1
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Messa A, Garrine M, Vubil D, Nobela N, Nhampossa T, Acácio S, Tate JE, Parashar U, Weldegebriel G, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic characterization of the rotavirus G3P[8] strain in vaccinated children, reveals possible reassortment events between human and animal strains in Manhiça District, Mozambique. Front Microbiol 2023; 14:1193094. [PMID: 37342557 PMCID: PMC10277737 DOI: 10.3389/fmicb.2023.1193094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023] Open
Abstract
Mozambique introduced the rotavirus vaccine (Rotarix®; GlaxoSmithKline Biologicals, Rixensart, Belgium) in 2015, and since then, the Centro de Investigação em Saúde de Manhiça has been monitoring its impact on rotavirus-associated diarrhea and the trend of circulating strains, where G3P[8] was reported as the predominant strain after the vaccine introduction. Genotype G3 is among the most commonly detected Rotavirus strains in humans and animals, and herein, we report on the whole genome constellation of G3P[8] detected in two children (aged 18 months old) hospitalized with moderate-to-severe diarrhea at the Manhiça District Hospital. The two strains had a typical Wa-like genome constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) and shared 100% nucleotide (nt) and amino acid (aa) identities in 10 gene segments, except for VP6. Phylogenetic analysis demonstrated that genome segments encoding VP7, VP6, VP1, NSP3, and NSP4 of the two strains clustered most closely with porcine, bovine, and equine strains with identities ranging from 86.9-99.9% nt and 97.2-100% aa. Moreover, they consistently formed distinct clusters with some G1P[8], G3P[8], G9P[8], G12P[6], and G12P[8] strains circulating from 2012 to 2019 in Africa (Mozambique, Kenya, Rwanda, and Malawi) and Asia (Japan, China, and India) in genome segments encoding six proteins (VP2, VP3, NSP1-NSP2, NSP5/6). The identification of segments exhibiting the closest relationships with animal strains shows significant diversity of rotavirus and suggests the possible occurrence of reassortment events between human and animal strains. This demonstrates the importance of applying next-generation sequencing to monitor and understand the evolutionary changes of strains and evaluate the impact of vaccines on strain diversity.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Eva D. João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Jason M. Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Malakalinga JJ, Misinzo G, Msalya GM, Shayo MJ, Kazwala RR. Genetic diversity and Genomic analysis of G3P[6] and equine-like G3P[8] in Children Under-five from Southern Highlands and Eastern Tanzania. Acta Trop 2023; 242:106902. [PMID: 36948234 DOI: 10.1016/j.actatropica.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Rotavirus group A genomic characterization is critical for understanding the mechanisms of rotavirus diversity, such as reassortment events and possible interspecies transmission. However, little is known about the genetic diversity and genomic relationship of the rotavirus group A strains circulating in Tanzania. The genetic and genomic relationship of RVA genotypes was investigated in children under the age of five. A total of 169 faecal samples were collected from under-five with diarrhea in Mbeya, Iringa and Morogoro regions of Tanzania. The RVA were screened in children under five with diarrhea using reverse transcription PCR for VP7 and VP4, and the G and P genotypes were determined using Sanger dideoxynucleotide cycle sequencing. Whole-genome sequencing was performed on selected genotypes. The overall RVA rate was 4.7% (8/169). The G genotypes were G3 (7/8) and G6 (1/8) among the 8 RVA positives, while the P genotypes were P[6] (4/8) and P[8] (2), and the other two were untypeable. G3P[6] and G3P[8] were the identified genotype combinations. The genomic analysis reveals that the circulating G3P[8] and G3P[6] isolates from children under the age of five with diarrhea had a DS-1-like genome configuration (I2-R2-C2-M2-Ax-N2-T2-E2-H2). The phylogenic analysis revealed that all 11 segments of G3P[6] were closely related to human G3P[6] identified in neighboring countries such as Uganda, Kenya, and other African countries, implying that G3P[6] strains descended from a common ancestor. Whereas, G3P[8] were closely related to previously identified equine-like G3P[P8] from Kenya, Japan, Thailand, Brazil, and Taiwan, implying that this strain was introduced rather than reassortment events. We discovered amino acid differences at antigenic epitopes and N-linked glycosylation sites between the wild type G3 and P[8] compared to vaccine strains, implying that further research into the impact of these differences on vaccine effectiveness is warranted. The phylogenic analysis of VP7 also identified a bovine-like G6. For the first time in Tanzania, we report the emergence of novel equine-like G3 and bovine-like G6 RVA strains, highlighting the importance of rotavirus genotype monitoring and genomic analysis of representative genotypes.
Collapse
Affiliation(s)
- Joseph J Malakalinga
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania; SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Food and Microbiology Laboratory, Tanzania Bureau of Standards, Ubungo Area, Morogoro Road/Sam Nujoma Road, P.O. Box 9524, Dar es Salaam, Tanzania.
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - George M Msalya
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania
| | - Mariana J Shayo
- Muhimbili University of Health and Allied sciences, Department of Biological and Pre-clinical Studies, PO Box 65001, Dar es Salaam, Tanzania
| | - Rudovick R Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
3
|
Gutierrez MB, de Assis RMS, Arantes I, Fumian TM. Full genotype constellations analysis of unusual DS-1-like G12P[6] and G6P[8] rotavirus strains detected in Brazil, 2019. Virology 2022; 577:74-83. [PMID: 36323046 DOI: 10.1016/j.virol.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Rotavirus A (RVA) is a major cause of acute gastroenteritis (AGE) in children worldwide. We report unusual RVA G12P[6] and G6P[8] strains isolated from fecal samples from Brazilian children hospitalized for AGE. The characterized RVA have genome segments backbone: G12-P[6]/ G6-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of DS-1-like genogroup. Our study describes the first identification of G6P[8], a DS-1-like genogroup strain. Nucleotide analysis of VP7 and VP4 genes revealed that all G12 Brazilian strains clustered into the sub-lineages IIIB, mostly associated with P[6] lineage I. Additionally, our G6 lineage I strains were closely related to German G6 genotypes, bound with P[8] lineage III, differing from both vaccine strains. The comparative sequence analysis of our strains with vaccine strains revealed amino acid substitutions located in immunodominant regions of VP7 and VP4 proteins. Continuous monitoring of RVA genotypes is essential to evaluate the impact of vaccination on the dynamic nature of RVA evolution.
Collapse
Affiliation(s)
- Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ighor Arantes
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
4
|
Prevalence and genomic characterization of rotavirus group A genotypes in piglets from in southern highlands and eastern Tanzania. Heliyon 2022; 8:e11750. [DOI: 10.1016/j.heliyon.2022.e11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
|
5
|
Mitra S, Lo M, Saha R, Deb AK, Debnath F, Miyoshi S, Dutta S, Chawla‐Sarkar M. Epidemiology of major entero‐pathogenic viruses and genetic characterization of Group A rotaviruses among children (≤5 years) with acute gastroenteritis in eastern India, 2018‐2020. J Appl Microbiol 2022; 133:758-783. [DOI: 10.1111/jam.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suvrotoa Mitra
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Mahadeb Lo
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Ritubrita Saha
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Alok K. Deb
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Falguni Debnath
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shin‐Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
- Collaborative Research Centre of Okayama University for Infectious Disease ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Mamta Chawla‐Sarkar
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| |
Collapse
|
6
|
Mwangi PN, Mogotsi MT, Seheri ML, Mphahlele MJ, Peenze I, Esona MD, Kumwenda B, Steele AD, Kirkwood CD, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Whole Genome In-Silico Analysis of South African G1P[8] Rotavirus Strains Before and After Vaccine Introduction Over A Period of 14 Years. Vaccines (Basel) 2020; 8:E609. [PMID: 33066615 PMCID: PMC7712154 DOI: 10.3390/vaccines8040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/03/2022] Open
Abstract
Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections in children under five years of age, globally. A total of 103 stool samples previously characterized as G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7 were under positive selective pressure. Except for the N147D substitution in the antigenic site of eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However, continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine period remains imperative.
Collapse
Affiliation(s)
- Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - M. Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
- South African Medical Research Council, Pretoria 0001, South Africa
| | - Ina Peenze
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - Mathew D. Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa; (M.L.S.); (M.J.M.); (I.P.); (M.D.E.)
| | - Benjamin Kumwenda
- College of Medicine, Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Professions, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi;
| | - A. Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, P.O. Box 23350, Seattle, WA 98109, USA; (A.D.S.); (C.D.K.)
| | - Carl D. Kirkwood
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, P.O. Box 23350, Seattle, WA 98109, USA; (A.D.S.); (C.D.K.)
| | - Valantine N. Ndze
- Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon;
| | - Francis E. Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG581, Legon, Ghana;
| | - Khuzwayo C. Jere
- Center for Global Vaccine Research, Institute of Infection, Liverpool L697BE, UK;
- Veterinary and Ecological Sciences, University of Liverpool, Liverpool L697BE, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Program, Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre 312225, Malawi
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (P.N.M.); (M.T.M.)
| |
Collapse
|
7
|
Sadiq A, Bostan N. Comparative Analysis of G1P[8] Rotaviruses Identified Prior to Vaccine Implementation in Pakistan With Rotarix™ and RotaTeq™ Vaccine Strains. Front Immunol 2020; 11:562282. [PMID: 33133073 PMCID: PMC7562811 DOI: 10.3389/fimmu.2020.562282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023] Open
Abstract
Group A rotavirus (RVA) is the leading cause of severe childhood diarrhea globally, even with all effective interventions, particularly in developing countries. Among the diverse genotypes of RVA, G1P[8] is a common genotype that has continued to pervade around the world, including Pakistan. Two universally accepted rotavirus vaccines-Rotarix™ and RotaTeq™ contain the genotype G1P[8]. The current work was aimed at identifying differences between antigenic epitopes of Pakistan’s G1P[8] strains and those of the two licensed vaccines. We sequenced 6 G1P[8] rotavirus strains previously reported in Rawalpindi, Islamabad, Pakistan in 2015 and 2016 for their outer capsid genes (VP7 and VP4). Phylogenetic analysis was then conducted in order to classify their specific lineages and to detect their association with strains isolated throughout world. Compared with the Rotarix™ and RotaTeq™ vaccine strains (G1-lineage II, P[8]-lineage III), our study G1-lineage I, P[8]-lineage IV strains showed 3 and 5 variations in the VP7 epitopes, respectively, and 13 and 11 variations in the VP4 epitopes, respectively. The G1 lineage II strains showed no single amino acid change compared to Rotarix™ (lineage II), but exhibited changes at 2 positions compared to RotaTeq™ (lineage III). So, this has been proposed that these G1 strains exist in our natural setting, or that they may have been introduced in Pakistan from other countries of the world. The distinct P[8]-lineage IV (OP354-like) strains showed twelve and thirteen amino acid variations, with Rotarix™ and RotaTeq™ (lineages II and III) strains, respectively. Such findings have shown that the VP4-P[8] component of the G1P[8] strains circulating in Pakistan differs considerably from that of the vaccine viruses compared to that of the VP7-G1. To monitor the long-term effects of vaccines on the emergence of G1P[8] strains with different lineages, routine and successful monitoring of these strains will be crucial.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| |
Collapse
|
8
|
Uncovering the First Atypical DS-1-like G1P[8] Rotavirus Strains That Circulated during Pre-Rotavirus Vaccine Introduction Era in South Africa. Pathogens 2020; 9:pathogens9050391. [PMID: 32443835 PMCID: PMC7281366 DOI: 10.3390/pathogens9050391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Emergence of DS-1-like G1P[8] group A rotavirus (RVA) strains during post-rotavirus vaccination period has recently been reported in several countries. This study demonstrates, for the first time, rare atypical DS-1-like G1P[8] RVA strains that circulated in 2008 during pre-vaccine era in South Africa. Rotavirus positive samples were subjected to whole-genome sequencing. Two G1P[8] strains (RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1971/2008/G1P[8] and RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1973/2008/G1P[8]) possessed a DS-1-like genome constellation background (I2-R2-C2-M2-A2-N2-T2-E2-H2). The outer VP4 and VP7 capsid genes of the two South African G1P[8] strains had the highest nucleotide (amino acid) nt (aa) identities of 99.6–99.9% (99.1–100%) with the VP4 and the VP7 genes of a locally circulating South African strain, RVA/Human-wt/ZAF/MRC-DPRU1039/2008/G1P[8]. All the internal backbone genes (VP1–VP3, VP6, and NSP1-NSP5) had the highest nt (aa) identities with cognate internal genes of another locally circulating South African strain, RVA/Human-wt/ZAF/MRC-DPRU2344/2008/G2P[6]. The two study strains emerged through reassortment mechanism involving locally circulating South African strains, as they were distinctly unrelated to other reported atypical G1P[8] strains. The identification of these G1P[8] double-gene reassortants during the pre-vaccination period strongly supports natural RVA evolutionary mechanisms of the RVA genome. There is a need to maintain long-term whole-genome surveillance to monitor such atypical strains.
Collapse
|
9
|
Harastani HH, Reslan L, Sabra A, Ali Z, Hammadi M, Ghanem S, Hajar F, Matar GM, Dbaibo GS, Zaraket H. Genetic Diversity of Human Rotavirus A Among Hospitalized Children Under-5 Years in Lebanon. Front Immunol 2020; 11:317. [PMID: 32174920 PMCID: PMC7054381 DOI: 10.3389/fimmu.2020.00317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 12/02/2022] Open
Abstract
Human rotavirus remains a major cause of gastroenteritis worldwide despite the availability of effective vaccines. In this study, we investigated the genetic diversity of rotaviruses circulating in Lebanon. We genetically characterized the VP4 and VP7 genes encoding the outer capsid proteins of 132 rotavirus-associated gastroenteritis specimens, previously identified in hospitalized children (<5 years) from 2011 to 2013 in Lebanon. These included 43 vaccine-breakthrough specimens and the remainder were from non-vaccinated subjects. Phylogenetic analysis of VP4 and VP7 genes revealed distinct clustering compared to the vaccine strains, and several substitutions were identified in the antigenic epitopes of Lebanese specimens. No unique changes were identified in the breakthrough specimens compared to non-breakthroughs that could explain the occurrence of infection in vaccinated children. Further, we report the emergence of a rare P[8] OP354-like strain with a G9 VP7 in Lebanon, possessing high genetic variability in their VP4 compared to vaccine strains. Therefore, human rotavirus strains circulating in Lebanon and globally have accumulated numerous substitutions in their antigenic sites compared to those currently used in the licensed vaccines. The successful spread and continued genetic drift of these strains over time might undermine the effectiveness of the vaccines. The effect of such changes in the antigenic sites on vaccine efficacy remains to be assessed.
Collapse
Affiliation(s)
- Houda H Harastani
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Lina Reslan
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sabra
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Zainab Ali
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Moza Hammadi
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Soha Ghanem
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Hajar
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan M Matar
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan S Dbaibo
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Qi R, Zhu J, Miao Q, Tang A, Dong D, Wang X, Liu G. Bioinformatics analysis of capsid protein of different subtypes rabbit hemorrhagic disease virus. BMC Vet Res 2019; 15:423. [PMID: 31775738 PMCID: PMC6882040 DOI: 10.1186/s12917-019-2161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites. Results Phylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It’s interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially related to antigenic variation in RHDV. Conclusion The genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover, compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new types of RHDV and the mechanisms of genetic variation in RHDV.
Collapse
Affiliation(s)
- Ruibin Qi
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Jie Zhu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Qiuhong Miao
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Aoxing Tang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Dandan Dong
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Xiaoxue Wang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Guangqing Liu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China.
| |
Collapse
|
11
|
Carossino M, Barrandeguy ME, Li Y, Parreño V, Janes J, Loynachan AT, Balasuriya UBR. Detection, molecular characterization and phylogenetic analysis of G3P[12] and G14P[12] equine rotavirus strains co-circulating in central Kentucky. Virus Res 2018; 255:39-54. [PMID: 29864502 DOI: 10.1016/j.virusres.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022]
Abstract
Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and a major health problem to the equine breeding industry worldwide. The G3P[12] and G14P[12] ERVA genotypes are the most prevalent in foals with diarrhea. Control and prevention strategies include vaccination of pregnant mares with an inactivated vaccine containing a prototype ERVA G3P[12] strain with limited and controversial field efficacy. Here, we performed the molecular characterization of ERVA strains circulating in central Kentucky using fecal samples collected during the 2017 foaling season. The data indicated for the first time that the G14P[12] genotype is predominant in this region in contrast to a previous serotyping study where only G3 genotype strains were reported. Overall, analysis of antigenic sites in the VP7 protein demonstrated the presence of several amino acid substitutions in the epitopes exposed on the surface including a non-conserved N-linked glycosylation site (D123N) in G14P[12] strains, while changes in antigenic sites of VP8* were minor. Also, we report the successful isolation of three ERVA G14P[12] strains which presented a high identity with other G14 strains from around the world. These may constitute ideal reference strains to comparatively study the molecular biology of G3 and G14 strains and perform vaccine efficacy studies following heterologous challenge in the future.
Collapse
Affiliation(s)
- Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Maria E Barrandeguy
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Yanqiu Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina
| | - Jennifer Janes
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Emergence of Double- and Triple-Gene Reassortant G1P[8] Rotaviruses Possessing a DS-1-Like Backbone after Rotavirus Vaccine Introduction in Malawi. J Virol 2018; 92:JVI.01246-17. [PMID: 29142125 PMCID: PMC5774894 DOI: 10.1128/jvi.01246-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023] Open
Abstract
To combat the high burden of rotavirus gastroenteritis, multiple African countries have introduced rotavirus vaccines into their childhood immunization programs. Malawi incorporated a G1P[8] rotavirus vaccine (Rotarix) into its immunization schedule in 2012. Utilizing a surveillance platform of hospitalized rotavirus gastroenteritis cases, we examined the phylodynamics of G1P[8] rotavirus strains that circulated in Malawi before (1998 to 2012) and after (2013 to 2014) vaccine introduction. Analysis of whole genomes obtained through next-generation sequencing revealed that all randomly selected prevaccine G1P[8] strains sequenced (n = 32) possessed a Wa-like genetic constellation, whereas postvaccine G1P[8] strains (n = 18) had a DS-1-like constellation. Phylodynamic analyses indicated that postvaccine G1P[8] strains emerged through reassortment events between human Wa- and DS-1-like rotaviruses that circulated in Malawi from the 1990s and hence were classified as atypical DS-1-like reassortants. The time to the most recent common ancestor for G1P[8] strains was from 1981 to 1994; their evolutionary rates ranged from 9.7 × 10−4 to 4.1 × 10−3 nucleotide substitutions/site/year. Three distinct G1P[8] lineages chronologically replaced each other between 1998 and 2014. Genetic drift was the likely driver for lineage turnover in 2005, whereas replacement in 2013 was due to reassortment. Amino acid substitution within the outer glycoprotein VP7 of G1P[8] strains had no impact on the structural conformation of the antigenic regions, suggesting that it is unlikely that they would affect recognition by vaccine-induced neutralizing antibodies. While the emergence of DS-1-like G1P[8] rotavirus reassortants in Malawi was therefore likely due to natural genotype variation, vaccine effectiveness against such strains needs careful evaluation. IMPORTANCE The error-prone RNA-dependent RNA polymerase and the segmented RNA genome predispose rotaviruses to genetic mutation and genome reassortment, respectively. These evolutionary mechanisms generate novel strains and have the potential to lead to the emergence of vaccine escape mutants. While multiple African countries have introduced a rotavirus vaccine, there are few data describing the evolution of rotaviruses that circulated before and after vaccine introduction. We report the emergence of atypical DS-1-like G1P[8] strains during the postvaccine era in Malawi. Three distinct G1P[8] lineages circulated chronologically from 1998 to 2014; mutation and reassortment drove lineage turnover in 2005 and 2013, respectively. Amino acid substitutions within the outer capsid VP7 glycoprotein did not affect the structural conformation of mapped antigenic sites, suggesting a limited effect on the recognition of G1-specific vaccine-derived antibodies. The genes that constitute the remaining genetic backbone may play important roles in immune evasion, and vaccine effectiveness against such atypical strains needs careful evaluation.
Collapse
|
13
|
Mouna BHF, Hamida-Rebaï MB, Heylen E, Zeller M, Moussa A, Kacem S, Van Ranst M, Matthijnssens J, Trabelsi A. Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8(∗) antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. INFECTION GENETICS AND EVOLUTION 2013; 18:132-44. [PMID: 23684631 DOI: 10.1016/j.meegid.2013.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Group A rotaviruses (RVA) are the leading cause of severe gastroenteritis in infants and young children worldwide. Due to their epidemiological complexity, it is important to compare the genetic characteristics of vaccine strains with the RVA strains circulating before the introduction of the vaccine in the Tunisian immunization program. In the present study, the nucleotide sequences of VP7 and VP8∗ (n=31), the main targets for neutralizing antibodies, were determined. Comparison of antigenic epitopes of 11 G1P[8], 12 G2P[4], 4 G3P[8], 2 G4P[8], 1 G6P[9] and 1 G12P[8] RVA strains circulating in Tunisia from 2006 to 2011 with the RVA strains present in licensed vaccines showed that multiple amino acid differences existed in or near putative neutralizing domains of VP7 and VP8∗. The Tunisian G3 RVA strains were found to possess a potential extra N-linked glycosylation site. The Tunisian G4 RVA were closely related to the G4 vaccine strain in RotaTeq, belonging to the same lineage, but the alignment of their VP7 amino acids revealed an insertion of an asparagine residue at position 76 which is close to a glycosylation site (aa 69-71). Despite several differences detected between Tunisian and vaccine strains, which may affect binding of neutralizing antibodies, both vaccines are known to protect against the vast majority of the circulating genotypes, providing an indication of the high vaccine efficiency that can be expected in a future rotavirus immunization program.
Collapse
Affiliation(s)
- Ben Hadj Fredj Mouna
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abrantes J, van der Loo W, Le Pendu J, Esteves PJ. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res 2012; 43:12. [PMID: 22325049 PMCID: PMC3331820 DOI: 10.1186/1297-9716-43-12] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
- INSERM, U892, Université de Nantes, 44007 Nantes, France
| | - Wessel van der Loo
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
| | | | - Pedro J Esteves
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
- CITS, Centro de Investigacao em Tecnologias de Saude, CESPU, Gandra, Portugal
| |
Collapse
|
15
|
Choi NW, Estes MK, Langridge WHR. Synthesis and assembly of a cholera toxin B subunit-rotavirus VP7 fusion protein in transgenic potato. Mol Biotechnol 2007; 31:193-202. [PMID: 16230769 DOI: 10.1385/mb:31:3:193] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A gene encoding VP7, the outer capsid protein of simian rotavirus SA11, was fused to the carboxyl terminus of the cholera toxin B subunit gene. A plant expression vector containing the fusion gene under control of the mannopine synthase P2 promoter was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB::VP7 fusion gene was detected in the genomic DNA of transformed potato leaf cells by polymerase chain reaction (PCR) amplification methods. Immunoblot analysis of transformed potato tuber tissue extracts showed that synthesis and assembly of the CTB::VP7 fusion protein into oligomers of pentameric size occurred in the transformed plant cells. The binding of CTB::VP7 fusion protein pentamers to sialo-sugar containing GM1 ganglioside receptors on the intestinal epithelial cell membrane was quantified by enzyme-linked immunosorbent assay (ELISA). The ELISA results showed that the CTB::VP7 fusion protein made up approx 0.01% of the total soluble tuber protein. Synthesis and assembly of CTB::VP7 monomers into biologically active pentamers in transformed potato tubers demonstrates the feasibility of using edible plants as a mucosal vaccine for the production and delivery system for rotavirus capsid protein antigens.
Collapse
Affiliation(s)
- Nak-Won Choi
- Center for Molecular Biology and Gene Therapy, Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
16
|
Seng EK, Fang Q, Sin YM, Lam TJ. Molecular characterization of a major outer capsid protein encoded by the Threadfin aquareovirus (TFV) gene segment 10 (S10). Arch Virol 2005; 150:2021-36. [PMID: 15931464 DOI: 10.1007/s00705-005-0550-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 04/04/2005] [Indexed: 11/24/2022]
Abstract
Genome segment 10 (S10) of Threadfin aquareovirus (TFV) was cloned, sequenced, analyzed and found to be 987 bp long encoding a protein of 298 aa with a predicted molecular mass of 32.0 kDa. The TFV S10 gene possesses terminal motifs, (5' GTTTTA and ATTCATC 3') which are also conserved in the S6 and S11 TFV gene segments. Sequence comparison revealed that the TFV S10 gene was similar to the Striped bass reovirus (SBR) VP7 outer capsid protein (OCP). A conserved putative zinc-finger motif, CCHC, present in the mammalian reovirus (MRV) delta3 protein, was identified in TFV and other aquareovirus VP7 protein. Phylogenetic analysis of the TFV VP7 protein indicated that TFV is closely related to SBR and Chum salmon reovirus (CSV) and possibly belong to the same species Aquareovirus A as SBR and CSV. The TFV VP7 protein was expressed in E. coli, purified and injected into mice. Serum specific antibodies were generated, however, the serum showed weak neutralizing activity. In contrast, co-incubation of this serum with another serum obtained from mice immunized with another OCP encoded by the TFV S6 gene segment resulted in a highly elevated antibody neutralization titer.
Collapse
Affiliation(s)
- E K Seng
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
17
|
Martella V, Ciarlet M, Baselga R, Arista S, Elia G, Lorusso E, Bányai K, Terio V, Madio A, Ruggeri FM, Falcone E, Camero M, Decaro N, Buonavoglia C. Sequence analysis of the VP7 and VP4 genes identifies a novel VP7 gene allele of porcine rotaviruses, sharing a common evolutionary origin with human G2 rotaviruses. Virology 2005; 337:111-23. [PMID: 15914225 DOI: 10.1016/j.virol.2005.03.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/01/2005] [Accepted: 03/25/2005] [Indexed: 11/26/2022]
Abstract
During an epidemiological survey encompassing several porcine herds in Saragoza, Spain, the VP7 and VP4 of a rotavirus-positive sample, 34461-4, could not be predicted by using multiple sets of G- and P-type-specific primers. Sequence analysis of the VP7 gene revealed a low amino acid (aa) identity with those of well-established G serotypes, ranging between 58.33% and 88.88%, with the highest identity being to human G2 rotaviruses. Analysis of the VP4 gene revealed a P[23] VP4 specificity, as its VP8* aa sequence was 95.9% identical to that of the P14[23],G5 porcine strain A34, while analysis of the VP6 indicated a genogroup I, that is predictive of subgroup I specificity. Analysis of the 10th and 11th RNA segments revealed close identity to strains of porcine and human origin, respectively. The relatively low overall aa sequence conservation (<89% aa) to G2 human rotaviruses, the lack of N-glycosylation sites that are usually highly conserved in G2 rotaviruses, and the presence of several amino acid substitutions in the major antigenic hypervariable regions hampered an unambiguous classification of the porcine strain 34461-4 as G2 serotype on the basis of sequence analysis alone. The identification of a borderline, G2-like, VP7 gene allele in pigs, while reinforcing the hypotheses of a tight relationship in the evolution of human and animal rotaviruses, provides additional evidence for the wide genetic/antigenic diversity of group A rotaviruses.
Collapse
Affiliation(s)
- V Martella
- Dipartimento di Sanità e Benessere Animale, Facoltà di Medicina Veterinaria di Bari, Valenzano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lai HC, Lin SJ, Lin HR, Ku CS, Wang L, Yang CC. Phylogenetic analyses of human rotavirus in central Taiwan in 1996, 2001 and 2002. J Clin Virol 2005; 32:199-217. [PMID: 15722025 DOI: 10.1016/j.jcv.2004.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/05/2004] [Accepted: 07/21/2004] [Indexed: 12/01/2022]
Abstract
BACKGROUND Rotavirus epidemiology information is required for gastroenteritis disease control and prevention. Information gathered about the serotype distribution of rotaviruses isolated in Taiwan is of crucial significance, before a licensed rotavirus vaccine is introduced. OBJECTIVES The purpose of the present study is to investigate the epidemiological diversity of rotaviruses in Taiwan. STUDY DESIGN A total of 51 stool samples taken from cases of acute gastroenteritis were collected from three teaching hospitals in central Taiwan in 1996, 2001 and 2002. The samples were subjected to RT-PCR tests of VP7 gene of the human rotavirus group A, B, C. RESULTS A total of 16 stool samples were detected positive by RT-PCR and 10 were sequence analyzed and classified into G1, G3, and G9 types. Compared with other HRV strains: the sequences of CS96-40 of G1 are similar to MVD9816 (identity rate 97.15% and 96.09%, respectively, from Uruguay); the sequences of CS02-01 of G3 are similar to 98-B31 (identity rate 98.93% and 98.72%, respectively, from Japan); the sequences of CS01-05, CS01-06, CS01-07, CS01-09, CS01-13, CS02-02, CS02-03, CS02-04 are very similar to other established G9 rotaviruses sequences (identity rate 96.85-99.88%), especially between CS02-04 and SP2737 (from Japan) with an identity rate of 99.88% and 100% nucleotide and amino acid, respectively. Except for CS01-06 strain, it is VR3, but not VR5, VR7 or VR8, that found to be the most frequent mutated amino acid regions of VP7 in these strains. CONCLUSIONS Our findings are the first to document the high prevalence of G9 HRV strains in Taiwan, and suggest the re-emergence of G3 strains in central Taiwan since 1991. Epidemiological surveys carried out in this study suggest genotype shifts from type G1 before 1996, to G9 in 2001 and 2002 and the re-emergence of G3 type in 2002.
Collapse
Affiliation(s)
- Hsin-Chuan Lai
- Department of Pediatric, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
19
|
Page NA, Steele AD. Antigenic and genetic characterization of serotype G2 human rotavirus strains from South Africa from 1984 to 1998. J Med Virol 2004; 72:320-7. [PMID: 14695677 DOI: 10.1002/jmv.10571] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Within South Africa, cyclic peaks of serotype G2P[4] rotavirus infection have been observed and these strains were prevalent in some locations. To examine the cyclic phenomenon of serotype G2 rotaviruses, historical stool collections from South Africa spanning 15 years were screened for G2 strains. Subgroup (VP6) ELISA, polyacrylamide gel electrophoresis (PAGE), and P genotyping were performed on 43 G2 strains to investigate the associated DS-1 genogroup characteristics. Antigenic variation of the gene encoding the major neutralization glycoprotein (VP7) was also investigated using G2-specific monoclonal antibodies. In addition, the VP7 gene of 14 serotype G2 strains was sequenced to examine genetic variation. Serotype G2 strains from South Africa displayed a 10 year cyclic pattern with major epidemics occurring in 1987 and 1997. Serotype G2 strains were also found co-dominant with G(1) strains in 1984, 1990, and 1993. The G2 strains from the major epidemics appeared to have emerged from community strains in a manner similar to that suggested for G(1) strains The serotype G2 strains displayed subgroup I specificity and short electropherotypes characteristic of DS-1 genogroup rotavirus strains but appeared to differ in the VP4 gene. Genetic analyses revealed three major serotype G2 lineages, i.e., strains isolated prior to 1987, strains isolated between 1988 and 1994, and strains isolated from 1995. The use of monoclonal antibodies and PCR primers designed against older G2 strains has resulted in the failure to serotype G2 strains circulating currently.
Collapse
Affiliation(s)
- N A Page
- MRC/MEDUNSA Diarrhoeal Pathogens Research Unit, Medical University of Southern Africa, MEDUNSA, South Africa.
| | | |
Collapse
|
20
|
Björklund JE, Karlsson T, Magnusson CG. N-glycosylation influences epitope expression and receptor binding structures in human IgE. Mol Immunol 1999; 36:213-21. [PMID: 10403487 DOI: 10.1016/s0161-5890(99)00036-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although human IgE is relatively rich in carbohydrates, there are few studies concerning their structural and functional importance. The low serum concentration of IgE has limited carbohydrate characterisation to a few IgE myeloma proteins. Four to six of the seven potential N-glycosylation sites in the constant region of the epsilon chain seem occupied together with some residual microheterogeneity. We have used a panel of 28 anti-Cepsilon2, 7 anti-Cepsilon3 and 18 anti-Cepsilon4 domain-specific anti-IgE mAbs, and rFcepsilonRIalpha to examine the effect of N-glycosylation on epitope expression of human IgE. Myeloma proteins IgE(DES)-kappa, IgE(ND)-lambda and IgE(UD)-kappa as well as polyclonal IgE were deglycosylated with PNGF and/or sialidase and tested in different ELISA. In all ELISA approaches, the reactivity of most domain-specific anti-IgE mAbs was independent of the glycosylation state of IgE(DES), except for one-third of the anti-Cepsilon2 mAbs. These mAbs reacted better with deglycosylated IgE(DES) in the order of treatment PNGF/sialidase > PNGF > or = sialidase > buffer control. In sharp contrast, the reactivity of IgE(DES) with rFcepsilonRIalpha was not influenced by sialidase but markedly reduced following PNGF or PNGF/sialidase treatment. These findings were neither myeloma restricted nor caused by aggregation, since monomeric IgE demonstrated the same reactivity pattern. Thus. N-glycosylation seems to influence both structure and function of human IgE. The oligosaccharides modulate epitope expression, mainly in the Cepsilon2-domain, as revealed by a subset of mAbs. They also promote subtle changes in the Cepsilon3-domain, leading to a reduced FcepsilonRIalpha binding. These findings suggest physiological implications of carbohydrates in human IgE.
Collapse
Affiliation(s)
- J E Björklund
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Kirkwood CD, Coulson BS, Bishop RF. G3P2 rotaviruses causing diarrhoeal disease in neonates differ in VP4, VP7 and NSP4 sequence from G3P2 strains causing asymptomatic neonatal infection. Arch Virol 1996; 141:1661-76. [PMID: 8893789 DOI: 10.1007/bf01718290] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During longitudinal epidemiological studies of rotavirus infections in children in Melbourne, Australia human G3P2 rotavirus strains causing asymptomatic or symptomatic infections have been identified. Eleven strains (AS strains) associated with asymptomatic infection of newborn babies from 1974-1984, and five strains (S strains) associated with symptomatic infection of newborn babies (4) or a 22 week old infant (1) during 1980-1986 were studied. The entire nucleotide sequences of genes coding for VP4, VP7, NSP4 and VP6 were derived for representative AS and S strains. The nucleotide sequences of neutralization epitope regions present on the outer capsid proteins VP4 and VP7 (regions C and F) showed extensive conservation of nucleotide and deduced amino acid sequence in all strains. Minor variations were observed over the 12 year period in VP7 epitope regions A and B in some strains. Specific conserved amino acids differences between the asymptomatic and symptomatic strains were observed in the genes encoding VP4 at aa133 and 303 (asparagine or threonine) and 380 (serine or isoleucine), VP7 at aa27 (threonine or isoleucine), aa29 (isoleucine or threonine), aa42 (valine or alanine) and aa238 (asparagine or aspartic acid/serine) and NSP4 at aa135 (isoleucine or valine). No amino acid changes were identified in gene 6. The observed amino acid differences occurred in proteins that have been implicated in virulence, and correlate with differences in clinical symptoms of infants infected with these strains. These results permit speculation about the genetic basis for virulence of human strains.
Collapse
Affiliation(s)
- C D Kirkwood
- Department of Gastroenterology, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
22
|
Ciarlet M, Ludert JE, Liprandi F. Comparative amino acid sequence analysis of the major outer capsid protein (VP7) of porcine rotaviruses with G3 and G5 serotype specificities isolated in Venezuela and Argentina. Arch Virol 1995; 140:437-51. [PMID: 7733818 DOI: 10.1007/bf01718422] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Seven porcine group A rotavirus strains isolated in Venezuela were shown to be antigenically related to serotype G3 (five strains) or to serotype G5 (two strains), whereas two strains isolated in Argentina were classified as serotype G5. The serological classification of eight of these strains was confirmed by sequence analysis of the gene encoding the VP7 glycoprotein. A high degree of homology was observed among strains belonging to the same G serotype, although some variations in the serotype-specific regions were detected among different strains. Comparison with the published VP7 amino acid sequences of serotype G3 indicated that most porcine rotavirus strains are more closely related to each other and to human rotavirus strains than to rotavirus strains isolated from other species. Amino acid sequence comparison among serotype G5 porcine strains revealed that Venezuelan porcine isolates were more closely related to the American strain OSU, while the Argentinian strains had a higher similarity to the Australian strain TRF-41. This report confirms the worldwide distribution of these G serotypes among the porcine population.
Collapse
Affiliation(s)
- M Ciarlet
- Lab. Biología de Virus, Instituto Venezolano de Investigaciones Científicas, Caracas
| | | | | |
Collapse
|
23
|
Ciarlet M, Reggeti F, Piña CI, Liprandi F. Equine rotaviruses with G14 serotype specificity circulate among venezuelan horses. J Clin Microbiol 1994; 32:2609-12. [PMID: 7814511 PMCID: PMC264117 DOI: 10.1128/jcm.32.10.2609-2612.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two group A rotavirus strains isolated from diarrheic foals in Venezuela were classified as belonging to G14 serotype by cross-neutralization tests and on the basis of the homology of the sequenced VP7 gene. This report confirms that rotavirus strains of G14 serotype specificity circulate among equine populations.
Collapse
Affiliation(s)
- M Ciarlet
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas
| | | | | | | |
Collapse
|
24
|
Zhou YJ, Burns JW, Morita Y, Tanaka T, Estes MK. Localization of rotavirus VP4 neutralization epitopes involved in antibody-induced conformational changes of virus structure. J Virol 1994; 68:3955-64. [PMID: 7514681 PMCID: PMC236901 DOI: 10.1128/jvi.68.6.3955-3964.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously characterized three neutralization-positive epitopes (NP1 [1a and 1b], NP2, and NP3) and three neutralization-negative epitopes on the simian rotavirus SA11 VP4 with 13 monoclonal antibodies (MAbs). Conformational changes occurred as a result of the binding of NP1 MAbs to the SA11 spike VP4, and enhanced binding of all neutralization-negative MAbs was observed when NP1 MAbs bound VP4 in a competitive MAb capture enzyme-linked immunosorbent assay. To further understand the structure and function of VP4, we have continued studies with these MAbs. Electron microscopic and sucrose gradient analyses of SA11-MAb complexes showed that triple-layered viral particles disassembled following treatment with NP1b MAbs 10G6 and 7G6 but not following treatment with NP1a MAb 9F6, NP2 MAb 2G4, and NP3 MAb 23. Virus infectivity was reduced approximately 3 to 5 logs by the NP1b MAbs. These results suggest that NP1b MAb neutralization occurs by a novel mechanism. We selected four neutralization escape mutants of SA11 with these VP4 MAbs and characterized them by using plaque reduction neutralization assays, hemagglutination inhibition assays, and an antigen capture enzyme-linked immunosorbent assay. These analyses support the previous assignment of the NP1a, NP1b, NP2, and NP3 MAbs into separate epitopes and confirmed that the viruses were truly neutralization escape mutants. Nucleotide sequence analyses found 1 amino acid (aa) substitution in VP8* of VP4 at (i) aa 136 for NP1a MAb mutant 9F6R, (ii) aa 180 and 183 for NP1b MAb mutants 7G6R and 10G6R, respectively, and (iii) aa 194 for NP3 MAb mutant 23R. The NP1b MAb mutants showed an unexpected enhanced binding with heterologous nonneutralization MAb to VP7 compared with parental SA11 and the other mutants. Taken together, these results suggest that the NP1b epitope is a critical site for VP4 and VP7 interactions and for virus stability.
Collapse
Affiliation(s)
- Y J Zhou
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Y Hoshino
- Epidemiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
26
|
Affiliation(s)
- U Desselberger
- Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Palombo EA, Bishop RF, Cotton RG. Sequence conservation within neutralization epitope regions of VP7 and VP4 proteins of human serotype G4 rotavirus isolates. Arch Virol 1993; 133:323-34. [PMID: 7504915 DOI: 10.1007/bf01313772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serotype G4 rotavirus isolates causing four separate epidemics of severe diarrhoea in young children in Melbourne, Australia (from 1974-1990) were investigated for sequence variation in genes encoding the outer capsid proteins, VP4 and VP7. Complementary DNA of the gene encoding the major outer capsid neutralization antigen, VP7, of eighteen isolates was synthesized and amplified by coupled reverse transcription and polymerase chain reaction. Direct sequencing methods were used to derive the deduced amino acid sequences of the immunodominant A, B, and C neutralization epitope regions of the protein. Limited variation was observed among all isolates. A threonine to asparagine change in region A, at amino acid 96, was associated with altered binding of serotype G4-specific neutralizing monoclonal antibodies. The VP8* region of the outer capsid protein VP4 (containing the proposed serotype-specific neutralization epitopes) was investigated in eight isolates. This region was found to highly conserved both within Melbourne isolates and in relation to the standard strains Wa, P, and VA70. The characteristic periodicity of occurrence of serotype G4 isolates causing severe diarrhoea in Melbourne children is unlikely to be due to changes in neutralization epitopes located on the outer capsid proteins, VP7 or VP4.
Collapse
Affiliation(s)
- E A Palombo
- Department of Gastroenterology, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
28
|
Nagesha HS, Huang J, Holmes IH. A variant serotype G3 rotavirus isolated from an unusually severe outbreak of diarrhoea in piglets. J Med Virol 1992; 38:79-85. [PMID: 1334131 DOI: 10.1002/jmv.1890380202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
About 80% of faecal samples from severe outbreak of porcine diarrhoea (scours) were positive for rotavirus. Rotavirus positive samples were analyzed for their antigenic properties and amino acid sequences of the glycoprotein genes. These viruses could not be assigned to any serotypes using serotyping monoclonal antibodies (MAbs) developed for porcine rotaviruses [Nagesha and Holmes: Journal of Medical Virology 35:206-211, 1991b]. When two such viruses were isolated in cell culture and analyzed by neutralization tests using hyperimmune sera they showed only one way antigenic relation with both human and porcine viruses belonging to serotype G3. In addition none of the serotyping MAbs neutralized these two virus isolates. There was no base variation between VP7 genes of faecal and cell culture isolates. Predicted amino acid sequences of the VP7 gene showed marked epitope variation from other porcine type G3 isolates with amino acid substitutions and an additional glycosylation site at residue 238. This antigenic variation seen in rotaviruses appears similar to that of influenza viruses undergoing antigenic drift.
Collapse
Affiliation(s)
- H S Nagesha
- School of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Qiu Z, Tufaro F, Gillam S. The influence of N-linked glycosylation on the antigenicity and immunogenicity of rubella virus E1 glycoprotein. Virology 1992; 190:876-81. [PMID: 1381541 DOI: 10.1016/0042-6822(92)90929-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rubella virus E1 glycoprotein contains three functional N-linked glycosylation sites. The role of N-linked glycosylation on the antigenicity and immunogenicity of E1 glycoprotein was studied using vaccinia recombinants expressing E1 glycosylation mutants. Expressed E1 glycosylation mutant proteins were recognized by a panel of E1-specific monoclonal antibodies in radioimmunoprecipitation, immunofluorescence, and immunoblotting, indicating that carbohydrate side chains on E1 are not involved in the constitution of epitopes recognized by these monoclonal antibodies. This observation was further supported by the fact that removal of oligosaccharides on E1 by glycosidase digestion did not significantly change the antigenicity of E1. All the glycosylation mutants were capable of eliciting anti-RV E1 antibodies. The single glycosylation mutants (G1, G2, and G3), but not the double mutant (G23) or the triple mutant (G123), were found to be capable of inducing virus neutralizing antibodies. Among the single glycosylation mutants, only G2 and G3 were active in producing hemagglutination inhibition antibodies in mice. Our findings suggest that although carbohydrate on E1 is not directly involved in the antigenic structures of E1, it is important in maintaining proper protein folding and stable conformation for expression of immunological epitopes on E1.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Research Centre, Vancouver, Canada
| | | | | |
Collapse
|
30
|
Chen DY, Estes MK, Ramig RF. Specific interactions between rotavirus outer capsid proteins VP4 and VP7 determine expression of a cross-reactive, neutralizing VP4-specific epitope. J Virol 1992; 66:432-9. [PMID: 1370090 PMCID: PMC238303 DOI: 10.1128/jvi.66.1.432-439.1992] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported that the expression of rotavirus phenotypes by reassortants was affected by recipient genetic background and proposed specific interactions between the outer capsid proteins VP4 and VP7 as the basis for the phenotypic effects (D. Chen, J. W. Burns, M. K. Estes, and R. F. Ramig, Proc. Natl. Acad. Sci. USA 86:3743-3747, 1989). A neutralizing, cross-reactive VP4-specific monoclonal antibody (MAb), 2G4, was used to probe the protein-protein interactions. The VP4 specificity of 2G4 was confirmed by immunoblot analysis. MAb 2G4 reacted with both standard (SA11-C13) and variant rotavirus SA11 (SA11-4F) but did not react with bovine rotavirus B223 as determined by plaque reduction neutralization (PRN) and enzyme-linked immunosorbent assay (ELISA). When a panel of SA11-4F/B223 and SA11-Cl3/B223 reassortants in purified or crude lysate form that had been grown in the presence or absence of trypsin was analyzed with MAb 2G4 by PRN and ELISA, the results with some reassortants were unexpected. That is, MAb 2G4 reacted with VP4 of SA11 parental origin (4F or C13) when it was assembled into capsids with the homologous SA11 VP7 but failed to react with VP4 of SA11 assembled into capsids with heterologous B223 VP7. Conversely, MAb 2G4 failed to react with VP4 of B223 parental origin when it was assembled into capsids with homologous B223 VP7 but did react with B223 VP4 assembled into capsids with the heterologous SA11 VP7. Similar reactivity was observed when 2G4 was used to immunoprecipitate purified double-shelled virions. When soluble unassembled viral proteins were analyzed by ELISA, the 2G4 reactive pattern was as predicted from the parental origin of VP4. That is, 2G4 reacted with the soluble VP4 of reassortants having VP4 from SA11-Cl3 or SA11-4F and failed to react with VP4 of B223 origin, regardless of the origin of VP7. PRN and ELISA results obtained with nonglycosylated viruses revealed that the unexpected reactivity of 2G4 with virus particles was not the result of differential glycosylation of VP7 and epitope masking. These results indicate that the 2G4 epitope existed in the soluble form of VP4 encoded by SA11-Cl3 or SA11-4F but not in soluble B223 VP4. On the other hand, in assembled virions, the presentation of the 2G4 epitope on VP4 was unexpected in some reassortants and was affected by the specific interactions between VP4 and VP7 of heterologous parental origin.
Collapse
Affiliation(s)
- D Y Chen
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
31
|
Huang JA, Nagesha HS, Snodgrass DR, Holmes IH. Molecular and serological analyses of two bovine rotaviruses (B-11 and B-60) causing calf scours in Australia. J Clin Microbiol 1992; 30:85-92. [PMID: 1310336 PMCID: PMC265001 DOI: 10.1128/jcm.30.1.85-92.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fecal specimens from 78 calves involved in outbreaks of calf diarrhea which occurred in three farms in Victoria, Australia, in 1988 were analyzed for rotaviruses. Thirty-eight samples were positive for group A virus antigen by enzyme-linked immunosorbent assay, and 20 of these contained viral double-stranded RNAs that could be detected by polyacrylamide gel electrophoresis. Two major electropherotypes could be observed, and a representative isolate of each electropherotype (isolates B-11 and B-60) was successfully adapted to grow in MA104 cells. Sequencing of the VP7 genes directly from RNA transcripts of fecal and cell culture-adapted viruses demonstrated that no base changes occurred in this gene upon adaptation to growth in MA104 cells. Sequencing also revealed that the VP7 protein of B-60 was closely related to G serotype 6 (G6) strains, whereas the B-11 sequence was significantly different from all previously published sequences except the recently reported VP7 sequences of bovine isolates 61A and B223, particularly across the antigenic regions A, B, and C. The other strains most closely related to B-11 by VP7 amino acid sequence analysis were G4 porcine strains BMI-1 and BEN-144 and G8 human strain 69M. Serotyping of B-11 and B-60 gave results that were in good agreement with the sequencing data. Hyperimmune typing sera clearly identified B-60 as a member of G6, whereas the B-11 strain reacted to moderate titers only with antisera to some G10 strains. Antiserum raised against B-11 neutralized some strains of G10 cross-reacted with porcine G4 type isolates BMI-1 and BEN-144 but not with other G4 strains or with rotaviruses of other mammalian G serotypes. Northern blot hybridization showed that B-11 was closely related to the recently reported bovine G10 strain B223, and they both possessed a similar segment 4 that was different from that of either UK bovine or NCDV rotavirus.
Collapse
Affiliation(s)
- J A Huang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
32
|
Coulson BS, Kirkwood C. Relation of VP7 amino acid sequence to monoclonal antibody neutralization of rotavirus and rotavirus monotype. J Virol 1991; 65:5968-74. [PMID: 1656083 PMCID: PMC250261 DOI: 10.1128/jvi.65.11.5968-5974.1991] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The neutralization epitopes of the VP7 of human rotavirus RV-4 were studied by using five neutralizing mouse monoclonal antibodies to select virus variants resistant to neutralization by each of the antibodies. Antibody resistance patterns and sequence analysis of the RV-4 variants revealed that at least four sites on VP7, located at amino acids 94 (region A), 147 to 148 (region B), 213 (region C), and 291, are involved in neutralization of the human G1 rotavirus RV-4. The A-region site elicited antibody cross-reactive between G types and showed species-restricted immunodominance not related to carbohydrate attachment. The monotype 1b rotavirus M37 lacked this site. The B region contained strain-specific and cross-reactive sites, absent in monotype 1c rotaviruses. The C-region site was present in all G1 rotaviruses tested. Monotype 1a rotaviruses contained all these sites of neutralization. Virus monotype and sensitivity to monoclonal antibody neutralization usually related to the presence of a particular amino acid(s) at or next to the positions at which the mutations were selected in the virus variants.
Collapse
Affiliation(s)
- B S Coulson
- Department of Gastroenterology, Royal Children's Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
33
|
O'Donnell CA, Chan WL. A comparison of T cell responses to glycoprotein B (gB-1) of herpes simplex virus type 1 and its non-glycosylated precursor protein, pgB-1. Clin Exp Immunol 1991; 86:30-6. [PMID: 1655317 PMCID: PMC1554163 DOI: 10.1111/j.1365-2249.1991.tb05769.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of non-glycosylated precursor glycoprotein B (pgB) to induce T cell responses in herpes simplex virus (HSV) infected mice was compared with fully glycosylated glycoprotein B (gB) and with whole virus. pgB was as effective as gB in priming for virus- and glycoprotein-specific T cells. pgB could also re-stimulate virus or glycoprotein primed cells in vitro as efficiently as gB. In addition, priming with pgB protected mice against a lethal challenge with HSV type 1 (HSV-1) and could induce the early in vivo production of IL-2 and IL-3 in infected mice. In all of these responses, pgB was as effective as gB. Thus, the carbohydrate side chains on gB do not appear to be necessary for T cell recognition of this protein.
Collapse
Affiliation(s)
- C A O'Donnell
- Department of Microbiology, UMDS, Medical School, Guy's Hospital, London, England, UK
| | | |
Collapse
|
34
|
Shaw RD, Groene WS, Mackow ER, Merchant AA, Cheng EH. VP4-specific intestinal antibody response to rotavirus in a murine model of heterotypic infection. J Virol 1991; 65:3052-9. [PMID: 1709695 PMCID: PMC240960 DOI: 10.1128/jvi.65.6.3052-3059.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have adapted a murine model of heterotypic rotavirus infection for the purpose of evaluating the intestinal antibody response to an infection that mimics human vaccination. Neonatal mice were infected with the rhesus rotavirus (RRV). The enzyme-linked immunospot assay was used in order to avoid common artifacts in the quantitation of intestinal immune responses inherent in measurements of luminal or serum immunoglobulins and to obtain easily quantifiable data in a flexible and convenient format. Functionally active lymphocytes were harvested from the spleen, small intestinal lamina propria, Peyer's patches, and mesenteric lymph nodes and processed into single-cell suspensions. Antibody-secreting cells (ASC) were quantitated from 5 to 50 days after infection for total, RRV-specific, baculovirus-expressed VP4-specific, and single-shell RRV-specific ASC secreting either immunoglobulin G (IgG), IgM, or IgA. The response to VP4 constituted less than 1.5% of the total virus-specific response, which was located almost exclusively in the gut and was 90% IgA. Intestinal ASC were directed overwhelmingly toward proteins incorporated in the single-shell particle, predominantly VP2 and VP6. We conclude that the antibody response to VP4, thought to be the site of the important neutralization sites conserved among several rotavirus serotypes, is an extremely small portion of the overall antibody response in the intestinal tract.
Collapse
Affiliation(s)
- R D Shaw
- Department of Medicine, Northport Veterans Administration Medical Center, New York 11768
| | | | | | | | | |
Collapse
|
35
|
Abstract
The VP7 and VP4 genes of seven antigenic mutants of simian rotavirus SA11 4fM (serotype 3) selected after 39 passages in the presence of SA11 4fM hyperimmune antiserum, were sequenced. Nucleotide sequence analysis indicated the following. (i) Twice as many amino acid substitutions occurred in the VP7 protein than in VP4, which has a molecular weight twice that of VP7. (ii) Most amino acid changes that occurred clustered in six variable regions of VP7 and in two variable regions of VP4; these variable regions may represent immunodominant epitopes. (iii) Most amino acid substitutions that occurred in VP7 and VP4 of these mutants were also observed in antigenic mutants selected with neutralizing monoclonal antibodies (NMAbs); however, some amino acid substitutions occurred that were not selected for NMAbs. (iv) On VP7, some of the neutralization epitopes appeared to be interrelated because amino acid substitution in one site affected binding of specific NMAbs to other sites, while other neutralization epitopes on VP7 appeared to be independent, in that amino acid substitution in one site did not affect the binding of NMAbs to another distant site.
Collapse
Affiliation(s)
- M Gorziglia
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
36
|
Abstract
Porcine rotavirus MDR-13, which on original isolation showed a two-way antigenic relationship with human rotavirus RV-3, shows VP7 relationships with serotype G5 as well as G3 viruses upon gene reassortment. Analysis of porcine MDR-13 and the MD-UK reassortant revealed marked nucleotide and amino acid similarity of VP7 genes of these viruses with those of both serotype G3 and G5 viruses. Evolution of such a strain, possibly by sequential mutations in the VP7 gene, is discussed.
Collapse
Affiliation(s)
- H S Nagesha
- School of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
37
|
Muggeridge MI, Wu TT, Johnson DC, Glorioso JC, Eisenberg RJ, Cohen GH. Antigenic and functional analysis of a neutralization site of HSV-1 glycoprotein D. Virology 1990; 174:375-87. [PMID: 2154881 DOI: 10.1016/0042-6822(90)90091-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus glycoprotein D is a component of the virion envelope and appears to be involved in attachment, penetration, and cell fusion. Monoclonal antibodies (MAbs) against this protein can be arranged in groups, on the basis of a number of biological and biochemical properties. Group I antibodies are type-common, have high complement-independent neutralization titers, recognize discontinuous (conformational) epitopes, and block each other in a binding assay. The sum of their epitopes constitutes antigenic site I of gD. Using a panel of neutralization-resistant mutants, we previously found that group I MAbs can be divided into two subgroups, Ia and Ib, such that mutations selected with Ia antibodies have little or no effect on binding and neutralization by Ib antibodies, and vice versa. Antigenic site I therefore consists of two parts, Ia and Ib. We have now identified the point mutations which prevent neutralization. Two Ib MAbs (DL11 and 4S) selected a Ser to Asn change at residue 140; this alteration creates a new N-linked glycosylation site, which is used. A third Ib MAb (D2) selected a Gln to Leu change at 132. The mutation selected by the Ia MAb HD1 (Ser to Asn at residue 216) is identical to that selected by MAb LP2, another Ia antibody. By using oligonucleotide-directed mutagenesis, we have produced gD genes with combinations of the above mutations. Attempts to recombine these genes into the virus genome were unsuccessful, suggesting that the combinations are lethal. This was confirmed by a complementation assay which measures the ability of gD transiently expressed in transfected Vero cells to rescue the production of infectious virus by the gD-minus mutant F-gD beta.
Collapse
Affiliation(s)
- M I Muggeridge
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | |
Collapse
|
38
|
Estay A, Farias G, Soler M, Kuznar J. Further analysis on the structural proteins of infectious pancreatic necrosis virus. Virus Res 1990; 15:85-95. [PMID: 2107647 DOI: 10.1016/0168-1702(90)90015-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structural proteins of infectious pancreatic necrosis virus (IPNV) have been analyzed. Two-dimensional gel electrophoresis showed that IPNV proteins are slightly acidic with apparent pIs ranging from 5.8 to 6.6. To identify the IPNV surface-located proteins, purified virus was labelled either with fluorescein isothiocyanate (FITC) or with Na 125I. After analysis by SDS-PAGE, only the major viral protein, VP2, was labelled by either procedure. The accessibility of VP2 to these reagents suggests that this protein is externally located. In addition, using Concanavalin A conjugated with FITC and IPNV labelling with 3H-mannose, evidence is present that VP2 contains carbohydrate residues.
Collapse
Affiliation(s)
- A Estay
- Laboratorio de Bioquimica, Facultad de Medicina, Universidad de Valparaiso, Chile
| | | | | | | |
Collapse
|
39
|
Abstract
Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly by mediating fusion with the cell membrane) and VP7 (a glycoprotein), show more similarities with those of other viruses such as the orthomyxoviruses, paramyxoviruses, and alphaviruses. Rotavirus morphogenesis is a unique process, during which immature subviral particles bud through the membrane of the endoplasmic reticulum (ER). During this process, transiently enveloped particles form, the outer capsid proteins are assembled onto particles, and mature particles accumulate in the lumen of the ER. Two ER-specific viral glycoproteins are involved in virus maturation, and these glycoproteins have been shown to be useful models for studying protein targeting and retention in the ER and for studying mechanisms of virus budding. New ideas and approaches to understanding how each gene functions to replicate and assemble the segmented viral genome have emerged from knowledge of the primary structure of rotavirus genes and their proteins and from knowledge of the properties of domains on individual proteins. Localization of type-specific and cross-reactive neutralizing epitopes on the outer capsid proteins is becoming increasingly useful in dissecting the protective immune response, including evaluation of vaccine trials, with the practical possibility of enhancing the production of new, more effective vaccines. Finally, future analyses with recently characterized immunologic and gene probes and new animal models can be expected to provide a basic understanding of what regulates the primary interactions of these viruses with the gastrointestinal tract and the subsequent responses of infected hosts.
Collapse
|
40
|
Huang J, Nagesha HS, Dyall-Smith ML, Holmes IH. Comparative sequence analysis of VP7 genes from five Australian porcine rotaviruses. Arch Virol 1989; 109:173-83. [PMID: 2558633 DOI: 10.1007/bf01311079] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes coding for the rotavirus major neutralizing protein, VP7, from 5 Australian porcine rotaviruses representing glycoprotein (i.e. VP7 or G) serotypes 3, 4, and 5, were sequenced. The genes were each 1,062 nucleotides long with two long open reading frames for proteins of either 326 or 297 amino acids and containing only one potential glycosylation site at amino acid position 69. When compared to the corresponding genes of human viruses, the porcine genes showed very high nucleotide and deduced amino acid homology. Sequence comparison also revealed that Australian porcine rotaviruses of G serotype 4 and 5 were similar to the corresponding porcine strains found in the U.S.A. and U.K., while G serotype 3 and 4 porcine rotaviruses were closely related to human G serotype 3 strain, RV-3 and serotype 4 strain, ST-3, respectively. These Australian rotavirus VP7 sequences were found to correlate with serological data we reported previously.
Collapse
Affiliation(s)
- J Huang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
41
|
Nishikawa K, Hoshino Y, Taniguchi K, Green KY, Greenberg HB, Kapikian AZ, Chanock RM, Gorziglia M. Rotavirus VP7 neutralization epitopes of serotype 3 strains. Virology 1989; 171:503-15. [PMID: 2474892 DOI: 10.1016/0042-6822(89)90620-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence analysis of the gene encoding the major neutralization glycoprotein (VP7) was performed on 27 human and animal rotavirus strains of serotype 3 in order to examine genetic variation within strains of identical serotype. Comparisons of the deduced amino acid sequences of the VP7s showed overall sequence identities of 85% or higher. A higher degree of overall VP7 sequence similarity was observed among strains from the same animal species when compared to strains from different animal species, suggesting that there are species-specific sequences in the VP7 protein. Alignment of the amino acid sequences demonstrated that amino acid sequence divergence among serotype 3 strains from different species was located primarily in previously established VP7 serotype-specific regions where genetic variation was identified among strains of different serotype. These regions were highly conserved among serotype 3 strains derived from the same species. The varying reactivities of three anti-VP7 monoclonal antibodies with the 27 strains was consistent with the occurrence of antigenic variation among serotype 3 strains. Moreover the reactivity of monoclonal antibodies correlated with the amino acid sequence found in two serotype-specific regions (VR5 and VR8). A computer-derived predicted phylogenetic tree suggests that rotavirus strains from different animal species belonging to serotype 3 are more closely related to each other than to rotavirus strains of different serotypes.
Collapse
Affiliation(s)
- K Nishikawa
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nagesha HS, Brown LE, Holmes IH. Neutralizing monoclonal antibodies against three serotypes of porcine rotavirus. J Virol 1989; 63:3545-9. [PMID: 2545925 PMCID: PMC250936 DOI: 10.1128/jvi.63.8.3545-3549.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.
Collapse
Affiliation(s)
- H S Nagesha
- School of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
43
|
Hum CP, Dyall-Smith ML, Holmes IH. The VP7 gene of a new G serotype of human rotavirus (B37) is similar to G3 proteins in the antigenic c region. Virology 1989; 170:55-61. [PMID: 2541556 DOI: 10.1016/0042-6822(89)90351-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human rotavirus isolate B37 has a characteristic "super-short" RNA electropherotype and has been shown to represent a new VP7 serotype (M. J. Albert, L. E. Unicomb, and R. F. Bishop, 1987, J. Clin. Microbiol. 25, 183-185). The VP7 gene was cloned, and its nucleotide and predicted amino acid sequences were compared to other published VP7 gene sequences. Consistent with the serological evidence, two major antigenic regions of the B37 VP7 (i.e., regions A and B) differ in sequence from those of other G serotypes. Unexpectedly, the C antigenic region shows close similarity to G3 rotaviruses, but we were unable to detect a serological relationship using serotype 3 monoclonal antibodies.
Collapse
Affiliation(s)
- C P Hum
- School of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
44
|
Burns JW, Chen D, Estes MK, Ramig RF. Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4. Virology 1989; 169:427-35. [PMID: 2539699 DOI: 10.1016/0042-6822(89)90168-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have studied a variant virus isolated from a stock of SA11 virus (H. G. Pereira, R. S. Azeredo, A. M. Fialho, and M. N. P. Vidal, 1984, J. Gen. Virol. 65, 815-818). This virus, designated 4F, was initially identified by its faster electrophoretic mobility for genome segment 4. The variant was analyzed to determine if the altered electrophoretic mobility of genome segment 4 could be correlated with phenotypic changes. Comparison of our standard laboratory SA11 virus (clone 3) with the 4F variant showed the following: (i) The 4F variant possesses a viral hemagglutinin (VP4) with a higher apparent molecular weight than clone 3. (ii) The 4F variant produces large plaques when assayed in vitro, as compared to clone 3. (iii) The 4F variant produces plaques in the absence of proteolytic enzymes, whereas clone 3 does not. (iv) The 4F variant reacts with serotype-specific neutralizing monoclonal antibodies to VP7, but fails to react with several neutralizing anti-VP4 monoclonal antibodies generated to SA11 clone 3. (v) The 4F variant grows to a higher titer and is more stable than clone 3. (vi) The 4F variant produces a VP4 that appears to be more susceptible to cleavage by trypsin than is the VP4 of clone 3. Further analyses with the 4F variant may lead to an understanding of the molecular basis for these altered phenotypes that appear to be related, at least in part, to the product of genome segment 4.
Collapse
Affiliation(s)
- J W Burns
- Department of Virology and Epidemiology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
45
|
Matsui SM, Mackow ER, Greenberg HB. Molecular determinant of rotavirus neutralization and protection. Adv Virus Res 1989; 36:181-214. [PMID: 2472045 DOI: 10.1016/s0065-3527(08)60585-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S M Matsui
- Department of Medicine, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
46
|
Shaw RD, Mackow ER, Dyall-Smith ML, Lazdins I, Holmes IH, Greenberg HB. Serotypic analysis of VP3 and VP7 neutralization escape mutants of rhesus rotavirus. J Virol 1988; 62:3509-12. [PMID: 2457117 PMCID: PMC253479 DOI: 10.1128/jvi.62.9.3509-3512.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neutralization escape mutants of simian rotaviruses (rhesus rotavirus and SA11) were tested in hemagglutination inhibition and neutralization assays against hyperimmune and infection sera to determine if mutation in an immunodominant epitope could enable neutralization escape. An SA11 mutant with a new glycosylation site at amino acid 211 of VP7 was shown to escape neutralization by hyperimmune but not infection sera.
Collapse
Affiliation(s)
- R D Shaw
- Department of Medicine, Stanford University School of Medicine, California
| | | | | | | | | | | |
Collapse
|
47
|
Mackow ER, Shaw RD, Matsui SM, Vo PT, Benfield DA, Greenberg HB. Characterization of homotypic and heterotypic VP7 neutralization sites of rhesus rotavirus. Virology 1988; 165:511-7. [PMID: 2457279 DOI: 10.1016/0042-6822(88)90595-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gene 9 nucleotide sequence was determined for rhesus rotavirus and each of 14 viral variants selected for their resistance to neutralizing monoclonal antibodies. Each variant contains a single gene 9, VP7, mutation which permits viral growth in the presence of the antibody. Variant mutations were identified in two distinct neutralization regions. Region A was identified by monoclonal antibodies that are involved in both serotype-specific and serotype cross-reactive neutralization. Region C was identified by serotype-specific neutralizing monoclonal antibodies. Heterotypic neutralizing monoclonal antibody 57-8 selected variants with a mutation at amino acid 94 in the A region, the same amino acid location selected by serotype-specific monoclonal antibodies. Monoclonal antibody 3 selected a VP7 mutation at amino acid 99 resulting in additional N-linked glycosylation of the VP7 protein. Despite the added VP7 glycosylation, variant v3 was not broadly resistant to additional VP7-specific neutralizing monoclonal antibodies.
Collapse
Affiliation(s)
- E R Mackow
- Department of Medicine, Stanford University, California 94305
| | | | | | | | | | | |
Collapse
|
48
|
Gerna G, Sarasini A, di Matteo A, Parea M, Orsolini P, Battaglia M. Identification of two subtypes of serotype 4 human rotavirus by using VP7-specific neutralizing monoclonal antibodies. J Clin Microbiol 1988; 26:1388-92. [PMID: 2842373 PMCID: PMC266615 DOI: 10.1128/jcm.26.7.1388-1392.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two distinct subtypes of human rotavirus serotype 4 were identified by using neutralizing monoclonal antibodies directed to the major outer capsid glycoprotein, VP7, of strains ST3 (subtype 4A) and VA70 (subtype 4B). Specimens containing serotype 4 rotavirus, obtained from different countries, were examined for subtyping by using solid-phase immune electron microscopy, enzyme-linked immunosorbent assay, and, for cell culture-adapted strains, neutralization assay. All 59 human rotavirus strains identified as serotype 4 by using animal antisera were classified into either subtype by monoclonal antibodies. This suggests that the antigenic difference between the two subtypes is a consequence of critical variations within the immunodominant serotype 4-specific neutralization site of rotavirus VP7. Subtype 4A (ST3-like) strains were predominant and were detected in stools from patients with gastroenteritis, as well as from healthy infants and young children.
Collapse
Affiliation(s)
- G Gerna
- Institute of Infectious Diseases, University of Pavia, IRCCS Policlinco San Matteo, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Nagesha HS, Holmes IH. New porcine rotavirus serotype antigenically related to human rotavirus serotype 3. J Clin Microbiol 1988; 26:171-4. [PMID: 2830302 PMCID: PMC266245 DOI: 10.1128/jcm.26.2.171-174.1988] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Serotyping of porcine rotaviruses isolated in MA104 cells from Australian piglets with diarrhea showed that two strains belonged to serotype 3 and one strain was antigenically similar to the OSU strain of porcine rotavirus (serotype 5). In addition, neutralizing antibodies to human rotavirus serotype 4 (ST-3 strain) were detected in serum samples from sows in one area, and so it seems probable that porcine rotaviruses of at least three serotypes occur in Australia.
Collapse
Affiliation(s)
- H S Nagesha
- School of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|