1
|
Aisenberg LK, Rousseau KE, Cascino K, Massaccesi G, Aisenberg WH, Luo W, Muthumani K, Weiner DB, Whitehead SS, Chattergoon MA, Durbin AP, Cox AL. Cross-reactive antibodies facilitate innate sensing of dengue and Zika viruses. JCI Insight 2022; 7:151782. [PMID: 35588060 DOI: 10.1172/jci.insight.151782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear.We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Collapse
Affiliation(s)
- Laura K Aisenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kimberly E Rousseau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Katherine Cascino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - William H Aisenberg
- Department of Medicine, Division of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Wensheng Luo
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Michael A Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Anna P Durbin
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Andrea L Cox
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
2
|
Chokephaibulkit K, Chien YW, AbuBakar S, Pattanapanyasat K, Perng GC. Use of Animal Models in Studying Roles of Antibodies and Their Secretion Cells in Dengue Vaccine Development. Viruses 2020; 12:E1261. [PMID: 33167518 PMCID: PMC7694450 DOI: 10.3390/v12111261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
The cardinal feature of adaptive immunity is its ability to form memory responses that can be rapidly recalled to contain pathogens upon reencountering. Conferring a robust memory immune response to an infection is a key feature for a successful vaccination program. The plasmablasts are cells that not only can secret non-neutralizing antibodies but also can secrete the specific antibodies essential to neutralize and inactivate the invading pathogens. Dengue has been recognized as one of the most important vector-borne human viral diseases globally. Currently, supportive care with vigilant monitoring is the standard practice since there is as yet no approved therapeutic modality to treat dengue. Even though the approved vaccine has become available, its low efficacy with the potential to cause harm is the major hurdle to promote the widespread usage of the vaccine. Despite the decades of research on dengue, the major challenge in dengue vaccine development is the absence of suitable experimental animal models that reflect the pathological features and clinical symptoms, as seen in humans. Dengue is transmitted by the bite of mosquitoes carrying infectious dengue virus (DENV), which has four distinct serotypes. Recently, cases resulting from unconventional transmission routes, such as blood transfusion, organs as well as stem cells and bone marrow transplantations, and mother-to-infant vertical transmission, have been reported, suggesting an alternate route of DENV transmission exists in nature. This review discusses issues and challenges needing to be resolved to develop an effective dengue vaccine. Development of a robust and reliable dengue animal model that can reflect not only dynamic human clinical symptoms but also can answer around why preexisting neutralizing antibodies do not confer protection upon re-infection and immune protection marker for dengue vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Kulkanya Chokephaibulkit
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kovit Pattanapanyasat
- Center of Research Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
3
|
Phosphoproteomic analysis of dengue virus infected U937 cells and identification of pyruvate kinase M2 as a differentially phosphorylated phosphoprotein. Sci Rep 2020; 10:14493. [PMID: 32879337 PMCID: PMC7467932 DOI: 10.1038/s41598-020-71407-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) is an arthropod-borne Flavivirus that can cause a range of symptomatic disease in humans. There are four dengue viruses (DENV 1 to 4) and infection with one DENV only provides transient protection against a heterotypic virus. Second infections are often more severe as the disease is potentiated by antibodies from the first infection through a process known as antibody dependent enhancement (ADE) of infection. Phosphorylation is a major post-translational modification that can have marked effects on a number of processes. To date there has been little information on the phosphorylation changes induced by DENV infection. This study aimed to determine global phosphoproteome changes induced by DENV 2 in U937 cells infected under an ADE protocol. A 2-dimensional electrophoretic approach coupled with a phosphoprotein-specific dye and mass spectroscopic analysis identified 15 statistically significant differentially phosphorylated proteins upon DENV 2 infection. One protein identified as significantly differentially phosphorylated, pyruvate kinase M2 (PKM2) was validated. Treatment with a PKM2 inhibitor modestly reduced levels of infection and viral output, but no change was seen in cellular viral protein levels, suggesting that PKM2 acts on exocytic virus release. While the effect of inhibition of PKM2 was relatively modest, the results highlight the need for a greater understanding of the role of phosphoproteins in DENV infection.
Collapse
|
4
|
Using genetic variation in Aedes aegypti to identify candidate anti-dengue virus genes. BMC Infect Dis 2019; 19:580. [PMID: 31272403 PMCID: PMC6611004 DOI: 10.1186/s12879-019-4212-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcriptomic profiling has generated extensive lists of genes that respond to viral infection in mosquitoes. These gene lists contain two types of genes; (1) those that are responsible for the insect's natural antiviral defense mechanisms, including some known innate immunity genes, and (2) genes whose change in expression may occur simply as a result of infection. As genetic modification tools for mosquitoes continue to improve, the opportunities to make refractory insects via allelic replacement or delivery of small RNAs that alter gene expression are expanding. Therefore, the ability to identify which genes in transcriptional profiles may have immune function has increasing value. Arboviruses encounter a range of mosquito tissues and physiologies as they traverse from the midgut to the salivary glands. While the midgut is well-studied as the primary tissue barrier, antiviral genes expressed in the subsequent tissues of the carcass offer additional candidates for second stage intervention in the mosquito body. METHODS Mosquito lines collected recently from field populations exhibit natural genetic variation for dengue virus susceptibility. We sought to use a modified full-sib breeding design to identify mosquito families that varied in their dengue viral load in their bodies post infection. RESULTS By delivering virus intrathoracically, we bypassed the midgut and focused on whole body responses in order to evaluate carcass-associated refractoriness. We tested 25 candidate genes selected for their appearance in multiple published transcriptional profiles and were able to identify 12 whose expression varied with susceptibility in the genetic families. CONCLUSIONS This method, using natural genetic variation, offers a simple means to screen and reduce candidate gene lists prior to carrying out more labor-intensive functional studies. The extracted RNA from the females across the families represents a storable resource that can be used to screen subsequent candidate genes in the future. The aspect of vector competence being assessed could be varied by focusing on different tissues or time points post infection.
Collapse
|
5
|
Neutralization of Acidic Intracellular Vesicles by Niclosamide Inhibits Multiple Steps of the Dengue Virus Life Cycle In Vitro. Sci Rep 2019; 9:8682. [PMID: 31213630 PMCID: PMC6582152 DOI: 10.1038/s41598-019-45095-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Abstract
Dengue fever is one of the most important mosquito-borne viral infections in large parts of tropical and subtropical countries and is a significant public health concern and socioeconomic burden. There is an urgent need to develop antivirals that can effectively reduce dengue virus (DENV) replication and decrease viral load. Niclosamide, an antiparasitic drug approved for human use, has been recently identified as an effective antiviral agent against a number of pH-dependent viruses, including flaviviruses. Here, we reveal that neutralization of low-pH intracellular compartments by niclosamide affects multiple steps of the DENV infectious cycle. Specifically, niclosamide-induced endosomal neutralization not only prevents viral RNA replication but also affects the maturation of DENV particles, rendering them non-infectious. We found that niclosamide-induced endosomal neutralization prevented E glycoprotein conformational changes on the virion surface of flaviviruses, resulting in the release of non-infectious immature virus particles with uncleaved pr peptide from host cells. Collectively, our findings support the potential application of niclosamide as an antiviral agent against flavivirus infection and highlight a previously uncharacterized mechanism of action of the drug.
Collapse
|
6
|
Pulkkinen LIA, Butcher SJ, Anastasina M. Tick-Borne Encephalitis Virus: A Structural View. Viruses 2018; 10:v10070350. [PMID: 29958443 PMCID: PMC6071267 DOI: 10.3390/v10070350] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.
Collapse
Affiliation(s)
- Lauri I A Pulkkinen
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Sarah J Butcher
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Maria Anastasina
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
7
|
Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines. Virology 2017; 501:54-62. [PMID: 27863275 PMCID: PMC5201448 DOI: 10.1016/j.virol.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023]
Abstract
The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study.
Collapse
Affiliation(s)
- Danielle K Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - David W Dorward
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - Bryan T Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States.
| |
Collapse
|
8
|
Clark KB, Hsiao HM, Bassit L, Crowe JE, Schinazi RF, Perng GC, Villinger F. Characterization of dengue virus 2 growth in megakaryocyte-erythrocyte progenitor cells. Virology 2016; 493:162-72. [PMID: 27058763 DOI: 10.1016/j.virol.2016.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Megakaryocyte-erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis.
Collapse
Affiliation(s)
- Kristina B Clark
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hui-Mien Hsiao
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA, USA
| | - James E Crowe
- Departments of Pediatrics, Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Francois Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| |
Collapse
|
9
|
A Single Amino Acid Substitution in the M Protein Attenuates Japanese Encephalitis Virus in Mammalian Hosts. J Virol 2015; 90:2676-89. [PMID: 26656690 DOI: 10.1128/jvi.01176-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/30/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) membrane (M) protein plays important structural roles in the processes of fusion and maturation of progeny virus during cellular infection. The M protein is anchored in the viral membrane, and its ectodomain is composed of a flexible N-terminal loop and a perimembrane helix. In this study, we performed site-directed mutagenesis on residue 36 of JEV M protein and showed that the resulting mutation had little or no effect on the entry process but greatly affected virus assembly in mammalian cells. Interestingly, this mutant virus had a host-dependent phenotype and could develop a wild-type infection in insect cells. Experiments performed on infectious virus as well as in a virus-like particle (VLP) system indicate that the JEV mutant expresses structural proteins but fails to form infectious particles in mammalian cells. Using a mouse model for JEV pathogenesis, we showed that the mutation conferred complete attenuation in vivo. The production of JEV neutralizing antibodies in challenged mice was indicative of the immunogenicity of the mutant virus in vivo. Together, our results indicate that the introduction of a single mutation in the M protein, while being tolerated in insect cells, strongly impacts JEV infection in mammalian hosts. IMPORTANCE JEV is a mosquito-transmitted flavivirus and is a medically important pathogen in Asia. The M protein is thought to be important for accommodating the structural rearrangements undergone by the virion during viral assembly and may play additional roles in the JEV infectious cycle. In the present study, we show that a sole mutation in the M protein impairs the JEV infection cycle in mammalian hosts but not in mosquito cells. This finding highlights differences in flavivirus assembly pathways among hosts. Moreover, infection of mice indicated that the mutant was completely attenuated and triggered a strong immune response to JEV, thus providing new insights for further development of JEV vaccines.
Collapse
|
10
|
Fu Q, Inankur B, Yin J, Striker R, Lan Q. Sterol Carrier Protein 2, a Critical Host Factor for Dengue Virus Infection, Alters the Cholesterol Distribution in Mosquito Aag2 Cells. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1124-1134. [PMID: 26336241 DOI: 10.1093/jme/tjv101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/24/2015] [Indexed: 06/05/2023]
Abstract
Host factors that enable dengue virus (DENV) to propagate in the mosquito host cells are unclear. It is known that cellular cholesterol plays an important role in the life cycle of DENV in human host cells but unknown if the lipid requirements differ for mosquito versus mammalian. In mosquito Aedes aegypti, sterol carrier protein 2 (SCP-2) is critical for cellular cholesterol homeostasis. In this study, we identified SCP-2 as a critical host factor for DENV production in mosquito Aag2 cells. Treatment with a small molecule commonly referred to as SCPI-1, (N-(4-{[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino}phenyl)acetamide hydrobromide, a known inhibitor of SCP-2, or knockdown of SCP-2 dramatically repressed the virus production in mosquito but not mammalian cells. We showed that the intracellular cholesterol distribution in mosquito cells was altered by SCP-2 inhibitor treatment, suggesting that SCP-2-mediated cholesterol trafficking pathway is important for DENV viral production. A comparison of the effect of SCP-2 on mosquito and human cells suggests that SCPI-1 treatment decreases cholesterol in both cell lines, but this decrease in cholesterol only leads to a decline in viral titer in mosquito host cells, perhaps, owing to a more drastic effect on perinuclear cholesterol storages in mosquito cells that was absent in human cells. SCP-2 had no inhibitory effect on another enveloped RNA virus grown in mosquito cells, suggesting that SCP-2 does not have a generalized anti-cellular or antiviral effect. Our cell culture results imply that SCP-2 may play a limiting role in mosquito-dengue vector competence.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, WI.
| | - Bahar Inankur
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, WI
| | - John Yin
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, WI
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, WI
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, WI. Deceased
| |
Collapse
|
11
|
Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480:418-33. [PMID: 25746936 PMCID: PMC7111692 DOI: 10.1016/j.virol.2015.02.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication.
Collapse
Affiliation(s)
- Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Abstract
Viruses have evolved to exploit the vast complexity of cellular processes for their success within the host cell. The entry mechanisms of enveloped viruses (viruses with a surrounding outer lipid bilayer membrane) are usually classified as being either endocytotic or fusogenic. Different mechanisms have been proposed for Alphavirus entry and genome delivery. Indirect observations led to a general belief that enveloped viruses can infect cells either by protein-assisted fusion with the plasma membrane in a pH-independent manner or by endocytosis and fusion with the endocytic vacuole in a low-pH environment. The mechanism of Alphavirus penetration has been recently revisited using direct observation of the processes by electron microscopy under conditions of different temperatures and time progression. Under conditions nonpermissive for endocytosis or any vesicular transport, events occur which allow the entry of the virus genome into the cells. When drug inhibitors of cellular functions are used to prevent entry, only ionophores are found to significantly inhibit RNA delivery. Arboviruses are agents of significant human and animal disease; therefore, strategies to control infections are needed and include development of compounds which will block critical steps in the early infection events. It appears that current evidence points to an entry mechanism, in which alphaviruses infect cells by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins.
Collapse
|
13
|
Membranous replication factories induced by plus-strand RNA viruses. Viruses 2014; 6:2826-57. [PMID: 25054883 PMCID: PMC4113795 DOI: 10.3390/v6072826] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 12/13/2022] Open
Abstract
In this review, we summarize the current knowledge about the membranous replication factories of members of plus-strand (+) RNA viruses. We discuss primarily the architecture of these complex membrane rearrangements, because this topic emerged in the last few years as electron tomography has become more widely available. A general denominator is that two “morphotypes” of membrane alterations can be found that are exemplified by flaviviruses and hepaciviruses: membrane invaginations towards the lumen of the endoplasmatic reticulum (ER) and double membrane vesicles, representing extrusions also originating from the ER, respectively. We hypothesize that either morphotype might reflect common pathways and principles that are used by these viruses to form their membranous replication compartments.
Collapse
|
14
|
Burlaud-Gaillard J, Sellin C, Georgeault S, Uzbekov R, Lebos C, Guillaume JM, Roingeard P. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles. PLoS One 2014; 9:e93573. [PMID: 24681578 PMCID: PMC3969332 DOI: 10.1371/journal.pone.0093573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.
Collapse
Affiliation(s)
- Julien Burlaud-Gaillard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Caroline Sellin
- Département Bioprocess, Upstream Platform, Sanofi Pasteur, Marcy l'Etoile, France
| | - Sonia Georgeault
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Rustem Uzbekov
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Claude Lebos
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Jean-Marc Guillaume
- Département Bioprocess, Upstream Platform, Sanofi Pasteur, Marcy l'Etoile, France
| | - Philippe Roingeard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| |
Collapse
|
15
|
Saxena SK, Tiwari S, Swamy MLA. An insight into flaviviral budding: a need to know more. Future Microbiol 2014; 9:125-8. [PMID: 24571066 DOI: 10.2217/fmb.13.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007 (AP), India
| | | | | |
Collapse
|
16
|
Chong MK, Chua AJS, Tan TTT, Tan SH, Ng ML. Microscopy techniques in flavivirus research. Micron 2013; 59:33-43. [PMID: 24530363 DOI: 10.1016/j.micron.2013.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
| | - Terence Tze Tong Tan
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Suat Hoon Tan
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore.
| |
Collapse
|
17
|
Chong MK, Parthasarathy K, Yeo HY, Ng ML. Optimized sequential purification protocol for in vivo site-specific biotinylated full-length dengue virus capsid protein. Protein Eng Des Sel 2013; 26:377-87. [PMID: 23479673 DOI: 10.1093/protein/gzs107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dengue virus (DENV) capsid (C) protein is one of the three structural proteins that form a mature virus. The main challenge impeding the study of this protein is to generate pure non-truncated, full-length C proteins for structural and functional studies. This is mainly due to its small molecular weight, highly positively charged, stability and solubility properties. Here, we report a strategy to construct, express, biotinylate and purify non-truncated, full-length DENV C protein. A 6× His tag and a biotin acceptor peptide (BAP) were cloned at the N-terminus of C protein using overlapping extension-polymerase chain reaction method for site-specific biotinylation. The final construct was inserted into pET28a plasmid and BL-21 (CodonPlus) expression competent cell strain was selected as there are 12% rare codons in the C protein sequence. Strikingly, we found that our recombinant proteins with BAP were biotinylated endogenously with high efficiency in Escherichia coli BL-21 strains. To purify this His-tagged C protein, nickel-nitriloacetic acid affinity chromatography was first carried out under denaturing condition. After stepwise dialysis and concurrent refolding, ion exchange-fast protein liquid chromatography was performed to further separate the residual contaminants. To obtain C protein with high purity, a final round of purification with size exclusion chromatography was carried out and a single peak corresponding to C protein was attained. With this optimized sequential purification protocol, we successfully generated pure biotinylated full-length DENV C protein. The functionality of this purified non-truncated DENV C protein was examined and it was suitable for structural and molecular studies.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
18
|
Vancini R, Kramer LD, Ribeiro M, Hernandez R, Brown D. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane. Virology 2013; 435:406-14. [DOI: 10.1016/j.virol.2012.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/01/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
|
19
|
Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS One 2012; 7:e47912. [PMID: 23112871 PMCID: PMC3480448 DOI: 10.1371/journal.pone.0047912] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023] Open
Abstract
Tick-borne flaviviruses (TBFV) are sustained in nature through cycling between mammalian and tick hosts. In this study, we used African green monkey kidney cells (Vero) and Ixodes scapularis tick cells (ISE6) to compare virus-induced changes in mammalian and arthropod cells. Using confocal microscopy, transmission electron microscopy (TEM), and electron tomography (ET), we examined viral protein distribution and the ultrastructural changes that occur during TBFV infection. Within host cells, flaviviruses cause complex rearrangement of cellular membranes for the purpose of virus replication. Virus infection was accompanied by a marked expansion in endoplasmic reticulum (ER) staining and markers for TBFV replication were localized mainly to the ER in both cell lines. TEM of Vero cells showed membrane-bound vesicles enclosed in a network of dilated, anastomosing ER cisternae. Virions were seen within the ER and were sometimes in paracrystalline arrays. Tubular structures or elongated vesicles were occasionally noted. In acutely and persistently infected ISE6 cells, membrane proliferation and vesicles were also noted; however, the extent of membrane expansion and the abundance of vesicles were lower and no viral particles were observed. Tubular profiles were far more prevalent in persistently infected ISE6 cells than in acutely infected cells. By ET, tubular profiles, in persistently infected tick cells, had a cross-sectional diameter of 60–100 nm, reached up to 800 nm in length, were closed at the ends, and were often arranged in fascicle-like bundles, shrouded with ER membrane. Our experiments provide analysis of viral protein localization within the context of both mammalian and arthropod cell lines as well as both acute and persistent arthropod cell infection. Additionally, we show for the first time 3D flavivirus infection in a vector cell line and the first ET of persistent flavivirus infection.
Collapse
Affiliation(s)
- Danielle K. Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - David W. Dorward
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Bryan T. Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Marshall E. Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
20
|
A novel coding-region RNA element modulates infectious dengue virus particle production in both mammalian and mosquito cells and regulates viral replication in Aedes aegypti mosquitoes. Virology 2012; 432:511-26. [PMID: 22840606 DOI: 10.1016/j.virol.2012.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/17/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Dengue virus (DENV) is an enveloped flavivirus with a positive-sense RNA genome transmitted by Aedes mosquitoes, causing the most important arthropod-borne viral disease affecting humans. Relatively few cis-acting RNA regulatory elements have been described in the DENV coding-region. Here, by introducing silent mutations into a DENV-2 infectious clone, we identify the conserved capsid-coding region 1 (CCR1), an RNA sequence element that regulates viral replication in mammalian cells and to a greater extent in Ae. albopictus mosquito cells. These defects were confirmed in vivo, resulting in decreased replication in Ae. aegypti mosquito bodies and dissemination to the salivary glands. Furthermore, CCR1 does not regulate translation, RNA synthesis or virion retention but likely modulates assembly, as mutations resulted in the release of non-infectious viral particles from both cell types. Understanding the role of CCR1 could help characterize the poorly-defined stage of assembly in the DENV life cycle and uncover novel anti-viral targets.
Collapse
|
21
|
Tang Y, Diao Y, Yu C, Gao X, Ju X, Xue C, Liu X, Ge P, Qu J, Zhang D. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transbound Emerg Dis 2012; 60:152-8. [PMID: 22515847 DOI: 10.1111/j.1865-1682.2012.01328.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The house sparrow (Passer domesticus) is one of the most widely distributed wild birds in China. Tembusu virus (TMUV) strain, TMUV-SDHS, was isolated from house sparrows living around the poultry farms in Shandong Province, Northern China. Genetic analysis of E and NS5 genes showed that it had a close relationship with that of the YY5 strain, which can cause severe egg drop in ducks. Pathogenicity studies showed that the virus is highly virulent when experimentally inoculated into the ducks. These findings show that house sparrows carrying the Tembusu virus may play an important role in transmitting the virus among other species.
Collapse
Affiliation(s)
- Y Tang
- Zoology Institute, Agricultural University of Shan Dong Province, Shan Dong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-Tolic L, Metz TO, Adamec J, Kuhn RJ. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLoS Pathog 2012; 8:e1002584. [PMID: 22457619 PMCID: PMC3310792 DOI: 10.1371/journal.ppat.1002584] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022] Open
Abstract
Dengue virus causes ∼50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.
Collapse
Affiliation(s)
- Rushika Perera
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Catherine Riley
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Giorgis Isaac
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Amber S. Hopf-Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Karl W. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Jiri Adamec
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
McGee CE, Tsetsarkin KA, Guy B, Lang J, Plante K, Vanlandingham DL, Higgs S. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus. PLoS One 2011; 6:e23247. [PMID: 21826243 PMCID: PMC3149644 DOI: 10.1371/journal.pone.0023247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.
Collapse
Affiliation(s)
- Charles E McGee
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
24
|
Su J, Li S, Hu X, Yu X, Wang Y, Liu P, Lu X, Zhang G, Hu X, Liu D, Li X, Su W, Lu H, Mok NS, Wang P, Wang M, Tian K, Gao GF. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS One 2011; 6:e18106. [PMID: 21455312 PMCID: PMC3063797 DOI: 10.1371/journal.pone.0018106] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/21/2011] [Indexed: 12/30/2022] Open
Abstract
Since April 2010, a severe outbreak of duck viral infection, with egg drop, feed uptake decline and ovary-oviduct disease, has spread around the major duck-producing regions in China. A new virus, named BYD virus, was isolated in different areas, and a similar disease was reproduced in healthy egg-producing ducks, infecting with the isolated virus. The virus was re-isolated from the affected ducks and replicated well in primary duck embryo fibroblasts and Vero cells, causing the cytopathic effect. The virus was identified as an enveloped positive-stranded RNA virus with a size of approximately 55 nm in diameter. Genomic sequencing of the isolated virus revealed that it is closely related to Tembusu virus (a mosquito-borne Ntaya group flavivirus), with 87–91% nucleotide identity of the partial E (envelope) proteins to that of Tembusu virus and 72% of the entire genome coding sequence with Bagaza virus, the most closely related flavivirus with an entirely sequenced genome. Collectively our systematic studies fulfill Koch's postulates, and therefore, the causative agent of the duck egg drop syndrome occurring in China is a new flavivirus. Flavivirus is an emerging and re-emerging zoonotic pathogen and BYD virus that causes severe egg-drop, could be disastrous for the duck industry. More importantly its public health concerns should also be evaluated, and its epidemiology should be closely watched due to the zoonotic nature of flaviviruses.
Collapse
Affiliation(s)
- Jingliang Su
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (GFG); (JS); (KT)
| | - Shuang Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xudong Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Yu
- China Animal Disease Control Center, Beijing, China
| | - Yongyue Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peipei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University, Chinese Academy of Sciences, Beijing, China
| | - Xishan Lu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- China Animal Disease Control Center, Beijing, China
| | - Wenliang Su
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ngai Shing Mok
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peiyi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kegong Tian
- China Animal Disease Control Center, Beijing, China
- * E-mail: (GFG); (JS); (KT)
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University, Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (JS); (KT)
| |
Collapse
|
25
|
Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J. Flavivirus cell entry and membrane fusion. Viruses 2011; 3:160-171. [PMID: 22049308 PMCID: PMC3206597 DOI: 10.3390/v3020160] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advances in the understanding of flavivirus cell entry with specific emphasis on the recent study of Zaitseva and coworkers, indicating that anionic lipids might play a crucial role in the fusion process of dengue virus [1].
Collapse
Affiliation(s)
- Jolanda M. Smit
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; E-Mails: (B.M.); (I.R.-Z.); (J.W.)
| | - Bastiaan Moesker
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; E-Mails: (B.M.); (I.R.-Z.); (J.W.)
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; E-Mails: (B.M.); (I.R.-Z.); (J.W.)
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; E-Mails: (B.M.); (I.R.-Z.); (J.W.)
| |
Collapse
|
26
|
Abstract
Yellow fever (YF) is a viral disease, endemic to tropical regions of Africa and the Americas, which principally affects humans and nonhuman primates and is transmitted via the bite of infected mosquitoes. Yellow fever virus (YFV) can cause devastating epidemics of potentially fatal, hemorrhagic disease. Despite mass vaccination campaigns to prevent and control these outbreaks, the risk of major YF epidemics, especially in densely populated, poor urban settings, both in Africa and South America, has greatly increased. Consequently, YF is considered an emerging, or reemerging disease of considerable importance. This article comprehensively reviews the history, microbiology, epidemiology, clinical presentation, diagnosis, and treatment of YFV, as well as the vaccines produced to combat YF.
Collapse
Affiliation(s)
- Christina L Gardner
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|
27
|
Růžek D, Vancová M, Tesařová M, Ahantarig A, Kopecký J, Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol 2009; 90:1649-1658. [DOI: 10.1099/vir.0.010058-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10 000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Arunee Ahantarig
- Faculty of Science, Mahidol University, 6 Rama Road, Bangkok 10400, Thailand
| | - Jan Kopecký
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
28
|
Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M, Krishnan MN, Bonafé N, Anthony KG, Marasco WA, Kaplan P, Montgomery RR, Diamond MS, Koski RA, Fikrig E. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. THE JOURNAL OF IMMUNOLOGY 2009; 183:650-60. [PMID: 19535627 DOI: 10.4049/jimmunol.0900093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.
Collapse
Affiliation(s)
- Hameeda Sultana
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 2008; 82:5715-24. [PMID: 18367533 DOI: 10.1128/jvi.02530-07] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study, we establish that cholesterol and sphingolipid associated with hepatitis C virus (HCV) particles are important for virion maturation and infectivity. In a recently developed culture system enabling study of the complete life cycle of HCV, mature virions were enriched with cholesterol as assessed by the molar ratio of cholesterol to phospholipid in virion and cell membranes. Depletion of cholesterol from the virus or hydrolysis of virion-associated sphingomyelin almost completely abolished HCV infectivity. Supplementation of cholesterol-depleted virus with exogenous cholesterol enhanced infectivity to a level equivalent to that of the untreated control. Cholesterol-depleted or sphingomyelin-hydrolyzed virus had markedly defective internalization, but no influence on cell attachment was observed. Significant portions of HCV structural proteins partitioned into cellular detergent-resistant, lipid-raft-like membranes. Combined with the observation that inhibitors of the sphingolipid biosynthetic pathway block virion production, but not RNA accumulation, in a JFH-1 isolate, our findings suggest that alteration of the lipid composition of HCV particles might be a useful approach in the design of anti-HCV therapy.
Collapse
|
30
|
Li J, Bhuvanakantham R, Howe J, Ng ML. The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. J Gen Virol 2006; 87:613-622. [PMID: 16476982 DOI: 10.1099/vir.0.81320-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The complete genome of West Nile (Sarafend) virus [WN(S)V] was sequenced. Phylogenetic trees utilizing the complete genomic sequence, capsid gene, envelope gene and NS5 gene/3' untranslated region of WN(S)V classified WN(S)V as a lineage II virus. A full-length infectious clone of WN(S)V with a point mutation in the glycosylation site of the envelope protein (pWNS-S154A) was constructed. Both growth kinetics and the mode of maturation were affected by this mutation. The titre of the pWNS-S154A virus was lower than the wild-type virus. This defect was corrected by the expression of wild-type envelope protein in trans. The pWNS-S154A virus matured intracellularly instead of at the plasma membrane as shown for the parental WN(S)V.
Collapse
Affiliation(s)
- J Li
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - R Bhuvanakantham
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - J Howe
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | - M-L Ng
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597
| |
Collapse
|
31
|
Senigl F, Grubhoffer L, Kopecky J. Differences in maturation of tick-borne encephalitis virus in mammalian and tick cell line. Intervirology 2006; 49:239-48. [PMID: 16491019 DOI: 10.1159/000091471] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 09/12/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The maturation process of tick-borne encephalitis virus (TBEV) in the tick RA-257 and porcine PS cells was studied by transmission electron microscopy and the E and NS1 proteins were localized in the infected cells. METHODS The porcine PS and tick RA-257 cell lines were infected with TBEV and examined at different time points post infection under an electron microscope. The E and NS1 proteins were localized with monoclonal antibodies on ultrathin cryosections. RESULTS The first virus particles and virus-induced vesicles appeared inside hypertrophied and dilated rough endoplasmic reticulum (RER) cisternae in PS cells 15 h p.i. In the course of progressing maturation, the virus particles came up inside the Golgi apparatus and then probably left the cell by the exocytic pathway. Free nucleocapsids did not appear. The observed pattern corresponded to a trans-type maturation. The maximum of the infected PS cell survival was about 50 h p.i. Immunolocalization of some viral proteins (the envelope protein E and the nonstructural protein NS1) revealed the proteins in the cytosol and on the membrane of hypertrophied RER cisternae. On the other hand, the maturation process exhibited different features in the case of the tick RA-257 cells. The nucleocapsids appeared in the cytosol 24 h p.i. and enveloped viral particles were observed in the lumen of vacuoles. Infection of RA-257 cells caused only minor ultrastructural changes and resulted in persistent infection. Immunolocalization of viral proteins in the tick cell line also differed. Proteins E and NS1 were localized in the cytosol and on the vacuolar and plasma membranes. CONCLUSION The TBEV maturation pathway in the mammalian host cell line differs from the pathway that the virus undergoes in the tick vector cell line.
Collapse
Affiliation(s)
- Filip Senigl
- Institute of Parasitology, Academy of Sciences of the Czech Republic and Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
32
|
Li J, Bhuvanakantham R, Howe J, Ng ML. Identifying the region influencing the cis-mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones. Biochem Biophys Res Commun 2005; 334:714-20. [PMID: 16018972 DOI: 10.1016/j.bbrc.2005.06.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/09/2005] [Indexed: 11/26/2022]
Abstract
West Nile (Sarafend) virus [WN(S)V] has been shown to egress by budding at the plasma membrane of infected cells. However, the region influencing this mode of virus release remains to be deciphered. In this study, we have constructed three chimeric clones in which specific regions of West Nile (Wengler) virus [WN(W)V] were replaced for the corresponding regions of WN(S)V in the full-length infectious clone of WN(S)V to define the region responsible for the cis-mode of WN(S)V maturation. The WN(W)V matures by the trans-mode. All of the resulting chimeric viruses were found to be infective. Transmission electron microscopy analyses performed in Vero cells infected with these chimeric viruses disclosed that the 5' end of the WN(S)V genome plays a major role in influencing the process of maturation at the plasma membrane.
Collapse
Affiliation(s)
- J Li
- Flavivirology Laboratory, Department of Microbiology, National University of Singapore, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
33
|
Girard YA, Popov V, Wen J, Han V, Higgs S. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:429-44. [PMID: 15962797 DOI: 10.1093/jmedent/42.3.429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ultrastructural features of West Nile virus (WNV) replication and dissemination in orally infected Culex pipiens quinquefasciatus Say were analyzed over a 25-d infection period. To investigate the effects of virus replication on membrane induction, cellular organization, and cell viability in midgut and salivary gland tissues, midguts were dissected on days 3, 7, 14, and 21, and salivary glands were collected on days 7, 14, 21, and 25 postinfection (d.p.i.) for examination by transmission electron microscopy (TEM). Whole mosquito heads were embedded for TEM analysis 14 d.p.i. to localize WNV particles and to investigate the effects of replication on nervous tissues of the brain. Membrane proliferation was induced by WNV in the midgut epithelium, midgut muscles, and salivary glands, although extensive endoplasmic reticulum swelling was a unique feature of salivary gland infection. TEM revealed WNV-induced pathology in salivary glands at 14, 21, and 25 d.p.i., and we hypothesize that long-term virus infection of this tissue results in severe cellular degeneration and apoptotic-like cell death. This finding indicates that the efficiency of WNV transmission may decrease with mosquito age postinfection.
Collapse
Affiliation(s)
- Yvette A Girard
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Franz X Heinz
- Institute of Virology, University of Vienna, A-1095 Vienna, Austria
| | | |
Collapse
|
35
|
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
36
|
Chu JJH, Choo BGH, Lee JWM, Ng ML. Actin filaments participate in West Nile (Sarafend) virus maturation process. J Med Virol 2003; 71:463-72. [PMID: 12966555 DOI: 10.1002/jmv.10495] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
West Nile (Sarafend) virus has previously been shown to egress by budding at the plasma membrane of infected cells, but relatively little is known about the mechanism involved in this mode of release. During the course of this study, it was discovered that actin filaments take part in the virus maturation process. Using dual-labeled immunofluorescence and immunoelectron microscopy at late infection (10 hr p.i.), co-localization of viral structural (envelope and capsid) proteins with actin filaments was confirmed. The virus structural proteins were also immunoprecipitated with anti-actin antibody, further demonstrating the strong association between the two components. Perturbation of actin filaments by cytochalasin B strongly inhibited the release of West Nile virus (approximately 10,000-fold inhibition) when compared with the untreated cells. Infectious virus particles were recovered after the removal of cytochalasin B. Further confirmation was obtained when nucleocapsid particles were found associated with disrupted actin filaments at the periphery of cytochalasin B-treated cells. Together, these results showed that actin filaments do indeed have a key role in the release of West Nile (Sarafend) virions.
Collapse
Affiliation(s)
- J J H Chu
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | | | | | | |
Collapse
|
37
|
Chu J, Ng M. Trafficking mechanism of west Nile (Sarafend) virus structural proteins. J Med Virol 2002. [DOI: 10.1002/jmv.2201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Deubel V, Fiette L, Gounon P, Drouet MT, Khun H, Huerre M, Banet C, Malkinson M, Desprès P. Variations in biological features of West Nile viruses. Ann N Y Acad Sci 2001; 951:195-206. [PMID: 11797777 DOI: 10.1111/j.1749-6632.2001.tb02697.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathological findings in humans, horses, and birds with West Nile (WN) encephalitis show neuronal degeneration and necrosis in the central nervous system (CNS), with diffuse inflammation. The mechanisms of WN viral penetration of the CNS and pathophysiology of the encephalitis remain largely unknown. Since 1996, several epizootics involving hundreds of humans, horses, and thousands of wild and domestic bird cases of encephalitis and mortality have been reported in Europe, North Africa, the Middle East, Russia, and the USA (see specific chapters in this issue). However, biological and molecular markers of virus virulence should be characterized to assess whether novel strains with increased virulence are responsible for this recent proliferation of outbreaks.
Collapse
Affiliation(s)
- V Deubel
- Institut Pasteur, Unité de Biologie des Infections Virales Emergentes, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ng ML, Tan SH, Chu JJ. Transport and budding at two distinct sites of visible nucleocapsids of West Nile (Sarafend) virus. J Med Virol 2001; 65:758-64. [PMID: 11745942 DOI: 10.1002/jmv.2101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been difficult to detect and visualize the physical nucleocapsid particles during the replication process of the flaviviruses. The use of cryo-immunoelectron microscopy has clearly revealed the capsid proteins and nucleocapsid particles of West Nile (Sarafend) virus (a flavivirus) for the first time. Physical nucleocapsid particles accumulated in large numbers from 8 hr postinfection. Double immunolabeling of the envelope and capsid proteins showed a close association of these structural proteins for most of the replication cycle. By 10 hr postinfection, budding of nucelocapsids from the plasma membrane was very obvious. Although maturation at the plasma membrane was the dominant mode, during late infection, intracellular maturation into large vacuoles was also observed.
Collapse
Affiliation(s)
- M L Ng
- Department of Microbiology, National University of Singapore, Singapore.
| | | | | |
Collapse
|
40
|
Mackenzie JM, Westaway EG. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 2001; 75:10787-99. [PMID: 11602720 PMCID: PMC114660 DOI: 10.1128/jvi.75.22.10787-10799.2001] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.
Collapse
Affiliation(s)
- J M Mackenzie
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
41
|
Abstract
Flaviviruses are among the most important emerging viruses known to man. Most are arboviruses (arthropod-borne) being transmitted by mosquitoes or ticks. They derived from a common ancestor 10-20000 years ago and are evolving rapidly to fill new ecological niches. Many are spreading to new geographical areas and causing increased numbers of infections. Traditionally, three clinical syndromes are recognized: fever-arthralgia-rash, viral haemorrhagic fever, and neurological disease, though for some flaviviruses the disease pattern is changing. Dengue, the most important flavivirus, is transmitted between humans by Aedes mosquitoes. Recent work is elucidating the pathogenesis of its most severe form, dengue haemorrhagic fever. Yellow fever, which has epidemiological similarities to dengue, was under control in the mid-20th century, but is once again increasing. Japanese encephalitis virus is numerically the most important cause of epidemic encephalitis; its geographical area is expanding despite the availability of vaccines. Other mosquito-borne neurotropic flaviviruses with clinical and epidemiological similarities are found across the globe. These include St Louis encephalitis virus, Murray Valley encephalitis virus, and West Nile virus, which recently reached the Americas for the first time. In cooler northern climates ticks are more important vectors. Tick-borne encephalitis virus occurs across large parts of Eastern Europe and the Commonwealth of Independent states. The tick-borne haemorrhagic flaviviruses, Omsk haemorrhagic fever and Kyasanur Forrest disease are localized in small areas.
Collapse
Affiliation(s)
- T Solomon
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery, Fazakerley, Liverpool, L9 7LJ, UK.
| | | |
Collapse
|
42
|
|
43
|
Abstract
The Western blot (WB) assay was used to determine dengue virus antibodies present in human immune sera arising from recent primary and secondary dengue virus infections in Singapore. Cell lysates of dengue-2 virus-infected C6/36 and Vero cells were used. Antibodies directed against structural proteins of dengue-2 virus including envelope (E, gp60/50), capsid-premembrane (C-PrM, gp35), and premembrane (PrM, gp20) were detected, with antibody against envelope protein being most dominant. Similar WB profiles were detected in both primary and secondary dengue virus infections. The reactivity rate of antibodies to dengue-2 virus proteins was higher in infected Vero cell lysate than in infected C6/36 cell lysate, with the exception of antibodies to nonstructural proteins of NS1 and NS3, which were detected predominantly in infected C6/36 cell lysate. More than 75% of "normal" individuals (with no complaint of recent dengue virus infection) examined had low levels of dengue virus antibodies, but all presented with similar WB profiles as patients with recent dengue virus infections. This finding reflects a high seroprevalence of dengue virus infections and the long lasting nature of E, C-PrM, and PrM antibodies. Results from this study indicate that in natural dengue virus infections, native E, C-PrM, and PrM antigens of dengue virus are immunogenic and elicit long-lasting antibodies.
Collapse
Affiliation(s)
- S Y Se-Thoe
- Department of Microbiology, National University of Singapore, Singapore General Hospital, Republic of Singapore
| | | | | |
Collapse
|
44
|
Mackenzie JM, Jones MK, Young PR. Improved membrane preservation of flavivirus-infected cells with cryosectioning. J Virol Methods 1996; 56:67-75. [PMID: 8690769 DOI: 10.1016/0166-0934(95)01916-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ultra-cryomicrotomy and electron microscopy were used to investigate membranous structures in dengue virus-infected mammalian and insect cells. The cryo-sectioned samples displayed ultrastructure comparable to their resin-embedded counterparts with all previously identified virus-induced structures being observed. Structures not previously identified were also found. In particular, membrane-bound packets of vesicles, 100-200 nm in diameter were seen distributed throughout areas of virus-induced membrane proliferation. These packets were clearly distinct from virion arrays. Small smooth membrane vesicles, previously found to contain thread-like enclosures (M.L. Ng, J. Gen. Virol. 68 (1987) 577-582), were frequently observed to contain dense staining material, however the exact nature of this material remains unclear. Virus-induced modification of golgi-like and/or ER membranes was also observed and may represent early events in the generation of the smooth membrane vesicles seen during infection. We suggest that cryosectioning is the method of choice to investigate membrane rearrangement induced by this family of viruses and that a diamond knife and modified staining techniques, as utilised in this report, be employed to enhance morphology and section preservation.
Collapse
Affiliation(s)
- J M Mackenzie
- Sir Albert Sakzewski Virus Research Centre, Royal Childrens' Hospital, Herston, Queensland, Australia.
| | | | | |
Collapse
|
45
|
Ng ML, Howe J, Sreenivasan V, Mulders JJ. Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 1994; 137:303-13. [PMID: 7944952 DOI: 10.1007/bf01309477] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
West Nile (Sarafend) virus was distinctly observed to bud from the plasma membrane rather than mature intracellularly. This has been observed with transmission electron microscopy. Using conventional scanning electron microscopy, budding at the plasma membrane especially at the filopodia was clearly illustrated. Immunogold labelling against the virus envelope protein was also performed to confirm this mode of exit. The gold particles were observed to be located at the sites where virus budding was seen under the field emission scanning electron microscope.
Collapse
Affiliation(s)
- M L Ng
- Department of Microbiology, National University of Singapore
| | | | | | | |
Collapse
|
46
|
Abstract
Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the dengue virus (dengue-1, dengue-2, dengue-3, and dengue-4) exist, with numerous virus strains found worldwide. Molecular cloning methods have led to a greater understanding of the structure of the RNA genome and definition of virus-specific structural and nonstructural proteins. Progress towards producing safe, effective dengue virus vaccines, a goal for over 45 years, has been made.
Collapse
Affiliation(s)
- E A Henchal
- Department of Virus Diseases, Walter Reed Army Institute of Research, Washington 20307-5100
| | | |
Collapse
|
47
|
Ng ML, Corner LC. Detection of some dengue-2 virus antigens in infected cells using immuno-microscopy. Arch Virol 1989; 104:197-208. [PMID: 2650656 DOI: 10.1007/bf01315543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunoelectron microscopy was used to detect the distribution of some dengue-2 virus proteins in infected Vero and Aedes albopictus (C6/36) cells. It was found that the envelope protein (GP 60) was located in clumps on the surface of plasma membrane, and accumulated very little in the infected cytoplasm. However no envelopment of dengue-2 virus nucleocapsids through the plasma membranes was observed. In contrast, the NS 3 (P 67) protein was distributed throughout the whole cytoplasm. No specific association of this protein with the proliferated virus-induced structures was seen. The NS 1 (GP 46) protein showed almost similar distribution as the NS 3 but its quantity appeared to be lower. The NS 3 and NS 1 distribution patterns observed supported the results of immunofluorescent staining but results on E protein were not consistent in both methods.
Collapse
Affiliation(s)
- M L Ng
- Department of Microbiology, National University of Singapore
| | | |
Collapse
|
48
|
Mezencio JM, de Souza W, Fonseca ME, Rebello MA. Replication of Mayaro virus in Aedes albopictus cells: an electron microscopic study. Arch Virol 1989; 104:299-308. [PMID: 2539797 DOI: 10.1007/bf01315551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The replication of Mayaro virus in Aedes albopictus cells, was studied by electron microscopy at various times post-infection. In infected cells we observed the presence of cytoplasmic vesicles containing viral nucleocapsids and mature virus particles but at no time did we detect virus budding into such vacuoles. Budding of virus through plasma membrane was rarely observed. Our results are discussed considering the possibility of the release of virus particles to the extracellular space by exocytosis.
Collapse
Affiliation(s)
- J M Mezencio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
49
|
Markoff L. In vitro processing of dengue virus structural proteins: cleavage of the pre-membrane protein. J Virol 1989; 63:3345-52. [PMID: 2501515 PMCID: PMC250908 DOI: 10.1128/jvi.63.8.3345-3352.1989] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Processing of dengue virus structural proteins was assessed in vitro. RNA transcripts for cell-free translation were prepared from cloned DNA (dengue virus type 4, strain 814669 genome) encoding capsid, pre-membrane (prM), and the first 23 amino acids of envelope (E). Processing of a 33-kilodalton precursor polypeptide encoded by wild-type RNA transcripts occurred only in the presence of added microsomal membranes. Under these conditions, cleavage at the capsid-prM and prM-E sites and glycosylation of prM occurred in association with translocation. Amino acid sequence analysis confirmed that translation initiated at the predicted N terminus of the capsid and that capsid-prM cleavage occurred at the predicted site for the action of signal peptidase following a candidate signal sequence (hydrophobic residues 100 to 113) in the dengue virus precursor. Mutations were introduced into the dengue virus DNA template by site-directed mutagenesis, altering nucleotide sequences encoding the capsid and the candidate signal for prM. The phenotypes of the mutants were deduced by analysis of the products of cell-free translation of the respective RNA transcripts. The resulting observations confirmed that cleavage at the capsid-prM and prM-E sites is effected entirely by signal peptidase and that the candidate signal is required for translocation.
Collapse
Affiliation(s)
- L Markoff
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| |
Collapse
|
50
|
Mason PW. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 1989; 169:354-64. [PMID: 2523178 PMCID: PMC7125691 DOI: 10.1016/0042-6822(89)90161-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1988] [Accepted: 11/28/1988] [Indexed: 01/01/2023]
Abstract
The Japanese encephalitis virus (JE) structural glycoprotein (E) and two nonstructural glycoproteins (NS1 and NS1') were processed differently by JE-infected vertebrate and invertebrate cell lines. All three proteins were released slowly (t1/2 greater than 6 hr) from JE-infected monkey cells (Vero cells). Mosquito cell lines released E at a similar rate (t1/2 greater than 8 hr), while NS1 and NS1' were retained in an undegraded form in the cell layer. The proteolytic processing of the three proteins appeared identical in both cell types, but some differences in N-linked glycosylation were observed. E, NS1, and NS1' found within the infected cells of both types contained high-mannose oligosaccharide groups for more than 8 hr after synthesis. Additional sugar residues were added to the single E protein oligosaccharide group prior to release from Vero cells, while sugar residues were trimmed from the E protein oligosaccharide group prior to release from mosquito cells. The forms of NS1 and NS1' found in the culture fluid of infected Vero cells contained one complex and one high-mannose oligosaccharide. All three glycoproteins released from JE-infected Vero cells were associated with extracellular particles, the virion in the case of E and a low density particle in the case of and NS1' exhibited amphipathic properties in Triton X-114 extraction experiments. Taken together, these results suggest that both the structural (E) and nonstructural (NS1 and NS1') glycoproteins were pathway of the infected Vero cells, assembled into particles, and then released into the extracellular fluid.
Collapse
Affiliation(s)
- P W Mason
- Yale Arbovirus Research Unit, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|