1
|
Wijnen K, Genzel L, van der Meij J. Rodent maze studies: from following simple rules to complex map learning. Brain Struct Funct 2024; 229:823-841. [PMID: 38488865 PMCID: PMC11004052 DOI: 10.1007/s00429-024-02771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
More than 100 years since the first maze designed for rodent research, researchers now have the choice of a variety of mazes that come in many different shapes and sizes. Still old designs get modified and new designs are introduced to fit new research questions. Yet, which maze is the most optimal to use or which training paradigm should be applied, remains up for debate. In this review, we not only provide a historical overview of maze designs and usages in rodent learning and memory research, but also discuss the possible navigational strategies the animals can use to solve each maze. Furthermore, we summarize the different phases of learning that take place when a maze is used as the experimental task. At last, we delve into how training and maze design can affect what the rodents are actually learning in a spatial task.
Collapse
Affiliation(s)
- Kjell Wijnen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Maaß E, Miersch L, Pfuhl G, Hanke FD. A harbour seal (Phoca vitulina) can learn geometrical relationships between landmarks. J Exp Biol 2022; 225:285956. [PMID: 36448922 DOI: 10.1242/jeb.244544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
Marine mammals travel the world's oceans. Some species regularly return to specific places to breathe, haul-out or breed. However, the mechanisms they use to return are unknown. Theoretically, landmarks could mediate the localisation of these places. Occasionally, it might be beneficial or even required to localise places using geometrical information provided by landmarks such as to apply a 'middle rule'. Here, we trained a harbour seal to find its goal in the middle of numerous vertically and horizontally orientated two-landmark arrays. During testing, the seal was confronted with unfamiliar two-landmark arrays. After having successfully learnt to respond to the midpoint of multiple two-landmark arrays, the seal directly and consistently followed a 'middle rule' during testing. It chose the midpoint of the two-landmark arrays with high precision. Harbour seals with the ability to localise goals based on geometrical information would be able to home in on places even from unknown positions relative to goal-defining features. Altogether, the results obtained with our harbour seal individual in the present and a previous study, examining the basis of landmark orientation, provide evidence that this seal can use landmark information very flexibly. Depending on context, this flexibility is adaptive to an environment in which the information content can vary over time.
Collapse
Affiliation(s)
- Eric Maaß
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Lars Miersch
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Gerit Pfuhl
- Norwegian University of Science and Technology, Postbox 8900 Torgarden, 7491 Trondheim, Norway
| | - Frederike D Hanke
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
4
|
Baratti G, Potrich D, Lee SA, Morandi-Raikova A, Sovrano VA. The Geometric World of Fishes: A Synthesis on Spatial Reorientation in Teleosts. Animals (Basel) 2022; 12:881. [PMID: 35405870 PMCID: PMC8997125 DOI: 10.3390/ani12070881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fishes navigate through underwater environments with remarkable spatial precision and memory. Freshwater and seawater species make use of several orientation strategies for adaptative behavior that is on par with terrestrial organisms, and research on cognitive mapping and landmark use in fish have shown that relational and associative spatial learning guide goal-directed navigation not only in terrestrial but also in aquatic habitats. In the past thirty years, researchers explored spatial cognition in fishes in relation to the use of environmental geometry, perhaps because of the scientific value to compare them with land-dwelling animals. Geometric navigation involves the encoding of macrostructural characteristics of space, which are based on the Euclidean concepts of "points", "surfaces", and "boundaries". The current review aims to inspect the extant literature on navigation by geometry in fishes, emphasizing both the recruitment of visual/extra-visual strategies and the nature of the behavioral task on orientation performance.
Collapse
Affiliation(s)
- Greta Baratti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Davide Potrich
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea;
| | - Anastasia Morandi-Raikova
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Valeria Anna Sovrano
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
5
|
Maaß E, Hanke FD. How harbour seals (Phoca vitulina) encode goals relative to landmarks. J Exp Biol 2022; 225:274185. [DOI: 10.1242/jeb.243870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
Visual landmarks are defined as object with prominent shape or size that distinguish themselves from the background. With the help of landmarks, animals can orient themselves in their natural environment. Yet, the way in which landmarks are perceived and encoded has previously only been described in insects, fish, birds, reptilians and terrestrial mammals. The present study aimed to provide insight into how a marine mammal, the harbour seal, is encoding goals relative to landmarks. In our expansion test, three harbour seals were trained to find a goal inside an array of landmarks. After diagonal, horizontal or vertical expansion of the landmark array, the search behaviour displayed by the animals was documented and analyzed regarding the underlying encoding strategy. The harbour seals mainly encoded directional vector information from landmarks and did neither search arbitrarily around a landmark nor used a rule-based approach. Depending on the number of landmarks available within the array, the search behaviour of some harbor seals changed, indicating flexibility in landmark-based search. Our results present first insight in how a semi-aquatic predator could encode landmark information when swimming along the coastline in search for a goal-location.
Collapse
Affiliation(s)
- Eric Maaß
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Frederike D. Hanke
- University of Rostock, Institute for Biosciences, Neuroethology, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
6
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
7
|
Navigation with two landmarks relatively far from a goal in rats (Rattus norvegicus): The role of landmark salience. LEARNING AND MOTIVATION 2021. [DOI: 10.1016/j.lmot.2021.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Buckley MG, Austen JM, Myles LAM, Smith S, Ihssen N, Lew AR, McGregor A. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems. Cognition 2021; 214:104802. [PMID: 34225248 DOI: 10.1016/j.cognition.2021.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
Some theories of spatial learning predict that associative rules apply under only limited circumstances. For example, learning based on a boundary has been claimed to be immune to cue competition effects because boundary information is the basis for the formation of a cognitive map, whilst landmark learning does not involve cognitive mapping. This is referred to as the cue type hypothesis. However, it has also been claimed that cue stability is a prerequisite for the formation of a cognitive map, meaning that whichever cue type was perceived as stable would enter a cognitive map and thus be immune to cue competition, while unstable cues will be subject to cue competition, regardless of cue type. In experiments 1 and 2 we manipulated the stability of boundary and landmark cues when learning the location of two hidden goals. One goal location was constant with respect to the boundary, and the other constant with respect to the landmark cues. For both cue types, the presence of distal orientation cues provided directional information. For half the participants the landmark cues were unstable relative to the boundary and orientation cues, whereas for the remainder of the participants the boundary was unstable relative to landmarks and orientation cues. In a second stage of training, all cues remained stable so that both goal locations could be learned with respect to both landmark and boundary information. According to the cue type hypothesis, boundary information should block learning about landmarks regardless of cue stability. According to the cue stability hypothesis, however, landmarks should block learning about the boundary when the landmarks appear stable relative to the boundary. Regardless of cue type or stability the results showed reciprocal blocking, contrary to both formulations of incidental cognitive mapping. Experiment 3 established that the results of Experiments 1 and 2 could not be explained in terms of difficulty in learning certain locations with respect to different cue types. In a final experiment, following training in which both landmarks and boundary cues signalled two goal locations, a new goal location was established with respect to the landmark cues, before testing with the boundary, which had never been used to define the new goal location. The results of this novel test of the interaction between boundary and landmark cues indicated that new learning with respect to the landmark had a profound effect on navigation with respect to the boundary, counter to the predictions of incidental cognitive mapping of boundaries.
Collapse
Affiliation(s)
- Matthew G Buckley
- Department of Psychology, Durham University, UK; School of Psychology, Aston University, UK.
| | | | | | - Shamus Smith
- School of Electrical Engineering and Computing, University of Newcastle, Australia
| | | | - Adina R Lew
- Department of Psychology, Lancaster University, UK
| | | |
Collapse
|
9
|
Andreychev AV, Kiyaykina OS. Homing in the Forest Dormouse (Dryomys nitedula, Rodentia, Gliridae). BIOL BULL+ 2021. [DOI: 10.1134/s1062359020090022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Middle identification for rhesus monkeys is influenced by number but not extent. Sci Rep 2020; 10:17402. [PMID: 33060813 PMCID: PMC7562912 DOI: 10.1038/s41598-020-74533-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Abstract concept learning provides a fundamental building block for many cognitive functions in humans. Here we address whether rhesus monkeys (Macaca mulatta) can learn the abstract concept of “middle” in a series of objects. First, we trained monkeys to select the middle dot in a horizontal series of three dots presented on a touchscreen. Monkeys maintained a preference to choose the middle dot despite changes in the appearance, location, and spacing of the horizontal series of dots. They maintained high performance when the color, shape and the length of the stimuli were new, indicating that their responses did not depend upon the particular appearance of the array items. Next, we asked whether monkeys would generalize the middle concept to a 7 dot series. Although accuracy decreased when the number of dots was increased, monkeys continued to preferentially select the middle dot. Our results demonstrate that rhesus macaques can learn to use a middle concept for a discrete set of items.
Collapse
|
11
|
Ferreiro DN, Amaro D, Schmidtke D, Sobolev A, Gundi P, Belliveau L, Sirota A, Grothe B, Pecka M. Sensory Island Task (SIT): A New Behavioral Paradigm to Study Sensory Perception and Neural Processing in Freely Moving Animals. Front Behav Neurosci 2020; 14:576154. [PMID: 33100981 PMCID: PMC7546252 DOI: 10.3389/fnbeh.2020.576154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena (“target island”), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-target” islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of General Psychology and Education, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana Amaro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrey Sobolev
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Gundi
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lucile Belliveau
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anton Sirota
- Faculty of Medicine, Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Pecka
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
Negen J, Bou Ali L, Chere B, Roome HE, Park Y, Nardini M. Coding Locations Relative to One or Many Landmarks in Childhood. PLoS Comput Biol 2019; 15:e1007380. [PMID: 31658253 PMCID: PMC6816551 DOI: 10.1371/journal.pcbi.1007380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
Cognitive development studies how information processing in the brain changes over the course of development. A key part of this question is how information is represented and stored in memory. This study examined allocentric (world-based) spatial memory, an important cognitive tool for planning routes and interacting with the space around us. This is typically theorized to use multiple landmarks all at once whenever it operates. In contrast, here we show that allocentric spatial memory frequently operates over a limited spatial window, much less than the full proximal scene, for children between 3.5 and 8.5 years old. The use of multiple landmarks increases gradually with age. Participants were asked to point to a remembered target location after a change of view in immersive virtual reality. A k-fold cross-validation model-comparison selected a model where young children usually use the target location's vector to the single nearest landmark and rarely take advantage of the vectors to other nearby landmarks. The comparison models, which attempt to explain the errors as generic forms of noise rather than encoding to a single spatial cue, did not capture the distribution of responses as well. Parameter fits of this new single- versus multi-cue model are also easily interpretable and related to other variables of interest in development (age, executive function). Based on this, we theorize that spatial memory in humans develops through three advancing levels (but not strict stages): most likely to encode locations egocentrically (relative to the self), then allocentrically (relative to the world) but using only one landmark, and finally, most likely to encode locations relative to multiple parts of the scene.
Collapse
Affiliation(s)
- James Negen
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Linda Bou Ali
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Brittney Chere
- Department of Psychological Sciences, Birkbeck, London, United Kingdom
| | - Hannah E. Roome
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Yeachan Park
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marko Nardini
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
13
|
Sugar J, Moser MB. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29:1190-1205. [PMID: 31334573 DOI: 10.1002/hipo.23132] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Episodic memory is defined as the ability to recall events in a spatiotemporal context. Formation of such memories is critically dependent on the hippocampal formation and its inputs from the entorhinal cortex. To be able to support the formation of episodic memories, entorhinal cortex and hippocampal formation should contain a neuronal code that follows several requirements. First, the code should include information about position of the agent ("where"), sequence of events ("when"), and the content of the experience itself ("what"). Second, the code should arise instantly thereby being able to support memory formation of one-shot experiences. For successful encoding and to avoid interference between memories during recall, variations in location, time, or in content of experience should result in unique ensemble activity. Finally, the code should capture several different resolutions of experience so that the necessary details relevant for future memory-based predictions will be stored. We review how neuronal codes in entorhinal cortex and hippocampus follow these requirements and argue that during formation of episodic memories entorhinal cortex provides hippocampus with instant information about ongoing experience. Such information originates from (a) spatially modulated neurons in medial entorhinal cortex, including grid cells, which provide a stable and universal positional metric of the environment; (b) a continuously varying signal in lateral entorhinal cortex providing a code for the temporal progression of events; and (c) entorhinal neurons coding the content of experiences exemplified by object-coding and odor-selective neurons. During formation of episodic memories, information from these systems are thought to be encoded as unique sequential ensemble activity in hippocampus, thereby encoding associations between the content of an event and its spatial and temporal contexts. Upon exposure to parts of the encoded stimuli, activity in these ensembles can be reinstated, leading to reactivation of the encoded activity pattern and memory recollection.
Collapse
Affiliation(s)
- Jørgen Sugar
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - May-Britt Moser
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
14
|
Yu C, Luo J, Wohlgemuth M, Moss CF. Echolocating bats inspect and discriminate landmark features to guide navigation. ACTA ACUST UNITED AC 2019; 222:jeb.191965. [PMID: 30936268 DOI: 10.1242/jeb.191965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
Landmark-guided navigation is a common behavioral strategy for way-finding, yet prior studies have not examined how animals collect sensory information to discriminate landmark features. We investigated this question in animals that rely on active sensing to guide navigation. Four echolocating bats (Eptesicus fuscus) were trained to use an acoustic landmark to find and navigate through a net opening for a food reward. In experimental trials, an object serving as a landmark was placed adjacent to a net opening and an object serving as a distractor was placed next to a barrier (covered opening). The location of the opening, barrier and objects were moved between trials, but the spatial relationships between the landmark and opening, and between the distractor and barrier were maintained. In probe trials, the landmark was placed next to a barrier, while the distractor was placed next to the opening, to test whether the bats relied on the landmark to guide navigation. Vocal and flight behaviors were recorded with an array of ultrasound microphones and high-speed infrared motion-capture cameras. All bats successfully learned to use the landmark to guide navigation through the net opening. Probe trials yielded an increase in both the time to complete the task and the number of net crashes, confirming that the bats relied largely on the landmark to find the net opening. Further, landmark acoustic distinctiveness influenced performance in probe trials and sonar inspection behaviors. Analyses of the animals' vocal behaviors also revealed differences between call features of bats inspecting landmarks compared with distractors, suggesting increased sonar attention to objects used to guide navigation.
Collapse
Affiliation(s)
- Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Melville Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Høydal ØA, Skytøen ER, Andersson SO, Moser MB, Moser EI. Object-vector coding in the medial entorhinal cortex. Nature 2019; 568:400-404. [DOI: 10.1038/s41586-019-1077-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
|
16
|
|
17
|
Commins S, Fey D. Understanding the role of distance, direction and cue salience in an associative model of landmark learning. Sci Rep 2019; 9:2026. [PMID: 30765774 PMCID: PMC6376129 DOI: 10.1038/s41598-019-38525-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022] Open
Abstract
Navigation and spatial memory relies on the ability to use and recall environmental landmarks relative to important locations. Such learning is thought to result from the strengthening of associations between the goal location and environmental cues. Factors that contribute to the strength of this association include cue stability, saliency and cue location. Here we combine an autoregressive random walk model, that describes goal-directed swimming behaviour, with an associative learning model to provide an integrated model of landmark learning, using the water maze task. The model allows for the contribution of each cue, the salience and the vector information provided (both distance and directional) to be separately analysed. The model suggests that direction and distance information are independent components and can influence searching patterns. Importantly, the model can also be used to simulate various experimental scenarios to understand what has been learnt in relation to the cues, thereby offering new insights into how animals navigate.
Collapse
Affiliation(s)
- Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Dirk Fey
- Systems Biology Ireland Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Legge ELG. Comparative spatial memory and cue use: The contributions of Marcia L. Spetch to the study of small-scale spatial cognition. Behav Processes 2019; 159:65-79. [PMID: 30611849 DOI: 10.1016/j.beproc.2018.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 11/25/2022]
Abstract
Dr. Marcia Spetch is a Canadian experimental psychologist who specializes in the study of comparative cognition. Her research over the past four decades has covered many diverse topics, but focused primarily on the comparative study of small-scale spatial cognition, navigation, decision making, and risky choice. Over the course of her career Dr. Spetch has had a profound influence on the study of these topics, and for her work she was named a Fellow of the Association for Psychological Science in 2012, and a Fellow of the Royal Society of Canada in 2017. In this review, I provide a biographical sketch of Dr. Spetch's academic career, and revisit her contributions to the study of small-scale spatial cognition in two broad areas: the use of environmental geometric cues, and how animals cope with cue conflict. The goal of this review is to highlight the contributions of Dr. Spetch, her students, and her collaborators to the field of comparative cognition and the study of small-scale spatial cognition. As such, this review stands to serve as a tribute and testament to Dr. Spetch's scientific legacy.
Collapse
Affiliation(s)
- Eric L G Legge
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, City Centre Campus, Edmonton, AB, T5J 4S2, Canada.
| |
Collapse
|
19
|
Clark BJ, Simmons CM, Berkowitz LE, Wilber AA. The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behav Neurosci 2018; 132:416-429. [PMID: 30091619 PMCID: PMC6188841 DOI: 10.1037/bne0000260] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The retrosplenial cortex is anatomically positioned to integrate sensory, motor, and visual information and is thought to have an important role in processing spatial information and guiding behavior through complex environments. Anatomical and theoretical work has argued that the retrosplenial cortex participates in spatial behavior in concert with input from the parietal cortex. Although the nature of these interactions is unknown, a central position is that the functional connectivity is hierarchical with egocentric spatial information processed in the parietal cortex and higher-level allocentric mappings generated in the retrosplenial cortex. Here, we review the evidence supporting this proposal. We begin by summarizing the key anatomical features of the retrosplenial-parietal network, and then review studies investigating the neural correlates of these regions during spatial behavior. Our summary of this literature suggests that the retrosplenial-parietal circuitry does not represent a strict hierarchical parcellation of function between the two regions but instead a heterogeneous mixture of egocentric-allocentric coding and integration across frames of reference. We also suggest that this circuitry should be represented as a gradient of egocentric-to-allocentric information processing from parietal to retrosplenial cortices, with more specialized encoding of global allocentric frameworks within the retrosplenial cortex and more specialized egocentric and local allocentric representations in parietal cortex. We conclude by identifying the major gaps in this literature and suggest new avenues of research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
20
|
Trapanese C, Meunier H, Masi S. What, where and when: spatial foraging decisions in primates. Biol Rev Camb Philos Soc 2018; 94:483-502. [PMID: 30211971 DOI: 10.1111/brv.12462] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
When exploiting the environment, animals have to discriminate, track, and integrate salient spatial cues to navigate and identify goal sites. Actually, they have to know what can be found (e.g. what fruit), where (e.g. on which tree) and when (in what season or moment of the year). This is very relevant for primate species as they often live in seasonal and relatively unpredictable environments such as tropical forests. Here, we review and compare different approaches used to investigate primate spatial foraging strategies: from direct observations of wild primates to predictions from statistical simulations, including experimental approaches on both captive and wild primates, and experiments in captivity using virtual reality technology. Within this framework, most of these studies converge to show that many primate species can (i) remember the location of most of food resources well, and (ii) often seem to have a goal-oriented path towards spatially permanent resources. Overall, primates likely use mental maps to plan different foraging strategies to enhance their fitness. The majority of studies suggest that they may organise spatial information on food resources into topological maps: they use landmarks to navigate and encode local spatial information with regard to direction and distance. Even though these studies were able to show that primates can remember food quality (what) and its location (where), still very little is known on how they incorporate the temporal knowledge of available food (when). Future studies should attempt to increase our understanding of the potential of primates to learn temporal patterns and how both socio-ecological differences among species and their cognitive abilities influence such behavioural strategies.
Collapse
Affiliation(s)
- Cinzia Trapanese
- École Doctorale Frontières du Vivant (FdV) - Programme Bettencourt, Centre de Recherches Interdisciplinaires, Tour Maine Montparnasse, Paris, 75015, France.,Centre de Primatologie de l'Université de Strasbourg, Fort Foch, Niederhausbergen, 67207, France.,Faculté de psychologie Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS et Université de Strasbourg, Strasbourg, 67000, France.,Département Hommes et Environnements Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, University Paris Diderot, Sorbonne Paris Cité, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, 75116, France
| | - Hélène Meunier
- Centre de Primatologie de l'Université de Strasbourg, Fort Foch, Niederhausbergen, 67207, France.,Faculté de psychologie Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS et Université de Strasbourg, Strasbourg, 67000, France
| | - Shelly Masi
- Département Hommes et Environnements Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, University Paris Diderot, Sorbonne Paris Cité, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, 75116, France
| |
Collapse
|
21
|
Testing domain general learning in an Australian lizard. Anim Cogn 2018; 21:595-602. [DOI: 10.1007/s10071-018-1194-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
|
22
|
Effects of two-dimensional versus three-dimensional landmark geometry and layout on young children's recall of locations from new viewpoints. J Exp Child Psychol 2018; 170:1-29. [PMID: 29407185 DOI: 10.1016/j.jecp.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
Abstract
Spatial memory is an important aspect of adaptive behavior and experience, providing both content and context to the perceptions and memories that we form in everyday life. Young children's abilities in this realm shift from mainly egocentric (self-based) to include allocentric (world-based) codings at around 4 years of age. However, information about the cognitive mechanisms underlying acquisition of these new abilities is still lacking. We examined allocentric spatial recall in 4.5- to 8.5-year-olds, looking for continuity with navigation as previously studied in 2- to 4-year-olds and other species. We specifically predicted an advantage for three-dimensional landmarks over two-dimensional ones and for recalling targets "in the middle" versus elsewhere. However, we did not find compelling evidence for either of these effects, and indeed some analyses even support the opposite of each of these conclusions. There were also no significant interactions with age. These findings highlight the incompleteness of our overall theories of the development of spatial cognition in general and allocentric spatial recall in particular. They also suggest that allocentric spatial recall involves processes that have separate behavioral characteristics from other cognitive systems involved in navigation earlier in life and in other species.
Collapse
|
23
|
Esber GR, McGregor A, Good MA, Hayward A, Pearce JM. Transfer of Spatial Behaviour Controlled by a Landmark Array with a Distinctive Shape. ACTA ACUST UNITED AC 2018; 58:69-91. [PMID: 15844379 DOI: 10.1080/02724990444000069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In two experiments, rats swam to a submerged platform in one corner of a rectangular or kite-shaped array created by four identical landmarks attached to the walls of a circular pool. After training in the rectangular array, rats expressed a preference for the corner in the kite-shaped array that was geometrically equivalent to where the platform was located previously. After training in either array, the removal of two landmarks from the rectangular array, or the landmark at the apex of the kite-shaped array, did not affect the control over searching exerted by the remaining landmarks. The results imply that rats use local rather than global spatial representations when searching for a hidden goal with reference to an array of landmarks.
Collapse
|
24
|
Abstract
Animals depend on navigation to find food, water, mate(s), shelter, etc. Different species use diverse strategies that utilise forms of motion- and location-related information derived from the environment to navigate to their goals and back. We start by describing behavioural studies undertaken to unearth different strategies used in navigation. Then we move on to outline what we know about the brain area most associated with spatial navigation, namely the hippocampal formation. While doing so, we first briefly explain the anatomical connections in the area and then proceed to describe the neural correlates that are considered to play a role in navigation. We conclude by looking at how the strategies might interact and complement each other in certain contexts.
Collapse
Affiliation(s)
- Deepa Jain
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | | - Sachin S Deshmukh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| |
Collapse
|
25
|
Connor CE, Knierim JJ. Integration of objects and space in perception and memory. Nat Neurosci 2017; 20:1493-1503. [PMID: 29073645 PMCID: PMC5920781 DOI: 10.1038/nn.4657] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023]
Abstract
Distinct processing of objects and space has been an organizing principle for studying higher-level vision and medial temporal lobe memory. Here, however, we discuss how object and spatial information are in fact closely integrated in vision and memory. The ventral, object-processing visual pathway carries precise spatial information, transformed from retinotopic coordinates into relative dimensions. At the final stages of the ventral pathway, including the dorsal anterior temporal lobe (TEd), object-sensitive neurons are intermixed with neurons that process large-scale environmental space. TEd projects primarily to perirhinal cortex (PRC), which in turn projects to lateral entorhinal cortex (LEC). PRC and LEC also combine object and spatial information. For example, PRC and LEC neurons exhibit place fields that are evoked by landmark objects or the remembered locations of objects. Thus, spatial information, on both local and global scales, is deeply integrated into the ventral (temporal) object-processing pathway in vision and memory.
Collapse
Affiliation(s)
- Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
26
|
McAroe CL, Craig CM, Holland RA. Shoaling promotes place over response learning but does not facilitate individual learning of that strategy in zebrafish (Danio rerio). BMC ZOOL 2017. [DOI: 10.1186/s40850-017-0019-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Eichenbaum H. The role of the hippocampus in navigation is memory. J Neurophysiol 2017; 117:1785-1796. [PMID: 28148640 PMCID: PMC5384971 DOI: 10.1152/jn.00005.2017] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization.
Collapse
Affiliation(s)
- Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, Massachusetts
| |
Collapse
|
28
|
A Theoretical Framework to Explain the Superior Cognitive Competence in Humans: A Role for the Division of Labour in the Brain. ARCHIVES OF NEUROSCIENCE 2016. [DOI: 10.5812/archneurosci.36107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Zeng L, Leplow B, Höll D, Mehdorn M. Quantification of Human Spatial Behavior in an Open Field-Locomotor Maze. Percept Mot Skills 2016; 97:917-35. [PMID: 14738359 DOI: 10.2466/pms.2003.97.3.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To obtain and analyze the strategies of human spatial behavior, the Kiel Locomotor Maze, a maze-like analogue, was used. The Kiel Locomotor Maze automatically records different types of spatial memory errors, distances and rotation angles, decision time, and reaction times for each move. 18 patients with cerebral tumors within the frontal, temporal, or parietal lobes and 16 patients with Parkinson's disease were investigated with respect to “sense of direction.” These parameters provide information beyond error scores. It was expected that patients with focal cortical lesions would be characterised by loss of directional sense whereas basal ganglia-related brain disease is characterised by preserved directional sense but poor memory for cue-defined target locations. Based on the neuropsychological theory of head-direction sense, especially the 1991 model of McNaughton, the functionality of storage and update of the head-direction sense may be reflected with the help of these parameters. “Direction sense” parameters provide information about success or failure of the acquisition of a spatial task much earlier than error scores.
Collapse
Affiliation(s)
- Lingju Zeng
- Department of Psychology, Christian-Albrechts-University of Kiel
| | | | | | | |
Collapse
|
30
|
Steering intermediate courses: desert ants combine information from various navigational routines. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:459-72. [DOI: 10.1007/s00359-016-1094-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
31
|
Animal timing: a synthetic approach. Anim Cogn 2016; 19:707-32. [DOI: 10.1007/s10071-016-0977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
|
32
|
Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an electric fish. J Neurophysiol 2016; 115:2577-92. [PMID: 26961107 DOI: 10.1152/jn.00979.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region.
Collapse
Affiliation(s)
- James J Jun
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Tran DMD, Westbrook RF. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry. Psychol Sci 2015; 26:1947-57. [DOI: 10.1177/0956797615608240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction.
Collapse
|
34
|
Abstract
The ability to self-localise and to navigate to remembered goals in complex and changeable environments is crucial to the survival of many mobile species. Electrophysiological investigations of the mammalian hippocampus and associated brain structures have identified several classes of neurons which represent information about an organism's position and orientation. These include place cells, grid cells, head direction cells, and boundary vector cells, as well as cells representing aspects of self-motion. Understanding how these neural representations are formed and updated from environmental sensory information and from information relating to self-motion is an important topic attracting considerable current interest. Here we review the computational mechanisms thought to underlie the formation of these different spatial representations, the interactions between them, and their use in guiding behaviour. These include some of the clearest examples of computational mechanisms of general interest to neuroscience, such as attractor dynamics, temporal coding and multi-modal integration. We also discuss the close relationships between computational modelling and experimental research which are driving progress in this area.
Collapse
Affiliation(s)
- C Barry
- UCL Research Department of Cell & Developmental Biology, Gower Street, London, WC1E 6BT, UK.
| | - N Burgess
- UCL Institute of Cognitive Neuroscience, London, WC1N 3AR, UK; UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
35
|
Pritchard DJ, Hurly TA, Healy SD. Effects of landmark distance and stability on accuracy of reward relocation. Anim Cogn 2015. [PMID: 26198691 DOI: 10.1007/s10071-015-0896-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although small-scale navigation is well studied in a wide range of species, much of what is known about landmark use by vertebrates is based on laboratory experiments. To investigate how vertebrates in the wild use landmarks, we trained wild male rufous hummingbirds to feed from a flower that was placed in a constant spatial relationship with two artificial landmarks. In the first experiment, the landmarks and flower were 0.25, 0.5 or 1 m apart and we always moved them 3-4 m after each visit by the bird. In the second experiment, the landmarks and flower were always 0.25 m apart and we moved them either 1 or 0.25 m between trials. In tests, in which we removed the flower, the hummingbirds stopped closer to the predicted flower location when the landmarks had been closer to the flower during training. However, while the distance that the birds stopped from the landmarks and predicted flower location was unaffected by the distance that the landmarks moved between trials, the birds directed their search nearer to the predicted direction of the flower, relative to the landmarks, when the landmarks and flower were more stable in the environment. In the field, then, landmarks alone were sufficient for the birds to determine the distance of a reward but not its direction.
Collapse
Affiliation(s)
- David J Pritchard
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, KY16 9JP, UK.
| | - T Andrew Hurly
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Susan D Healy
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife, KY16 9JP, UK
| |
Collapse
|
36
|
Learning efficiency: The influence of cue salience during spatial navigation. Behav Processes 2015; 116:17-27. [DOI: 10.1016/j.beproc.2015.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/21/2022]
|
37
|
Davis VA, Holbrook RI, Schumacher S, Guilford T, de Perera TB. Three-dimensional spatial cognition in a benthic fish, Corydoras aeneus. Behav Processes 2014; 109 Pt B:151-6. [PMID: 25158070 DOI: 10.1016/j.beproc.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure.
Collapse
Affiliation(s)
- V A Davis
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - R I Holbrook
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - S Schumacher
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Guilford
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - T Burt de Perera
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| |
Collapse
|
38
|
Evidence of a relational spatial strategy in learning the centre of enclosures in human children (Homo sapiens). Behav Processes 2014; 106:172-9. [PMID: 24954553 DOI: 10.1016/j.beproc.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/22/2022]
Abstract
Three- to five-year-old children were trained to localize a sensor hidden underneath the floor, in the centre of a square-shaped enclosure (1.5m×1.5m). Walking over the sensor caused a pleasant music to be played in the environment, thus engaging children in a playful spatial search. Children easily learned to find the centre of the training environment starting from random positions. After training, children were tested in enclosures of different size and/or shape: a larger square-shaped enclosure (3m×3m), a rectangle-shaped enclosure (1.5m×3m), an equilateral triangle-shaped enclosure (side 3m) and an isosceles triangle-shaped enclosure (base 1.5m; sides 3m). Children searched in the central region of the enclosures, their precision varying as a function of the similarity of the testing enclosure's shape to the shape of the training enclosure. This suggests that a relational spatial strategy was used, and that it depended on the encoding of geometrical shape. This result highlights a distinctive role of the geometric centre of enclosed spaces in place learning in children, as already observed in nonhuman species.
Collapse
|
39
|
Wilber AA, Clark BJ, Forster TC, Tatsuno M, McNaughton BL. Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. J Neurosci 2014; 34:5431-46. [PMID: 24741034 PMCID: PMC3988403 DOI: 10.1523/jneurosci.0511-14.2014] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 01/02/2023] Open
Abstract
Navigation requires coordination of egocentric and allocentric spatial reference frames and may involve vectorial computations relative to landmarks. Creation of a representation of target heading relative to landmarks could be accomplished from neurons that encode the conjunction of egocentric landmark bearings with allocentric head direction. Landmark vector representations could then be created by combining these cells with distance encoding cells. Landmark vector cells have been identified in rodent hippocampus. Given remembered vectors at goal locations, it would be possible to use such cells to compute trajectories to hidden goals. To look for the first stage in this process, we assessed parietal cortical neural activity as a function of egocentric cue light location and allocentric head direction in rats running a random sequence to light locations around a circular platform. We identified cells that exhibit the predicted egocentric-by-allocentric conjunctive characteristics and anticipate orienting toward the goal.
Collapse
Affiliation(s)
- Aaron A Wilber
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | | | | | | | | |
Collapse
|
40
|
Thurley K, Henke J, Hermann J, Ludwig B, Tatarau C, Wätzig A, Herz AVM, Grothe B, Leibold C. Mongolian gerbils learn to navigate in complex virtual spaces. Behav Brain Res 2014; 266:161-8. [PMID: 24631394 DOI: 10.1016/j.bbr.2014.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Virtual reality (VR) environments are increasingly used to study spatial navigation in rodents. So far behavioral paradigms in virtual realities have been limited to linear tracks or open fields. However, little is known whether rodents can learn to navigate in more complex virtual spaces. We used a VR setup with a spherical treadmill but no head-fixation, which permits animals not only to move in a virtual environment but also to freely rotate around their vertical body axis. We trained Mongolian gerbils to perform spatial tasks in virtual mazes of different complexity. Initially the animals learned to run back and forth between the two ends of a virtual linear track for food reward. Performance, measured as path length and running time between the virtual reward locations, improved to asymptotic performance within about five training sessions. When more complex mazes were presented after this training epoch, the animals generalized and explored the new environments already at their first exposure. In a final experiment, the animals also learned to perform a two-alternative forced choice task in a virtual Y-maze. Our data thus shows that gerbils can be trained to solve spatial tasks in virtual mazes and that this behavior can be used as a readout for psychophysical measurements.
Collapse
Affiliation(s)
- Kay Thurley
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Josephine Henke
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Joachim Hermann
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Benedikt Ludwig
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Tatarau
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Aline Wätzig
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Andreas V M Herz
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
41
|
Matell MS, Kurti AN. Reinforcement probability modulates temporal memory selection and integration processes. Acta Psychol (Amst) 2014; 147:80-91. [PMID: 23896560 DOI: 10.1016/j.actpsy.2013.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that rats trained in a mixed-interval peak procedure (tone=4s, light=12s) respond in a scalar manner at a time in between the trained peak times when presented with the stimulus compound (Swanton & Matell, 2011). In our previous work, the two component cues were reinforced with different probabilities (short=20%, long=80%) to equate response rates, and we found that the compound peak time was biased toward the cue with the higher reinforcement probability. Here, we examined the influence that different reinforcement probabilities have on the temporal location and shape of the compound response function. We found that the time of peak responding shifted as a function of the relative reinforcement probability of the component cues, becoming earlier as the relative likelihood of reinforcement associated with the short cue increased. However, as the relative probabilities of the component cues grew dissimilar, the compound peak became non-scalar, suggesting that the temporal control of behavior shifted from a process of integration to one of selection. As our previous work has utilized durations and reinforcement probabilities more discrepant than those used here, these data suggest that the processes underlying the integration/selection decision for time are based on cue value.
Collapse
|
42
|
Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R. Beginnings of a synthetic approach to desert ant navigation. Behav Processes 2013; 102:51-61. [PMID: 24129029 DOI: 10.1016/j.beproc.2013.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/27/2013] [Accepted: 10/05/2013] [Indexed: 11/15/2022]
Abstract
In a synthetic approach to studying navigational abilities in desert ants, we review recent work comparing ants living in different visual ecologies. Those living in a visually rich habitat strewn with tussocks, bushes, and trees are compared to those living in visually barren salt pans, as exemplified by the Central Australian Melophorus bagoti and the North African Cataglyphis fortis, respectively. In bare habitats the navigator must rely primarily on path integration, keeping track of the distance and direction in which it has travelled, while in visually rich habitats the navigator can rely more on guidance by the visual panorama. Consistent with these expectations, C. fortis performs better than M. bagoti on various measures of precision at path integration. In contrast, M. bagoti learned a visually based associative task better than C. fortis, the latter generally failing at the task. Both these ants, however, exhibit a similar pattern of systematic search as a 'back up' strategy when other navigational strategies fail. A newly investigated salt-pan species of Melophorus (as yet unnamed) resembles C. fortis more, and its congener M. bagoti less, in its path integration. The synthetic approach would benefit from comparing more species chosen to address evolutionary questions. This article is part of a Special Issue entitled: CO3 2013.
Collapse
Affiliation(s)
- Ken Cheng
- Department of Biological Sciences, Macquarie University, Australia.
| | | | - Sebastian Schwarz
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Canada
| | | | - Rüdiger Wehner
- Brain Research Institute, University of Zürich, Switzerland
| |
Collapse
|
43
|
Teichroeb JA, Chapman CA. Sensory information and associative cues used in food detection by wild vervet monkeys. Anim Cogn 2013; 17:517-28. [PMID: 24045849 DOI: 10.1007/s10071-013-0683-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.
Collapse
Affiliation(s)
- Julie A Teichroeb
- Department of Anthropology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA,
| | | |
Collapse
|
44
|
Vandercone R, Premachandra K, Wijethunga GP, Dinadh C, Ranawana K, Bahar S. Random walk analysis of ranging patterns of sympatric langurs in a complex resource landscape. Am J Primatol 2013; 75:1209-19. [DOI: 10.1002/ajp.22183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | - Kaushalya Premachandra
- Department of Physics & Astronomy and Center for Neurodynamics; University of Missouri at St. Louis; St. Louis; Missouri
| | | | - Chameera Dinadh
- Faculty of Natural Sciences; Open University of Sri Lanka; Nawala; Sri Lanka
| | | | - Sonya Bahar
- Department of Physics & Astronomy and Center for Neurodynamics; University of Missouri at St. Louis; St. Louis; Missouri
| |
Collapse
|
45
|
Diviney M, Fey D, Commins S. Hippocampal contribution to vector model hypothesis during cue-dependent navigation. Learn Mem 2013; 20:367-78. [DOI: 10.1101/lm.029272.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Deshmukh SS, Knierim JJ. Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus 2013; 23:253-67. [PMID: 23447419 DOI: 10.1002/hipo.22101] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. In this article, correlates of both object-derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects are demonstrated. A new form of CA1 place cells, called landmark-vector cells, that encode spatial locations as a vector relationship to local landmarks is described. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day's recording sessions, in eight cases, the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. In addition, object-location memory in the hippocampus is also described. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object + place conjunctive memory; in other neurons, the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal's location and the location of objects in its environment.
Collapse
Affiliation(s)
- Sachin S Deshmukh
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
47
|
|
48
|
Changing within-trial array location and target object position enhances rats' (Rattus norvegicus) missing object recognition accuracy. Anim Cogn 2012; 15:771-82. [PMID: 22535490 DOI: 10.1007/s10071-012-0501-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/04/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Six rats were trained to find a previously missing target or 'jackpot' object in a square array of four identical or different objects (the test segment of a trial) after first visiting and collecting sunflower seeds from under the other three objects (the study segment of a trial). During training, objects' local positions within the array and their global positions within the larger foraging array were varied over trials but were not changed between segments within a trial. Following this training, rats were tested on their accuracy for finding the target object when a trial's test array was sometimes moved to a different location in the foraging arena or when the position of the target object within the test array had been changed. Either of these manipulations initially slightly reduced rats' accuracy for finding the missing object but then enhanced it. Relocating test arrays of identical objects enhanced rats' performance only after 10-min inter-segment intervals (ISIs). Relocating test arrays of different objects enhanced rats' performance only after 2-min ISIs. Rats also improved their performance when they encountered the target object in a new position in test arrays of different objects. This enhancement effect occurred after either 2- or 30-min ISIs. These findings suggest that rats separately retrieved a missing (target) object's spatial and non-spatial information when they were relevant but not when they were irrelevant in a trial. The enhancement effects provide evidence for rats' limited retrieval capacity in their visuo-spatial working memory.
Collapse
|
49
|
Gustafson NJ, Daw ND. Grid cells, place cells, and geodesic generalization for spatial reinforcement learning. PLoS Comput Biol 2011; 7:e1002235. [PMID: 22046115 PMCID: PMC3203050 DOI: 10.1371/journal.pcbi.1002235] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
Reinforcement learning (RL) provides an influential characterization of the brain's mechanisms for learning to make advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables efficient learning. We consider this problem through the lens of spatial navigation, examining how two of the brain's location representations--hippocampal place cells and entorhinal grid cells--are adapted to serve as basis functions for approximating value over space for RL. Although much previous work has focused on these systems' roles in combining upstream sensory cues to track location, revisiting these representations with a focus on how they support this downstream decision function offers complementary insights into their characteristics. Rather than localization, the key problem in learning is generalization between past and present situations, which may not match perfectly. Accordingly, although neural populations collectively offer a precise representation of position, our simulations of navigational tasks verify the suggestion that RL gains efficiency from the more diffuse tuning of individual neurons, which allows learning about rewards to generalize over longer distances given fewer training experiences. However, work on generalization in RL suggests the underlying representation should respect the environment's layout. In particular, although it is often assumed that neurons track location in Euclidean coordinates (that a place cell's activity declines "as the crow flies" away from its peak), the relevant metric for value is geodesic: the distance along a path, around any obstacles. We formalize this intuition and present simulations showing how Euclidean, but not geodesic, representations can interfere with RL by generalizing inappropriately across barriers. Our proposal that place and grid responses should be modulated by geodesic distances suggests novel predictions about how obstacles should affect spatial firing fields, which provides a new viewpoint on data concerning both spatial codes.
Collapse
Affiliation(s)
- Nicholas J Gustafson
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | |
Collapse
|
50
|
Gautestad AO. Memory matters: influence from a cognitive map on animal space use. J Theor Biol 2011; 287:26-36. [PMID: 21810430 DOI: 10.1016/j.jtbi.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/16/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
A vertebrate individual's cognitive map provides a capacity for site fidelity and long-distance returns to favorable patches. Fractal-geometrical analysis of individual space use based on collection of telemetry fixes makes it possible to verify the influence of a cognitive map on the spatial scatter of habitat use and also to what extent space use has been of a scale-specific versus a scale-free kind. This approach rests on a statistical mechanical level of system abstraction, where micro-scale details of behavioral interactions are coarse-grained to macro-scale observables like the fractal dimension of space use. In this manner, the magnitude of the fractal dimension becomes a proxy variable for distinguishing between main classes of habitat exploration and site fidelity, like memory-less (Markovian) Brownian motion and Levy walk and memory-enhanced space use like Multi-scaled Random Walk (MRW). In this paper previous analyses are extended by exploring MRW simulations under three scenarios: (1) central place foraging, (2) behavioral adaptation to resource depletion (avoidance of latest visited locations) and (3) transition from MRW towards Levy walk by narrowing memory capacity to a trailing time window. A generalized statistical-mechanical theory with the power to model cognitive map influence on individual space use will be important for statistical analyses of animal habitat preferences and the mechanics behind site fidelity and home ranges.
Collapse
Affiliation(s)
- Arild O Gautestad
- Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|