1
|
Glioma stem cells and immunotherapy for the treatment of malignant gliomas. ISRN ONCOLOGY 2013; 2013:673793. [PMID: 23762610 PMCID: PMC3671309 DOI: 10.1155/2013/673793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023]
Abstract
Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma.
Collapse
|
2
|
Sughrue ME, Yang I, Kane AJ, Rutkowski MJ, Fang S, James CD, Parsa AT. Immunological considerations of modern animal models of malignant primary brain tumors. J Transl Med 2009; 7:84. [PMID: 19814820 PMCID: PMC2768693 DOI: 10.1186/1479-5876-7-84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022] Open
Abstract
Recent advances in animal models of glioma have facilitated a better understanding of biological mechanisms underlying gliomagenesis and glioma progression. The limitations of existing therapy, including surgery, chemotherapy, and radiotherapy, have prompted numerous investigators to search for new therapeutic approaches to improve quantity and quality of survival from these aggressive lesions. One of these approaches involves triggering a tumor specific immune response. However, a difficulty in this approach is the the scarcity of animal models of primary CNS neoplasms which faithfully recapitulate these tumors and their interaction with the host's immune system. In this article, we review the existing methods utilized to date for modeling gliomas in rodents, with a focus on the known as well as potential immunological aspects of these models. As this review demonstrates, many of these models have inherent immune system limitations, and the impact of these limitations on studies on the influence of pre-clinical therapeutics testing warrants further attention.
Collapse
Affiliation(s)
- Michael E Sughrue
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Ehtesham M, Black KL, Yu JS. Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control 2007; 11:192-207. [PMID: 15153843 DOI: 10.1177/107327480401100307] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite advances in surgical and adjuvant radiation therapy and chemotherapy strategies, malignant gliomas continue to be associated with poor prognoses. METHODS We review immune-mediated treatment approaches for malignant glioma and the relevance of recent clinical trials and their outcomes. We specifically address the increasing evidence implicating the role of cytotoxic T cells in ensuring adequate immune-mediated clearance of neoplastic cells and the need for the optimization of therapies that can elicit and support such antitumor T-cell activity. RESULTS The poor outcome of this disease has spurred the search for novel experimental therapies that can address and overcome the root biological phenomena associated with the lethality of this disease. The use of immunotherapy to bolster the otherwise impaired antitumor immune responses in glioma patients has received increasing attention. CONCLUSIONS An effective treatment paradigm for malignant gliomas may eventually require a multifaceted approach combining two or more different immunotherapeutic strategies. Such scenarios may involve the use of local cytokine gene therapy to enhance glioma-cell immunogenicity in conjunction with dendritic cell-based active vaccination to stimulate systemic tumoricidal T-cell immunity. Given the heterogeneity of this disease process and the potential risk of immunoediting out a selected, treatment-refractory tumor cell population, the concurrent use of multiple modalities that target disparate tumor characteristics may be of greatest therapeutic relevance.
Collapse
Affiliation(s)
- Moneeb Ehtesham
- Maxine Dunitz Neurosurgical, Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
4
|
Barzon L, Zanusso M, Colombo F, Palù G. Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther 2006; 13:539-54. [PMID: 16410822 DOI: 10.1038/sj.cgt.7700930] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite advances in surgical and adjuvant therapy, the prognosis for malignant gliomas remains dismal. This gloomy scenario has been recently brightened by the increasing understanding of the genetic and biological mechanisms at the basis of brain tumor development. These findings are being translated into innovative therapeutic approaches, including gene therapy, virotherapy, and vaccination, some of which have already been experimented in clinical trials. The advantages and disadvantages of all these different therapeutic modalities for malignant gliomas will be critically discussed, providing perspective for future investigations.
Collapse
Affiliation(s)
- L Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, and Division of Neurosurgery, San Bortolo Hospital, Vicenza, Italy.
| | | | | | | |
Collapse
|
5
|
Kulprathipanja NV, Kruse CA. Microglia phagocytose alloreactive CTL-damaged 9L gliosarcoma cells. J Neuroimmunol 2004; 153:76-82. [PMID: 15265665 DOI: 10.1016/j.jneuroim.2004.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
Intracranial adoptive transfers of alloreactive cytotoxic T lymphocytes (aCTL) for brain tumor treatment were safe and showed promise in preclinical and early clinical trials. To better understand the endogenous immune responses that may ensue following cellular therapy with aCTL, we examined the ability of microglia to phagocytose aCTL-damaged and undamaged rat 9L gliosarcoma cells in vitro and in vivo. In vitro, 5.5+/-0.9% of microglial cells isolated from adult tumor-bearing rat brains phagocytosed aCTL-damaged 9L cells, whereas microglia did not bind to or ingest undamaged 9L cells. Addition of supernates from either 9L cell cultures or from aCTL+9L co-incubate cell cultures to microglia did not significantly alter their ability to bind to or phagocytose damaged glioma cells even though the latter contained T helper 1 and 2 cytokines. At 3 days following intracranial 9L cell infusion, 17.5+/-0.1% of the microglia phagocytosed CFSE-labeled aCTL-damaged 9L tumor cells within the adult rat brain, confirming the in vitro data. The results suggest that microglia within the tumor microenvironment of the adult rat glioma model selectively remove damaged, but not undamaged, glioma cells.
Collapse
Affiliation(s)
- Nisha V Kulprathipanja
- Department of Immunology, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, B216, Denver, CO 80262, USA
| | | |
Collapse
|
6
|
Gomez GG, Read SB, Gerschenson LE, Santoli D, Zweifach A, Kruse CA. Interactions of the allogeneic effector leukemic T cell line, TALL-104, with human malignant brain tumors. Neuro Oncol 2004; 6:83-95. [PMID: 15134622 PMCID: PMC1871983 DOI: 10.1215/s1152851703000140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 10/10/2003] [Indexed: 12/22/2022] Open
Abstract
TALL-104 is a human leukemic T cell line that expresses markers characteristic of both cytotoxic T lymphocytes and natural killer cells. TALL-104 cells are potent tumor killers, and the use of lethally irradiated TALL-104 as cellular therapy for a variety of tumors has been explored. We investigated the interactions of TALL-104 cells with human brain tumor cells. TALL-104 cells mediated increased lysis of a panel of brain tumor cells at low effector-to-target ratios over time. We obtained evidence that TALL-104 cells injured glioma cells by both apoptotic and necrotic pathways. A 7-amino actinomycin D flow cytometry assay revealed that the percentages of both apoptotic and necrotic glioma cells increased after TALL-104 cell/glioma cell coincubations. Fluorescent microscopy studies and a quantitative morphologic assay confirmed that TALL-104 cell/glioma cell interactions resulted in tumor cell apoptosis. Cytokines are secreted when TALL-104 cells are coincubated with brain tumor cells; however, morphologic analysis assays revealed that the soluble factors contained within clarified supernates obtained from 4 h coincubates added back to brain tumor cell cultures did not trigger the glioma apoptosis. TALL-104 cells do not express Fas ligand, even upon coincubation with glioma targets, which suggests that the Fas/Fas ligand apoptotic pathway is not likely responsible for the cell injury observed. We obtained evidence that cell injury is calcium dependent and that lytic granule exocytosis is triggered by contact of TALL-104 cells with human glioma cells, suggesting that this pathway mediates glioma cell apoptosis and necrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Carol A. Kruse
- Address correspondence to Carol A. Kruse, Department of Immunology, Campus Box B216, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262 (
)
| |
Collapse
|
7
|
Read SB, Kulprathipanja NV, Gomez GG, Paul DB, Winston KR, Robbins JM, Kruse CA. Human alloreactive CTL interactions with gliomas and with those having upregulated HLA expression from exogenous IFN-gamma or IFN-gamma gene modification. J Interferon Cytokine Res 2004; 23:379-93. [PMID: 14511464 DOI: 10.1089/107999003322226032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By flow cytometry, a panel of 18 primary glioma cell explants exhibited high expression of class I HLA-A, B, C, but class II HLA-DR expression was absent. Freshly isolated normal brain cells displayed little or no HLA antigens. Alloreactive cytotoxic T lymphocytes (aCTL), sensitized to the HLA of the patient, were generated in a one-way mixed lymphocyte response (MLR). The specificity of aCTL was confirmed to be to target cells (patient glioma cells or lymphoblasts) expressing the relevant HLA antigens. However, nontumor patient-specific aCTL did not lyse normal brain cells. Titration of antibodies to HLA class I into cytotoxicity assays blocked lysis of gliomas by aCTL, confirming aCTL T cell receptor (TCR) interactions with the class I antigen on gliomas. Furthermore, aCTL interactions with glioma cells caused their apoptosis. Coincubations of aCTL with gliomas resulted in upregulated cytokine secretion. Importantly, dexamethasone, an immunosuppressive steroid used for brain edema, did not affect aCTL lytic function against tumor, indicating that steroid-dependent patients may benefit from the immunotherapy. We also explored the use of interferon-gamma (IFN-gamma) to increase aCTL tumor recognition. Coincubation of gliomas with exogenous IFN-gamma (500 U/ml, 48 h) caused a 3-fold upregulation of HLA class I and a slight induction of class II antigen expression. Gene-modified glioma cells producing IFN-gamma similarly displayed upregulated HLA expression. Glioma cells incubated with exogenous IFN-gamma or IFN-gamma-transduced glioma cells were more susceptible to lysis by aCTL than their parental counterparts, thus supporting the concept of combining IFN-gamma cytokine gene therapy with adoptive aCTL immunotherapy for brain tumor treatment.
Collapse
Affiliation(s)
- Susana B Read
- Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Paul DB, Read SB, Kulprathipanja NV, Gomez GG, Kleinschmidt-DeMasters BK, Schiltz PM, Kruse CA. Gamma interferon transduced 9L gliosarcoma. Cytokine gene therapy and its relevance to cellular therapy with alloreactive cytotoxic T lymphocytes. J Neurooncol 2003; 64:89-99. [PMID: 12952290 DOI: 10.1007/bf02700024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In earlier studies, we demonstrated that intratumoral infusions of alloreactive cytotoxic T lymphocytes (aCTL), sensitized to the major histocompatibility complex (MHC) antigens of the host, effectively retarded the intracranial growth of Fischer 9L gliosarcoma. We further demonstrated that continuous in vitro exposure to gamma-interferon (gammaIFN) upregulates MHC on 9L gliosarcoma cells and that they were better targets of anti-Fischer aCTL. We hypothesized that the efficacy of cellular therapy with aCTL could be further improved by in situ transduction of the tumor with retroviral vectors coding for gammaIFN, which would generate continuous secretion of the cytokine and maintain upregulated MHC expression by the tumor cells. 9L gliosarcoma and Herpes simplex virus thymidine kinase (tk) transductants of those cells were transduced with a retrovirus carrying the murine gammaIFN gene. By limiting dilution, clones of these cells, designated 9Lgamma 7, 9Lgamma tk8, and 9Lgamma tk10, which produced similar levels of gammaIFN (383-411 ng gammaIFN/10(6) cells/24 h) were isolated. The production of gammaIFN by one clone, 9Lgamma 7, was stable when monitored over 6 weeks in vitro. The clones also demonstrated upregulated MHC class I expression, and the tk-transduced clones maintained their sensitivity to ganciclovir. Compared to the wildtype cells, 9Lgamma 7 had approximate 6- and 1.5-fold increases in the relative antigen densities of MHC I and II, respectively. Addition of exogenous gammaIFN to 9Lgamma 7 cultures did not significantly increase the MHC expression. In cytotoxicity assays, 9Lgamma 7 cells, or 9Lgamma 7 incubated with exogenous gammaIFN, were better targets of aCTL than the parental 9L cells. The growth rate of 9Lgamma-transduced cells was decreased compared to the wildtype cells both in vitro and in vivo. Proliferation studies with transwell plated 9L, 9Lgamma 7, and 9Lgamma tk10 cells in various combinations revealed that the secreted cytokine itself caused a decrease in proliferation. However, the transduced cells exhibited a much reduced growth rate, which likely was a consequence of redirected metabolic activity of the cells. In vivo growth of the 9L and 9Lgamma 7 tumors in rat brains given identical inoculums similarly demonstrated significantly reduced 9Lgamma 7 tumor volumes at various timepoints, indicative of slower growth of the gammaIFN-producing tumors.
Collapse
Affiliation(s)
- David B Paul
- Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Schiltz PM, Gomez GG, Read SB, Kulprathipanja NV, Kruse CA. Effects of IFN-gamma and interleukin-1beta on major histocompatibility complex antigen and intercellular adhesion molecule-1 expression by 9L gliosarcoma: relevance to its cytolysis by alloreactive cytotoxic T lymphocytes. J Interferon Cytokine Res 2002; 22:1209-16. [PMID: 12581494 DOI: 10.1089/10799900260475731] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To enhance the efficacy of cellular immunotherapy for gliomas, we tested the concept of using proinflammatory cytokine treatment with interferon-gamma (IFN-gamma) or interleukin-1beta (IL-1beta) or both to render glioma cells more susceptible to cytolysis by alloreactive cytotoxic T lymphocytes (aCTL). The cytokines, separately or in combination, were able to upregulate major histocompatibility complex (MHC) class I antigen or intercellular adhesion molecule-1 (ICAM-1) on Fischer rat 9L gliosarcoma cells. 9L cells were incubated in vitro for 24, 48, or 72 h with varying concentrations of rat IFN-gamma (0-2000 U/ml) or recombinant human IL-1 (rHUIL-1) (0-1000 U/ml) or both. By 48 h, IFN-gamma (500 U/ml) maximally induced the percentage of positive expressing cells and the relative antigen density of MHC class I and ICAM-1 on 9L cells, whereas IL-1 induced only ICAM-1 expression. Simultaneous incubation of IL-1 with IFN-gamma did not further affect the induction of class I on 9L cells more than that achieved with IFN-gamma alone. 9L cells with upregulated MHC class I and ICAM-1 expression were more sensitive to lysis by aCTL in in vitro cytotoxicity assays, regardless of whether the precursor aCTL came from naive or from 9L-immunized rats. Furthermore, inhibition of 9L cytotoxicity in assays that included blocking antibodies to MHC class I or to ICAM-1 revealed that T cell receptor (TCR) interactions with MHC class I and that ICAM-1 interactions with lymphocyte function-associated-1 (LFA-1) antigen account for a portion of the glioma lysis by aCTL.
Collapse
Affiliation(s)
- Patric M Schiltz
- Department of Surgery, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Malignant brain tumors are notoriously invasive. Although surgical debulking can relieve the patient of the main mass of tumor, adjuvant treatments are needed to target the glioma cells that infiltrate through normal parenchyma as single cells or pockets of tumor cells from which recurrent tumors arise. Successful adjuvant cellular therapy of brain tumors, or activation of endogenous immune cells, requires that either cell effectors make direct contact with tumor cells or come within close proximity to them and exert an indirect effect. This review examines current clinical trials aimed at direct lysis of glioma cells and trials making gliomas more visible to the endogenous immune system.
Collapse
Affiliation(s)
- D B Paul
- Department of Immunology, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
11
|
Smilowitz HM, Micca PL, Nawrocky MM, Slatkin DN, Tu W, Coderre JA. The combination of boron neutron-capture therapy and immunoprophylaxis for advanced intracerebral gliosarcomas in rats. J Neurooncol 2001; 46:231-40. [PMID: 10902854 DOI: 10.1023/a:1006409721365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary human brain tumor. About 7000 new cases are diagnosed yearly in the USA and GBM is almost invariably fatal within a few years after it is diagnosed. Despite current neurosurgical and radiotherapeutic tumor cytoreduction methods, in most cases occult foci of tumor cells infiltrate surrounding brain tissues and cause recurrent disease. Therefore the combination of neurosurgical and radiotherapeutic debulking methods with therapies to inhibit occult GBM cells should improve prognosis. In this study we have combined boron neutron-capture therapy (BNCT), a novel binary radiotherapeutic treatment modality that selectively irradiates tumor tissue and largely spares normal brain tissue, with immunoprophylaxis, a form of active immunization initiated soon after BNCT treatment, to treat advanced, clinically relevantly-sized brain tumors in rats. Using a malignant rat glioma model of high immunogenicity, the 9L gliosarcoma, we have shown that about half of the rats that would have died after receiving BNCT debulking alone, survived after receiving BNCT plus immunoprophylaxis. Further, most of the surviving rats display immunological-based resistance to recurrent 9LGS growth six months or more after treatment. To our knowledge this study represents the first time BNCT and immunoprophylaxis have been combined to treat advanced brain tumors in rats.
Collapse
Affiliation(s)
- H M Smilowitz
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030-6125, USA.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
OBJECTIVE Despite advances in conventional therapy, the prognosis for most glioma patients remains dismal. This has prompted an intensive search for effective treatment alternatives. Immunotherapy, one such alternative, has long been recognized as a potentially potent cancer treatment but has been limited by an inadequate understanding of the immune system. Now, increased insight into immunology is suggesting more rational approaches to immunotherapy. In this article, we explore key aspects of modern immunology and discuss their implications for glioma therapy. METHODS A thorough literature review of glioma immunology and immunotherapy was undertaken to inquire into the basic immunology, central nervous system immunology, glioma immunobiology, standard glioma immunotherapy, and recent immunotherapeutic advances in glioma treatment. RESULTS Although gliomas express tumor-associated antigens and appear potentially sensitive to immune responses, many factors work together to inhibit antiglioma immunity. Not surprisingly, most clinical attempts at glioma immunotherapy have met with little success to date. However, novel immunostimulatory strategies, such as immunogene therapy, directed cytokine delivery, and dendritic cell manipulation, have recently yielded dramatic preclinical results in glioma models. This suggests that glioma-derived immunosuppression can be overcome. CONCLUSION Modern molecular biology and immunology techniques have yielded a wealth of new data about glioma immunobiology. Armed with this information, many investigators have proposed novel means to stimulate antiglioma immune responses. Although definitive clinical results remain to be seen, the current renaissance in glioma immunology and immunotherapy shows great promise for the future.
Collapse
Affiliation(s)
- I F Parney
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
14
|
Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, Luciano M, Kangisser DB, Shu S. Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 1998; 89:42-51. [PMID: 9647171 DOI: 10.3171/jns.1998.89.1.0042] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT To determine the feasibility, toxicity, and potential therapeutic benefits of systemic adoptive immunotherapy, 10 patients with progressive primary or recurrent malignant glioma received this treatment. Adoptive immunotherapy, the transfer of immune T lymphocytes, is capable of mediating the regression of experimental brain tumors in animal models. In animal models, lymph nodes (LNs) that drain the tumor vaccine site are a rich source of tumor-immune T cells. METHODS In this clinical study, patients were inoculated intradermally with irradiated autologous tumor cells and granulocyte macrophage-colony stimulating factor as an adjuvant. Cells from draining inguinal LNs, surgically resected 7 days after vaccination, were stimulated sequentially with staphylococcal enterotoxin A and anti-CD3, and a low dose of interleukin-2 (60 IU/ml) was used to expand the stimulated cells. The maximum cell proliferation was 350-fold over 10 days of culture. The activated cells were virtually all T cells consisting of various proportions of CD4 and CD8 cells. These cells were given to patients by intravenous infusion at doses ranging from 9 x 10(8) to 1.5 x 10(11). There were no Grade 3 or 4 toxicities associated with the treatment. Following T-cell transfer therapy, radiographic regression that lasted at least 6 months was demonstrated in two patients with recurrent tumors. One patient demonstrated stable disease that has lasted for more than 17 months. The remaining patients had progressive disease; however, four of the eight patients with recurrent tumor remain alive more than 1 year after surgery for recurrence. Three patients required intervention with corticosteroid agents or additional surgery approximately 1 month following cell transfer. CONCLUSIONS These intriguing clinical observations warrant further trials to determine whether this approach can provide therapeutic benefits and improve survival.
Collapse
Affiliation(s)
- G E Plautz
- Department of Neurological Surgery, Center for Surgery Research, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Classen J, Hoffmann W, Kortmann RD, Lehr A, Meyermann R, Palmbach M, Bamberg M. Gliosarcoma--case report and review of the literature. Acta Oncol 1998; 36:771-4. [PMID: 9490099 DOI: 10.3109/02841869709001353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Classen
- Department of Radiotherapy, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Dorigo O, Turla ST, Lebedeva S, Gjerset RA. Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J Neurosurg 1998; 88:535-40. [PMID: 9488309 DOI: 10.3171/jns.1998.88.3.0535] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECT To study the combined potential of wild-type p53 gene transfer and administration of cisplatin for the treatment of glioblastoma multiforme, the authors used the 9L rat glioblastoma cell line, which expresses a mutant p53. METHODS Stable expression of wild-type p53 in 9L cells was achieved by transfection of the cells with a wild-type p53-expressing plasmid (pCEP4p53). The resultant cell line, 9LpCEP4p53, was found to be more sensitive to cisplatin treatment in vitro than control (9LpCEP4) cells. The in vitro growth rates of control cells and wild-type p53-modified cells were similar in the absence of cisplatin. Fischer 344 rats were implanted intracerebrally with 9LpCEP4p53 cells and intraperitoneally administered 4 mg/kg cisplatin weekly for 7 weeks. These animals survived significantly longer than animals that were implanted with 9LpCEP4p53 cells but were given no cisplatin treatment. In contrast, concurrent cisplatin treatment provided no benefit for animals implanted with 9LpCEP4 cells. Tumors that developed in animals that had been implanted with 9LpCEP4p53 cells and treated with cisplatin had lost expression of wild-type p53, indicating a correlation between expression of wild-type p53 and cisplatin sensitivity in vivo. CONCLUSIONS The findings of this study suggest that p53-based gene therapy in combination with cisplatin-based chemotherapy may be superior to single-modality treatment in dealing with glioblastoma multiforme.
Collapse
Affiliation(s)
- O Dorigo
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
17
|
Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 1998; 36:91-102. [PMID: 9525831 DOI: 10.1023/a:1005805203044] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rat brain tumor models have been widely used in experimental neuro-oncology for almost three decades. The present review, which will be selective rather than comprehensive, will focus entirely on seven rat brain tumor models and their utility in evaluating the efficacy of various therapeutic modalities. Although no currently available animal brain tumor model exactly simulates human high grade brain tumors, the rat models that are currently available have provided a wealth of information on in vitro and in vivo biochemical and biological properties of brain tumors and their in vivo responses to various therapeutic modalities. Ideally, valid brain tumor models should be derived from glial cells, grow in vitro and in vivo with predictable and reproducible growth patterns that simulate human gliomas, be weakly or non-immunogenic, and their response to therapy, or lack thereof, should resemble human brain tumors. The following tumors will be discussed. The 9L gliosarcoma, which was chemically induced in an inbred Fischer rat, has been one of the most widely used of all rat brain tumor models and has provided much useful information relating to brain tumor biology and therapy. The T9 glioma, although generally unrecognized, was and probably still is the same as the 9L. Both of these tumors can be immunogenic under the appropriate circumstances, and this must be taken into consideration when using either of them for studies of therapeutic efficacy, especially if survival is used as an endpoint. The C6 glioma, which was chemically induced in an outbred Wistar rat, has been extensively used for a variety of studies, but is not syngeneic to any inbred strain. Its potential to evoke an alloimmune response is a serious limitation, if it is being used in survival studies. The F98 and RG2 (D74) gliomas were both chemically induced tumors that appear to be either weakly or non-immunogenic. These tumors have been refractory to a variety of therapeutic modalities and their invasive pattern of growth and uniform lethality following an innoculum of as few as 10 tumor cells make them particularly attractive models to test new therapeutic modalities. The Avian Sarcoma Virus induced tumors and a continuous cell line derived from one of them, designated RT-2, have been useful for studies in which de novo tumor induction is an important requirement. These tumors, however, are immunogenic and this may limit their usefulness for survival studies. Finally, a new chemically induced tumor recently has been described, the CNS-1, and it appears to have a number of properties that should make it useful in experimental neuro-oncology. It is essential to recognize, however, the limitations of each of the models that have been described, and depending upon the nature of the study to be conducted, it is important that the appropriate model be selected.
Collapse
Affiliation(s)
- R F Barth
- Department of Pathology, The Ohio State University, Columbus 43210, USA.
| |
Collapse
|
18
|
Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black KL, Royston I, Sobol RE. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 1996; 93:2909-14. [PMID: 8610141 PMCID: PMC39733 DOI: 10.1073/pnas.93.7.2909] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.
Collapse
Affiliation(s)
- H Fakhrai
- Sidney Kimmel Cancer Center, San Deigo, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:128-51. [PMID: 8866671 DOI: 10.1016/0165-0173(95)00010-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human malignant gliomas are rather resistant to all current therapeutic approaches including surgery, radiotherapy and chemotherapy as well as antibody-guided or cellular immunotherapy. The immunotherapy of malignant glioma has attracted interest because of the immunosuppressed state of malignant glioma patients which resides mainly in the T-cell compartment. This T-cell suppression has been attributed to the release by the glioma cells of immunosuppressive factors like transforming growth factor-beta (TGF-beta) and prostaglandins. TGF-beta has multiple effects in the immune system, most of which are inhibitory. TGF-beta appears to control downstream elements of various cellular activation cascades and regulates the expression of genes that are essential for cell cycle progression and mitosis. Since TGF-beta-mediated growth arrest of T-cell lines results in their apoptosis in vitro, glioma-derived TGF-beta may prevent immune-mediated glioma cell elimination by inducing apoptosis of tumor-infiltrating lymphocytes in vivo. T-cell apoptosis in the brain may be augmented by the absence of professional antigen-presenting cells and of appropriate costimulating signals. Numerous in vitro studies predict that tumor-derived TGF-beta will incapacitate in vitro-expanded and locally administered lymphokine-activated killer cells (LAK-cells) or tumor-infiltrating lymphocytes. Thus, TGF-beta may be partly responsible for the failure of current adoptive cellular immunotherapy of malignant glioma. Recent experimental in vivo studies on non-glial tumors have corroborated that neutralization of tumor-derived TGF-beta activity may facilitate immune-mediated tumor rejection. Current efforts to improve the efficacy of immunotherapy for malignant glioma include various strategies to enhance the immunogenicity of glioma cells and the cytotoxic activity of immune effector cells, e.g., by cytokine gene transfer. Future strategies of cellular immunotherapy for malignant glioma will have to focus on rendering glioma cell-targeting immune cells resistent to local inactivation and apoptosis which may be induced by TGF-beta and other immunosuppressive molecules at the site of neoplastic growth. Cytotoxic effectors targeting Fas/APO-1, the receptor protein for perforin-independent cytotoxic T-cell killing, might be promising, since Fas/APO-1 is expressed by glioma cells but not by untransformed brain cells, and since Fas/APO-1-mediated killing in vitro is not inhibited by TGF-beta.
Collapse
Affiliation(s)
- M Weller
- Neurologische Klinik der Universität Tübingen, Germany
| | | |
Collapse
|
20
|
Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 1994; 22:191-200. [PMID: 7760095 DOI: 10.1007/bf01052919] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A glioma cell line, CNS-1, was developed in the inbred Lewis rat to obtain a histocompatible astrocytoma cell line with infiltrative and growth patterns that more closely simulate those observed in human gliomas. Rats were given weekly intravenous injections for a six month period with N-nitroso-N-methylurea to produce neoplasm in the central nervous system. Intracranial tumor was isolated, enzymatically and mechanically digested, and placed into culture. The tumor cell line injected subcutaneously on the flanks of Lewis rats grew extensively in situ as cohesive tumor masses but did not metastasize. Intracranially, CNS-1 demonstrated single cell infiltration of paranchyma and leptomeningeal, perivascular, and periventricular spread with expansion of the tumor within choroid plexus stroma. CNS-1 cells titrated in right frontal brain of Lewis rats at 10(5), 5 x 10(5), 10(5), 5 x 10(4) cells per group had mean survival times ranging from 20.5 to 30.2 days. CNS-1 was immunoreactive for glial fibrillary acidic protein, S100 protein, vimentin, neural cell adhesion molecule, retinoic acid receptor alpha, intercellular adhesion molecule, and neuron specific enolase. The CNS-1 cells commonly had one or more trisomies of chromosomes 11, 13 or 18; losses, possibly random, of chromosomes (3, 5, 19, 30, X or Y) were noticed, and a marker chromosome made up of approximately 3 chromosomes was usual. Comparisons of CNS-1 to 9L gliosarcoma tumor were made. The glial CNS-1 tumor model provides an excellent system in which to investigate a variety of immunological therapeutic modalities. It spreads within brain in a less cohesive mass than 9L and is accepted without rejection in non-central nervous system sites by Lewis rats.
Collapse
Affiliation(s)
- C A Kruse
- University of Colorado Health Sciences Center, Department of Surgery, Denver, USA
| | | | | | | | | | | |
Collapse
|