloning and sequencing revealed the methylation pattern of CpG doublets in the promoter region of the APRT- gene, whereas the active APRT gene had nonmethylated DNA. CHO strain K1, which has two copies of the APRT+ gene, could also be silenced by the same procedure but at a lower frequency. The availability of the 5-methyl dCTP-induced silencing, 5-aza-CR and a standard mutagen, ethyl methane sulphonate, makes it possible to follow concomitantly the inheritance of active, mutant or silenced gene copies. This analysis demonstrates "dual inheritance" at the APRT locus in CHO cells.
Collapse
Affiliation(s)
- R P Paulin
- CSIRO Division of Molecular Science, Sydney Laboratory, North Ryde, NSW 2113, Australia
| | | | | | | |
Collapse
|
7
|
Abstract
This paper will explore emerging concepts related to alternative carcinogenic mechanisms of 'non-mutagenic,' and hence epigenetic, carcinogens that may heritably alter DNA methylation without changing the underlying DNA sequence. In this review, we will touch on the basic concepts of DNA methylation, and will elaborate in greater detail on related topics including chromatin condensation, and heterochromatin spreading that is well known to induce gene silencing by position effect variegation in Drosophila and other species. Data from our model transgenic G12 cell system will be presented to support our hypothesis that certain carcinogens, such as nickel, may be carcinogenic not primarily because of their overt mutability, but rather as the result of their ability to promote DNA hypermethylation of important cancer-related genes. We will conclude with a discussion of the broader relevance of our findings and its application to other so-called 'epigenetic' carcinogens.
Collapse
Affiliation(s)
- C B Klein
- Nelson Institute of Environmental Medicine, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|
8
|
Khattar NH, Turker MS. A role for certain mouse Aprt sequences in resistance to toxic adenine analogs. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:51-61. [PMID: 9218001 DOI: 10.1007/bf02679955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mouse embryonal carcinoma cell line hemizygous for the adenine phosphoribosyltransferase gene (aprt) was exposed to ultraviolet light (UV) or to the alkylating agent, ethyl methanesulfonate (EMS). Thirty eight cell lines retaining the aprt gene were isolated by selecting for resistance to 2,6-diaminopurine (DAP), an adenine analogue which selects against aprt activity. Of these, six cell lines distinguished by significant levels of aprt enzymatic activity after selection in DAP, were found to carry mutations in the aprt gene affecting the apparent Km of the enzyme for adenine in every cell line, and the apparent Km for phosphoribosylpyrophosphate in two of the six cell lines. The results indicate that the ability of these cells to survive in the presence of toxic adenine analogues while maintaining significant levels of aprt enzyme activity may be due to a reduced affinity for the adenine analogue, DAP. This biochemical analysis along with results obtained from sequencing the aprt gene from 31 DAP resistant cell lines with no detectable aprt activity were used to implicate certain amino acids within aprt in substrate binding. It was also determined that, in contrast to UV, EMS did not appear to exhibit any strand bias in the distribution of mutations.
Collapse
Affiliation(s)
- N H Khattar
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington 40536, USA
| | | |
Collapse
|
9
|
Turker M, Walker KA, Jennings CD, Mellon I, Yusufji A, Urano M. Spontaneous and ionizing radiation induced mutations involve large events when selecting for loss of an autosomal locus. Mutat Res 1995; 329:97-105. [PMID: 7603506 DOI: 10.1016/0027-5107(95)00046-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mouse P19H22 embryonal carcinoma cell line contains two distinct chromosome 8 homologs, one derived from Mus musculus domesticus (M. domesticus) and the other derived from Mus musculus musculus (M. musculus). It also contains a deletion for the M. musculus aprt allele, which is located on chromosome 8. In this study, cells with spontaneous or induced aprt deficiencies were isolated from P19H22 and examined to determine the nature of the mutational events that had occurred. Ultraviolet radiation (UV), ethyl methanesulfonate (EMS), and two forms of ionizing radiation, 137Cs and 252Cf, were used for mutation induction. DNA preparations from the aprt deficient cells were initially screened with a Southern blot analysis and separated into two broad classes: those that had lost the M. domesticus aprt allele and those that had retained it. The overwhelming majority (> 95%) of the spontaneous and ionizing radiation-induced mutants exhibited aprt gene loss, indicating that relatively large events had occurred and that homozygosity for the deleted region was not a lethal event. Loss of heterozygosity for syntenic markers was found to be a common event in cells exhibiting aprt gene loss. In contrast, a majority of the UV-induced mutants (61%) and a substantial minority of the EMS-induced mutants (38%) retained the aprt gene. A sequence analysis confirmed that base-pair substitutions were responsible for this class of mutation. Gene inactivation associated with hypermethylation of the promoter region was found to be a rare event and was not induced by any of the mutagenic agents tested. The results demonstrate the suitability of the P19H22 cell line for mutational studies, particularly those that are large in nature.
Collapse
Affiliation(s)
- M Turker
- Department of Pathology, University of Kentucky College of Medicine, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 1995; 15:2547-57. [PMID: 7537850 PMCID: PMC230485 DOI: 10.1128/mcb.15.5.2547] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A transgenic gpt+ Chinese hamster cell line (G12) was found to be susceptible to carcinogenic nickel-induced inactivation of gpt expression without mutagenesis or deletion of the transgene. Many nickel-induced 6-thioguanine-resistant variants spontaneously reverted to actively express gpt, as indicated by both reversion assays and direct enzyme measurements. Since reversion was enhanced in many of the nickel-induced variant cell lines following 24-h treatment with the demethylating agent 5-azacytidine, the involvement of DNA methylation in silencing gpt expression was suspected. This was confirmed by demonstrations of increased DNA methylation, as well as by evidence indicating condensed chromatin and heterochromatinization of the gpt integration site in 6-thioguanine-resistant cells. Upon reversion to active gpt expression, DNA methylation and condensation are lost. We propose that DNA condensation and methylation result in heterochromatinization of the gpt sequence with subsequent inheritance of the now silenced gene. This mechanism is supported by direct evidence showing that acute nickel treatment of cultured cells, and of isolated nuclei in vitro, can indeed facilitate gpt sequence-specific chromatin condensation. Epigenetic mechanisms have been implicated in the actions of some nonmutagenic carcinogens, and DNA methylation changes are now known to be important in carcinogenesis. This paper further supports the emerging theory that nickel is a human carcinogen that can alter gene expression by enhanced DNA methylation and compaction, rather than by mutagenic mechanisms.
Collapse
Affiliation(s)
- Y W Lee
- Nelson Institute of Environmental Medicine, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mummaneni P, Walker KA, Bishop PL, Turker MS. Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem 1995; 270:788-92. [PMID: 7822312 DOI: 10.1074/jbc.270.2.788] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this report we test the hypothesis that a cis-acting methylation center can induce epigenetic gene inactivation. The cis-acting element used is an 838-base pair fragment that was shown previously to provide a de novo methylation signal (Mummaneni, P., Bishop, P. L., and Turker, M.S. (1993) J. Biol. Chem. 268, 552-558). Its normal location is approximately 1.3 kilobase pairs upstream of the mouse aprt (adenine phosphoribosyltransferase) gene. To determine if the methylation center could induce inactivation of the aprt gene, a plasmid construct was created in which the methylation center was moved next to the aprt promoter. Transfection experiments demonstrated inactivation of the aprt gene on the hybrid construct. The inactivation event was shown with a Southern blot analysis to correlate with hypermethylation and to be reversible by treatment with 2-deoxy-5'-azacytidine, a demethylating agent. Interestingly, gene inactivation induced by the methylation center required truncation of the aprt promoter. The results demonstrate that epigenetic gene inactivation can be induced by a DNA methylation center.
Collapse
Affiliation(s)
- P Mummaneni
- Department of Pathology, Markey Cancer Center, Lexington, Kentucky 40536
| | | | | | | |
Collapse
|
12
|
Tischfield JA, Engle SJ, Gupta PK, Bye S, Boyadjiev S, Shao C, O'Neill P, Albertini RJ, Stambrook PJ, Sahota AS. Germline and somatic mutation at the APRT locus of mice and man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:661-4. [PMID: 7660991 DOI: 10.1007/978-1-4615-2584-4_137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J A Tischfield
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Turker MS, Mummaneni P, Cooper GE. The mouse APRT gene as a model for studying epigenetic gene inactivation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:647-52. [PMID: 7660987 DOI: 10.1007/978-1-4615-2584-4_134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M S Turker
- Department of Pathology, University of Kentucky, Lexington 40536, USA
| | | | | |
Collapse
|
14
|
Cooper GE, Bishop PL, Turker MS. Hemidemethylation is sufficient for chromatin relaxation and transcriptional activation of methylated aprt gene in mouse P19 embryonal carcinoma cell line. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:221-9. [PMID: 7687384 DOI: 10.1007/bf01233070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of clones displaying a high-frequency "switching" phenotype for expression of the adenine phosphoribosyltransferase (aprt) gene was previously isolated from the P19 mouse embryonal carcinoma stem cell line. In a subset of these clones, loss of aprt expression was correlated with increased DNA methylation, a nuclease-resistant chromatin conformation, and loss of RNA transcription; reactivation was associated with a reversal of these parameters. In this report, the role of DNA methylation in transcriptional inactivation was studied in the H22D3 clone. The cells of this clone contain a single inactive aprt allele that is methylated. Mass cultures of H22D3 were treated with 2-deoxy-5'-azacytidine (5aCdr) and found to reactivate aprt at frequencies ranging from 60 to 90%. Treated cultures were then assayed over time for aprt mRNA, chromatin conformation, and DNA methylation of the aprt gene. These studies demonstrated that 5aCdr treatment resulted in promoter region-specific hemidemethylation and chromatin relaxation starting at 12 h. This was followed by the appearance of RNA transcripts at 18 h and increasing levels of APRT enzymatic activity at 36 h after treatment. Complete demethylation occurred significantly later. Experiments in which cells were treated with 5aCdr for varying periods of time demonstrated that a single round of analog incorporation was sufficient for transcriptional reactivation of aprt in H22D3.
Collapse
Affiliation(s)
- G E Cooper
- Department of Microbiology & Immunology, University of Kentucky College of Medicine, Lexington 40536
| | | | | |
Collapse
|
15
|
Mummaneni P, Bishop P, Turker M. A cis-acting element accounts for a conserved methylation pattern upstream of the mouse adenine phosphoribosyltransferase gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54187-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Molecular and biochemical elucidation of a cellular phenotype characterized by adenine analogue resistance in the presence of high levels of adenine phosphoribosyltransferase activity. Biochem Genet 1992. [DOI: 10.1007/pl00020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Khattar NH, Cooper GE, DiMartino DL, Bishop PL, Turker MS. Molecular and biochemical elucidation of a cellular phenotype characterized by adenine analogue resistance in the presence of high levels of adenine phosphoribosyltransferase activity. Biochem Genet 1992; 30:635-48. [PMID: 1296576 DOI: 10.1007/bf02399812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A mouse embryonal carcinoma cell line isolated for resistance to the adenine analogue 2,6-diaminopurine (DAP) was found to have near-wild-type levels of adenine phosphoribosyltransferase (APRT) activity in a cell-free assay. This DAP-resistant (DAPr) cell line, termed H29D1, also exhibited near-wild-type levels of adenine accumulation and the ability to grow in medium containing azaserine and adenine. Growth in this medium requires high levels of intracellular APRT activity. Using the polymerase chain reaction (PCR) and the dideoxy chain termination sequencing technique, an A-->G transition was discovered in exon 3 of the aprt gene in H29D1. This mutation resulted in an Arg-to-Gln change at amino acid 87 of the APRT protein that, in turn, resulted in a decreased affinity for adenine. An increased sensitivity of APRT to inhibition by AMP was observed when comparing H29D1 to P19, the parental cell line. Using a transgene containing the A-->G mutation, we demonstrated that this mutation is responsible for the biochemical and cellular phenotypes observed for the H29D1 cell line. The approach used in this study provides a definitive method for linking a mutation to a specific cellular phenotype.
Collapse
Affiliation(s)
- N H Khattar
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington 40536
| | | | | | | | | |
Collapse
|