1
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin Neurol Neurosurg 2022; 218:107273. [PMID: 35537284 DOI: 10.1016/j.clineuro.2022.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
|
3
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Garland P, Morton M, Zolnourian A, Durnford A, Gaastra B, Toombs J, Heslegrave AJ, More J, Zetterberg H, Bulters DO, Galea I. Neurofilament light predicts neurological outcome after subarachnoid haemorrhage. Brain 2021; 144:761-768. [PMID: 33517369 PMCID: PMC8041040 DOI: 10.1093/brain/awaa451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
To improve outcome prediction following subarachnoid haemorrhage (SAH), we sought a biomarker integrating early brain injury and multiple secondary pathological processes in a prospective study of 42 non-traumatic SAH patients and 19 control individuals. Neurofilament light (NF-L) was elevated in CSF and serum following SAH. CSF and serum NF-L on Days 1–3 post-SAH strongly predicted modified Rankin score at 6 months, independent of World Federation of Neurosurgical Societies (WFNS) score. NF-L from Day 4 onwards also had a profound impact on outcome. To link NF-L to a SAH-specific pathological process, we investigated NF-L’s relationship with extracellular haemoglobin. Most CSF haemoglobin was not complexed with haptoglobin, yet was able to be bound by exogenous haptoglobin i.e. haemoglobin was scavengeable. CSF scavengeable haemoglobin was strongly predictive of subsequent CSF NF-L. Next, we investigated NF-L efflux from the brain after SAH. Serum and CSF NF-L correlated positively. The serum/CSF NF-L ratio was lower in SAH versus control subjects, in keeping with glymphatic efflux dysfunction after SAH. CSF/serum albumin ratio was increased following SAH versus controls. The serum/CSF NF-L ratio correlated negatively with the CSF/serum albumin ratio, indicating that transfer of the two proteins across the blood–brain interface is dissociated. In summary, NF-L is a strong predictive marker for SAH clinical outcome, adding value to the WFNS score, and is a promising surrogate end point in clinical trials.
Collapse
Affiliation(s)
- Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matt Morton
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ardalan Zolnourian
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Durnford
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ben Gaastra
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jamie Toombs
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - John More
- R&D, Bio Products Laboratory Limited, Elstree, Hertfordshire, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diederik O Bulters
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
5
|
Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, Hosaka K, Polifka AJ, Hoh BL, Chalouhi N. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J Am Heart Assoc 2021; 10:e021845. [PMID: 34325514 PMCID: PMC8475656 DOI: 10.1161/jaha.121.021845] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
Delayed cerebral ischemia is a major predictor of poor outcomes in patients who suffer subarachnoid hemorrhage. Treatment options are limited and often ineffective despite many years of investigation and clinical trials. Modern advances in basic science have produced a much more complex, multifactorial framework in which delayed cerebral ischemia is better understood and novel treatments can be developed. Leveraging this knowledge to improve outcomes, however, depends on a holistic understanding of the disease process. We conducted a review of the literature to analyze the current state of investigation into delayed cerebral ischemia with emphasis on the major themes that have emerged over the past decades. Specifically, we discuss microcirculatory dysfunction, glymphatic impairment, inflammation, and neuroelectric disruption as pathological factors in addition to the canonical focus on cerebral vasospasm. This review intends to give clinicians and researchers a summary of the foundations of delayed cerebral ischemia pathophysiology while also underscoring the interactions and interdependencies between pathological factors. Through this overview, we also highlight the advances in translational studies and potential future therapeutic opportunities.
Collapse
Affiliation(s)
- William S. Dodd
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Dimitri Laurent
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Aaron S. Dumont
- Department of Neurological SurgerySchool of MedicineTulane UniversityNew OrleansLA
| | - David M. Hasan
- Department of NeurosurgeryCarver College of MedicineUniversity of IowaIowa CityIA
| | - Pascal M. Jabbour
- Department of Neurological SurgerySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPA
| | - Robert M. Starke
- Department of Neurological SurgeryMiller School of MedicineUniversity of MiamiFL
| | - Koji Hosaka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Adam J. Polifka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Brian L. Hoh
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Nohra Chalouhi
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|
6
|
Dhir N, Attri SV, Pattanaik S, Kumar MP, Gill NK, Patial A, Rathore N, Saha L, Mohindra S. Aneurysmal Subarachnoid Hemorrhage: Impact on Phenytoin Permeability across the Blood-Brain Barrier. Neurol India 2021; 68:588-592. [PMID: 32643669 DOI: 10.4103/0028-3886.288987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Phenytoin (PHT) is a routinely prescribed prophylactic antiepileptic following aneurysmal subarachnoid hemorrhage (aSAH). However, its prophylactic use in aSAH is controversial as emerging evidence suggests worsening of the neurological and functional outcomes. In addition, there is profound damage to the blood-brain barrier (BBB) in aSAH, posing uncertainty about the permeability of PHT across BBB in these patients. This pilot study was designed to evaluate the alteration in PHT permeability across BBB in aSAH patients. Materials and Methods For conducting the study, 20 patients (control n = 10; aSAH (grade 3 or 4) n = 10) were recruited from a tertiary care hospital. The patients undergoing cranial surgery for pathology with intracerebral mass lesions on MRI were chosen as control for aSAH group. Both groups were administered PHT loading dose (20 mg/kg), infused in 5% dextrose, at a rate not more than 50 mg/min, followed by a maintenance dose (5 mg/kg). Quantification of PHT concentration was performed in brain tissue, plasma, and cerebrospinal fluid (CSF) by LC-MS/MS. Results The median PHT concentration in brain was found to be significantly decreased (64.8%) in aSAH group (3.78 μg/g) as compared to control (10.73 μg/g), P = 0.010. Similarly, median PHT brain concentration as fraction of plasma was significantly decreased in aSAH group (36.72%) compared to that of control (89.55%), P = 0.003. There was no significant difference in PHT concentration in plasma, CSF, and CSF as a fraction of plasma between both the groups. Conclusion There is a definite decrease in the penetration of PHT to the brain in patients with grade 3 and 4 aSAH.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Savita Verma Attri
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Smita Pattanaik
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M Praveen Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navjit Kaur Gill
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Patial
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nidhi Rathore
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sandeep Mohindra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
8
|
Wang L, Zhao Y, Gang S, Geng T, Li M, Xu L, Zhang X, Liu L, Xie Y, Ye R, Liu X. Inhibition of miR-103-3p Preserves Neurovascular Integrity Through Caveolin-1 in Experimental Subarachnoid Hemorrhage. Neuroscience 2021; 461:91-101. [PMID: 33722672 DOI: 10.1016/j.neuroscience.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Caveolin-1 (Cav-1) is a constitutive structural protein of caveolae in the plasma membrane. It plays an important role in maintaining blood brain barrier (BBB) integrity. In this study, we identified that miR-103-3p, a hypoxia-responsive miRNA, could interact with Cav-1. In endothelial cells, miR-103-3p mimic diminished the expression of Cav-1 and tight junction proteins, which were rescued by the inhibition of miR-103-3p. We found a substantial increase of miR-103-3p and decease of Cav-1 in the rat subarachnoid hemorrhage (SAH) model. Pre-SAH intracerebroventricularly injection of miR-103-3p antagomir relieved Cav-1 loss, sequentially reduced BBB permeability and improved neurological function. Finally, we demonstrated that the salutary effects of miR-103-3p antagomir were abolished in Cav-1 knock-out mice, suggesting that Cav-1 was required for the miR-103-3p inhibition-induced neurovascular protection. Taken together, our findings suggest that the inhibition of miR-103-3p could exert neuroprotective effects through preservation of Cav-1 and BBB integrity, making miR-103-3p a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Liumin Wang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shucheng Gang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tongchao Geng
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingquan Li
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Biologic Effect of Hydrogen Sulfide and Its Role in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:7301615. [PMID: 33425216 PMCID: PMC7773448 DOI: 10.1155/2020/7301615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Ever since endogenous hydrogen sulfide (H2S) was found in mammals in 1989, accumulated evidence has demonstrated that H2S functions as a novel neurological gasotransmitter in brain tissues and may play a key role in traumatic brain injury. It has been proved that H2S has an antioxidant, anti-inflammatory, and antiapoptosis function in the neuron system and functions as a neuroprotective factor against secondary brain injury. In addition, H2S has other biologic effects such as regulating the intracellular concentration of Ca2+, facilitating hippocampal long-term potentiation (LTP), and activating ATP-sensitive K channels. Due to the toxic nature of H2S when exceeding the physiological dose in the human body, only a small amount of H2S-related therapies was applied to clinical treatment. Therefore, it has huge therapeutic potential and has great hope for recovering patients with traumatic brain injury.
Collapse
|
10
|
Cognitive impairment in angiographically negative subarachnoid haemorrhage: A case-matched prospective study 1-year post-incident. Cortex 2020; 128:49-60. [PMID: 32315835 DOI: 10.1016/j.cortex.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Few studies investigate cognitive outcomes in patients with angiographically negative subarachnoid haemorrhage (anSAH), which is traditionally viewed as a condition with an excellent prognosis. The aim of this study was to assess neuropsychological outcomes in a prospective cohort of anSAH patients 1-year post-event. METHOD This prospective case-controlled study of cognitive function in patients with anSAH (n = 38) recruited from the national centre for neurosurgery and compared matched controls (n = 28). The cognitive battery assessed memory, executive function, attention, visuo-spatial function, processing speed, social cognition, language, and mood. Patients were matched to controls on age, education, and premorbid intelligence. RESULTS Multivariate Analysis of Variance (MANOVA) were used. Patients performed significantly worse than controls on all cognitive domain composite scores. anSAH patients had a higher frequency of impairment within encoding, executive, and processing speed domains when compared to healthy controls. Discriminant Function Analysis (DFA) indicated high sensitivity and specificity to detect cognitive impairment between groups. CONCLUSION Although the majority of patients with anSAH make an excellent physical recovery, our data show a high rate of cognitive dysfunction in patients 1-year post-incident. Cognitive impairment in anSAH is not a universal feature, and its manifestations may be more heterogeneous than previously recognised. Some impairment may be mediated by impaired speed of processing which negatively influences other cognitive domains. The profile of cognitive impairment supports a neurotoxicity hypothesis, which suggests that blood in the subarachnoid space, rather than the bleed per se, results in a diffuse pattern of cognitive deficits.
Collapse
|
11
|
Zolnourian AH, Franklin S, Galea I, Bulters DO. Study protocol for SFX-01 after subarachnoid haemorrhage (SAS): a multicentre randomised double-blinded, placebo controlled trial. BMJ Open 2020; 10:e028514. [PMID: 32217557 PMCID: PMC7170552 DOI: 10.1136/bmjopen-2018-028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Subarachnoid haemorrhage (SAH) from a ruptured cerebral aneurysm carries high morbidity and mortality. Despite huge advances in techniques to secure the aneurysm, there has been little progress in the treatment of the deleterious effects of the haemorrhage.Sulforaphane is an Nrf2 inducer with anti-oxidant and anti-inflammatory properties. It has been shown to improve clinical outcome in experimental models of SAH, but is unstable. SFX-01 (Evgen Pharma) is a novel composition comprised of synthetic sulforaphane stabilised within an α-cyclodextrin complex. On ingestion, the complex releases sulforaphane making SFX-01 an ideal vehicle for delivery of sulforaphane. METHODS AND ANALYSIS The objective of the study is to assess the safety, pharmacokinetics and efficacy of SFX-01. This is a prospective, multicentre, randomised, double-blind placebo-controlled trial in patients aged 18-80 years with aneurysmal subarachnoid haemorrhage in the previous 48 hours. 90 patients will be randomised to receive SFX-01 (300 mg) or placebo two times per day for up to 28 days.Safety will be assessed using blood tests and adverse event reporting.Pharmacokinetics will be assessed based on paired blood and cerebrospinal fluid (CSF) sulforaphane levels on day 7. A subgroup will have hourly samples taken during 6 hours post-dosing on days 1 and 7. Pharmacodynamics will be assessed by haptoglobin and malondialdehyde levels, and maximum flow velocity of middle cerebral artery will be measured by transcranial Doppler ultrasound.Clinical outcomes will be assessed at days 28, 90 and 180 with modified Rankin Scale, Glasgow Outcome Score, SAH Outcome Tool, Short Form-36, Brain Injury Community Rehabilitation Outcome Scales and Check List for Cognitive and Emotional consequences following stroke. MRI at 6 months including quantitative susceptibility mapping and volumetric T1 will measure iron deposition and cortical volume.Safety, CSF sulforaphane concentration and middle cerebral artery flow velocity will be primary outcomes and all others secondary. ETHICS AND DISSEMINATION Ethical approval was obtained from South Central Hampshire A committee. Outcomes of the trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02614742.
Collapse
Affiliation(s)
- Ardalan H Zolnourian
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ian Galea
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Experimental Neurology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diederik Oliver Bulters
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
12
|
Forssten MP, Thelin EP, Nelson DW, Bellander BM. The Role of Glycerol-Containing Drugs in Cerebral Microdialysis: A Retrospective Study on the Effects of Intravenously Administered Glycerol. Neurocrit Care 2020; 30:590-600. [PMID: 30430381 PMCID: PMC6513829 DOI: 10.1007/s12028-018-0643-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cerebral microdialysis (CMD) is a valuable tool for monitoring compounds in the cerebral extracellular fluid (ECF). Glycerol is one such compound which is regarded as a marker of cell membrane decomposition. Notably, in some acutely brain-injured patients, CMD-glycerol levels rise without any other apparent indication of cerebral deterioration. The aim of this study was to investigate whether this could be due to an association between CMD-glycerol levels and the administration of glycerol-containing drugs. METHODS Microdialysis data were retrospectively retrieved from the hospital's intensive care unit patient data management system (PDMS). All patients who were monitored with CMD for ≥ 96 h were included. Administered drug doses were retrieved from the PDMS and converted to exact doses of glycerol. Cross-correlation analyses were performed between the free, metabolized as well as total administered dose of glycerol and the detrended and differenced CMD-glycerol concentration. These analyses were repeated for two sets of subgroups based upon the individual catheter's graphical trend and its location in relation to the lesion. RESULTS There was no significant correlation between the differenced CMD-glycerol levels and drug-administered glycerol. Furthermore, there was no significant correlation between CMD-glycerol and catheter location or graphical trend. However, if the CMD-glycerol levels were detrended, significant but clinically non-relevant correlations were identified (maximum correlation coefficient of 0.1 (0.04-0.15, 95% CI) at a lag of 7 h using the total administered dose of glycerol). CONCLUSIONS Glycerol-containing drugs routinely administered intravenously in the clinical setting appear to have a minimal and clinically insignificant effect on levels of glycerol in the cerebral ECF.
Collapse
Affiliation(s)
- Maximilian Peter Forssten
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David W Nelson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6218239. [PMID: 31191800 PMCID: PMC6525854 DOI: 10.1155/2019/6218239] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms underlying poor outcome following subarachnoid haemorrhage (SAH) are complex and multifactorial. They include early brain injury, spreading depolarisation, inflammation, oxidative stress, macroscopic cerebral vasospasm, and microcirculatory disturbances. Nrf2 is a global promoter of the antioxidant and anti-inflammatory response and has potential protective effects against all of these mechanisms. It has been shown to be upregulated after SAH, and Nrf2 knockout animals have poorer functional and behavioural outcomes after SAH. There are many agents known to activate the Nrf2 pathway. Of these, the actions of sulforaphane, curcumin, astaxanthin, lycopene, tert-butylhydroquinone, dimethyl fumarate, melatonin, and erythropoietin have been studied in SAH models. This review details the different mechanisms of injury after SAH including the contribution of haemoglobin (Hb) and its breakdown products. It then summarises the evidence that the Nrf2 pathway is active and protective after SAH and finally examines the evidence supporting Nrf2 upregulation as a therapy after SAH.
Collapse
|
14
|
Lublinsky S, Major S, Kola V, Horst V, Santos E, Platz J, Sakowitz O, Scheel M, Dohmen C, Graf R, Vatter H, Wolf S, Vajkoczy P, Shelef I, Woitzik J, Martus P, Dreier JP, Friedman A. Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine 2019; 43:460-472. [PMID: 31162113 PMCID: PMC6558266 DOI: 10.1016/j.ebiom.2019.04.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Disease progression and delayed neurological complications are common after aneurysmal subarachnoid hemorrhage (aSAH). We explored the potential of quantitative blood-brain barrier (BBB) imaging to predict disease progression and neurological outcome. METHODS Data were collected as part of the Co-Operative Studies of Brain Injury Depolarizations (COSBID). We analyzed retrospectively, blinded and semi-automatically magnetic resonance images from 124 aSAH patients scanned at 4 time points (24-48 h, 6-8 days, 12-15 days and 6-12 months) after the initial hemorrhage. Volume of brain with apparent pathology and/or BBB dysfunction (BBBD), subarachnoid space and lateral ventricles were measured. Neurological status on admission was assessed using the World Federation of Neurosurgical Societies and Rosen-Macdonald scores. Outcome at ≥6 months was assessed using the extended Glasgow outcome scale and disease course (progressive or non-progressive based on imaging-detected loss of normal brain tissue in consecutive scans). Logistic regression was used to define biomarkers that best predict outcomes. Receiver operating characteristic analysis was performed to assess accuracy of outcome prediction models. FINDINGS In the present cohort, 63% of patients had progressive and 37% non-progressive disease course. Progressive course was associated with worse outcome at ≥6 months (sensitivity of 98% and specificity of 97%). Brain volume with BBBD was significantly larger in patients with progressive course already 24-48 h after admission (2.23 (1.23-3.17) folds, median with 95%CI), and persisted at all time points. The highest probability of a BBB-disrupted voxel to become pathological was found at a distance of ≤1 cm from the brain with apparent pathology (0·284 (0·122-0·594), p < 0·001, median with 95%CI). A multivariate logistic regression model revealed power for BBBD in combination with RMS at 24-48 h in predicting outcome (ROC area under the curve = 0·829, p < 0·001). INTERPRETATION We suggest that early identification of BBBD may serve as a key predictive biomarker for neurological outcome in aSAH. FUND: Dr. Dreier was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (DFG DR 323/5-1 and DFG DR 323/10-1), the Bundesministerium für Bildung und Forschung (BMBF) Center for Stroke Research Berlin 01 EO 0801 and FP7 no 602150 CENTER-TBI. Dr. Friedman was supported by grants from Israel Science Foundation and Canada Institute for Health Research (CIHR). Dr. Friedman was supported by grants from European Union's Seventh Framework Program (FP7/2007-2013; grant #602102).
Collapse
Affiliation(s)
- Svetlana Lublinsky
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Germany
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Oliver Sakowitz
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Germany; Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ilan Shelef
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Diagnostic Imaging, Soroka University Medical Center, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Alon Friedman
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
15
|
Lagier D, Tonon D, Garrigue P, Guillet B, Giacomino L, Martin JC, Alessi MC, Bruder N, Velly LJ. Thromboxane-prostaglandin receptor antagonist, terutroban, prevents neurovascular events after subarachnoid haemorrhage: a nanoSPECT study in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:42. [PMID: 30744667 PMCID: PMC6371436 DOI: 10.1186/s13054-019-2338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Background Several lipid metabolites in cerebrospinal fluid are correlated with poor outcomes in aneurysmal subarachnoid haemorrhage. Most of these metabolites bind to ubiquitous thromboxane–prostaglandin (TP) receptors, causing vasoconstriction and inflammation. Here, we evaluated terutroban (TBN), a specific TP receptor antagonist, for the prevention of post-haemorrhage blood-brain barrier disruption, neuronal apoptosis and delayed cerebral hypoperfusion. Methods The rat double subarachnoid haemorrhage model was produced by twice injecting (days 1 and 2) autologous blood into the cisterna magna. Seventy-eight male Sprague-Dawley rats were assigned to experimental groups. Rats exposed to subarachnoid haemorrhage were allocated to no treatment (SAH group) or TBN treatment by gastric gavage during the first 5 days after haemorrhage (SAH+TBN group). Control rats received artificial cerebrospinal fluid injections (CSF group). Sham-operated rats with or without TBN administration were also studied. Body weight and Garcia neurological scores were assessed on day 2 and day 5. We used nanoscale single-photon emission computed tomography (nanoSPECT) to measure brain uptake of three radiolabelled agents: 99mTechnetium-diethylenetriaminepentacetate (99mTc-DTPA), which indicated blood-brain barrier permeability on day 3, 99mTechnetium-annexin V-128 (99mTc-Anx-V128), which indicated apoptosis on day 4, and 99mTechnetium-hexamethylpropyleneamineoxime (99mTc-HMPAO), which indicated cerebral perfusion on day 5. Basilar artery narrowing was verified histologically, and cerebral TP receptor agonists were quantified. Results 99mTc-DTPA uptake unveiled blood-brain barrier disruption in the SAH group. TBN mitigated this disruption in the brainstem area. 99mTc-Anx-V128 uptake was increased in the SAH group and TBN diminished this effect in the cerebellum. 99mTc-HMPAO uptake revealed a global decreased perfusion on day 5 in the SAH group that was significantly counteracted by TBN. TBN also mitigated basilar artery vasoconstriction, neurological deficits (on day 2), body weight loss (on day 5) and cerebral production of vasoconstrictors such as Thromboxane B2 and Prostaglandin F2α. Conclusions Based on in vivo nanoscale imaging, we demonstrated that TBN protected against blood-brain barrier disruption, exerted an anti-apoptotic effect and improved cerebral perfusion. Thus, TP receptor antagonists showed promising results in treating post-haemorrhage neurovascular events.
Collapse
Affiliation(s)
- David Lagier
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France. .,C2VN Inserm 1263, Inra 1260, Aix Marseille University, Marseille, France.
| | - David Tonon
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France.,C2VN Inserm 1263, Inra 1260, Aix Marseille University, Marseille, France
| | - Philippe Garrigue
- CERIMED (European Center for Research in Medical Imaging), Aix Marseille University, Marseille, France
| | - Benjamin Guillet
- CERIMED (European Center for Research in Medical Imaging), Aix Marseille University, Marseille, France
| | - Laura Giacomino
- Department of Anaesthesiology and Critical Care Medicine, INT (Institut de Neurosciences de la Timone), University Hospital Timone, Aix Marseille University, Marseille, France
| | | | | | - Nicolas Bruder
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France
| | - Lionel J Velly
- Department of Anaesthesiology and Critical Care Medicine, INT (Institut de Neurosciences de la Timone), University Hospital Timone, Aix Marseille University, Marseille, France
| |
Collapse
|
16
|
Luh C, Feiler S, Frauenknecht K, Meyer S, Lubomirov LT, Neulen A, Thal SC. The Contractile Apparatus Is Essential for the Integrity of the Blood-Brain Barrier After Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2018; 10:534-545. [PMID: 30467816 PMCID: PMC6733822 DOI: 10.1007/s12975-018-0677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2018] [Accepted: 11/11/2018] [Indexed: 11/27/2022]
Abstract
Development of vasogenic brain edema is a key event contributing to mortality after subarachnoid hemorrhage (SAH). The precise underlying mechanisms at the neurovascular level that lead to disruption of the blood-brain barrier (BBB) are still unknown. Activation of myosin light chain kinases (MLCK) may result in change of endothelial cell shape and opening of the intercellular gap with subsequent vascular leakage. Male C57Bl6 mice were subjected to endovascular perforation. Brain water content was determined by wet-dry ratio and BBB integrity by Evans-Blue extravasation. The specific MLCK inhibitor ML-7 was administered to the mice to determine the role of the contractile apparatus of the neurovascular unit in determining brain water content, BBB integrity, neurofunctional outcome, brain damage, and survival at 7 days after SAH. Inhibition of MLCK significantly reduced BBB permeability (Evans Blue extravasation − 28%) and significantly decreased edema formation in comparison with controls (− 2%). MLCK-treated mice showed reduced intracranial pressure (− 53%), improved neurological outcome at 24 h and 48 h after SAH, and reduced 7-day mortality. Tight junction proteins claudin-5 and zonula occludens-1 levels were not influenced by ML-7 at 24 h after insult. The effect of ML-7 on pMLC was confirmed in brain endothelial cell culture (bEnd.3 cells) subjected to 4-h oxygen-glucose deprivation. The present study indicates that MLCK contributes to blood-brain barrier dysfunction after SAH by a mechanism that does not involve modulation of tight junction protein levels, but via activation of the contractile apparatus of the endothelial cell skeleton. This underlying mechanism may be a promising target for the treatment of SAH.
Collapse
Affiliation(s)
- Clara Luh
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany. .,Center for Molecular Surgical Research (MFO), Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
17
|
Burke T, Hughes S, Carr A, Javadpour M, Pender N. A Systematic Review of Cognitive Outcomes in Angiographically Negative Subarachnoid Haemorrhage. Neuropsychol Rev 2018; 28:453-469. [DOI: 10.1007/s11065-018-9389-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
18
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
19
|
Russin JJ, Montagne A, D’Amore F, He S, Shiroishi MS, Rennert RC, Depetris J, Zlokovic BV, Mack WJ. Permeability imaging as a predictor of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:973-979. [PMID: 29611451 PMCID: PMC5998996 DOI: 10.1177/0271678x18768670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Blood-brain barrier (BBB) dysfunction has been implicated in ischemic risk following aneurysmal subarachnoid hemorrhage (aSAH), but never directly imaged. We prospectively examined whether post-bleed day 4 dynamic contrast-enhanced magnetic resonance (DCE-MR) BBB permeability imaging could predict development of delayed cerebral ischemia (DCI). Global MR-derived BBB permeability ( Ktrans) was significantly higher in aSAH patients who subsequently developed DCI (five patients; 2.28 ± 0.09 × 10-3 min-1) compared to those who experienced radiographic vasospasm only (three patients; 1.85 ± 0.12 × 10-3 min-1; p < 0.05), or no vasospasm/ischemia (eight patients; 1.74 ± 0.07 × 10-3 min-1; p < 0.01). Ktrans > 2 × 10-3 min-1 predicted development of DCI (AUC = 0.98, 95% CI: 0.93-1). Global BBB dysfunction following aSAH is detectable with DCE-MR and predictive of ischemic risk.
Collapse
Affiliation(s)
- Jonathan J Russin
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Jonathan J Russin, USC Neurorestoration Center, Keck School of Medicine, University of Southern California, 1200 N State Street, Suite 3300, Los Angeles, CA 90033, USA.
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesco D’Amore
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuhan He
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Rennert
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jena Depetris
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
21
|
Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells. Transl Stroke Res 2018; 9:631-642. [PMID: 29429002 DOI: 10.1007/s12975-018-0614-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.
Collapse
|
22
|
Johnson U, Engquist H, Howells T, Nilsson P, Ronne-Engström E, Lewén A, Rostami E, Enblad P. Bedside Xenon-CT Shows Lower CBF in SAH Patients with Impaired CBF Pressure Autoregulation as Defined by Pressure Reactivity Index (PRx). Neurocrit Care 2017; 25:47-55. [PMID: 26842717 DOI: 10.1007/s12028-016-0240-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a disease with a high rate of unfavorable outcome, often related to delayed cerebral ischemia (DCI), i.e., ischemic injury that develops days-weeks after onset, with a multifactorial etiology. Disturbances in cerebral pressure autoregulation, the ability to maintain a steady cerebral blood flow (CBF), despite fluctuations in systemic blood pressure, have been suggested to play a role in the development of DCI. Pressure reactivity index (PRx) is a well-established measure of cerebral pressure autoregulation that has been used to study traumatic brain injury, but not extensively in SAH. OBJECTIVE To study the relation between PRx and CBF in SAH patients, and to examine if PRx can be used to predict DCI. METHODS Retrospective analysis of prospectively collected data. PRx was calculated as the correlation coefficient between mean arterial blood pressure (MABP) and intracranial pressure (ICP) in a 5 min moving window. CBF was measured using bedside Xenon-CT (Xe-CT). DCI was diagnosed clinically. RESULTS 47 poor-grade mechanically ventilated patients were studied. Patients with disturbed pressure autoregulation (high PRx values) had lower CBF, as measured by bedside Xe-CT; both in the early (day 0-3) and late (day 4-14) acute phase of the disease. PRx did not differ significantly between patients who developed DCI or not. CONCLUSION In mechanically ventilated and sedated SAH patients, high PRx (more disturbed CBF pressure autoregulation) is associated with low CBF, both day 0-3 and day 4-14 after onset. The role of PRx as a monitoring tool in SAH patients needs further studying.
Collapse
Affiliation(s)
- Ulf Johnson
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden. .,Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden.
| | - Henrik Engquist
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Tim Howells
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Pelle Nilsson
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience/Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Zhou X, Alambyan V, Ostergard T, Pace J, Kohen M, Manjila S, Ramos-Estebanez C. Prolonged Intracisternal Papaverine Toxicity: Index Case Description and Proposed Mechanism of Action. World Neurosurg 2017; 109:251-257. [PMID: 29017981 DOI: 10.1016/j.wneu.2017.09.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intracisternal papaverine (iPPV) is a vasodilator used for prophylaxis of intraoperative vasospasm during aneurysmal clipping. Postoperative side effects of iPPV include transient cranial nerve palsies, most commonly mydriasis owing to oculomotor nerve involvement, with rapid resolution. METHODS We critically reviewed current literature on the adverse effects of iPPV in aneurysmal surgery with a focus on oculomotor nerve involvement. We also present the index case of prolonged bilateral mydriasis secondary to iPPV irrigation toxicity and its putative underlying mechanism. RESULTS Papaverine toxicity occurs in the setting of its antimuscarinic action and blood-cerebrospinal fluid and blood-brain barrier compromise owing to acute subarachnoid hemorrhage and direct effect of papaverine. Our patient also experienced severe vasospasm and a minor stroke, both contributing to further blood-brain barrier disruption, and relatively acidic pH of the subarachnoid hemorrhage milieu. CONCLUSIONS We propose that these factors perpetuate phase dynamics of papaverine crystals and facilitate a sustained slow release of papaverine within the cisternal system. Were it indicated, 0.3% iPPV would reasonably diminish the risk for neurotoxicity.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vilakshan Alambyan
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas Ostergard
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jonathan Pace
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maryo Kohen
- Department of Ophthalmology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sunil Manjila
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
24
|
Helbok R, Schiefecker AJ, Friberg C, Beer R, Kofler M, Rhomberg P, Unterberger I, Gizewski E, Hauerberg J, Möller K, Lackner P, Broessner G, Pfausler B, Ortler M, Thome C, Schmutzhard E, Fabricius M. Spreading depolarizations in patients with spontaneous intracerebral hemorrhage: Association with perihematomal edema progression. J Cereb Blood Flow Metab 2017; 37:1871-1882. [PMID: 27207168 PMCID: PMC5435285 DOI: 10.1177/0271678x16651269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
Abstract
Pathophysiologic mechanisms of secondary brain injury after intracerebral hemorrhage and in particular mechanisms of perihematomal-edema progression remain incompletely understood. Recently, the role of spreading depolarizations in secondary brain injury was established in ischemic stroke, subarachnoid hemorrhage and traumatic brain injury patients. Its role in intracerebral hemorrhage patients and in particular the association with perihematomal-edema is not known. A total of 27 comatose intracerebral hemorrhage patients in whom hematoma evacuation and subdural electrocorticography was performed were studied prospectively. Hematoma evacuation and subdural strip electrode placement was performed within the first 24 h in 18 patients (67%). Electrocorticography recordings started 3 h after surgery (IQR, 3-5 h) and lasted 157 h (median) per patient and 4876 h in all 27 patients. In 18 patients (67%), a total of 650 spreading depolarizations were observed. Spreading depolarizations were more common in the initial days with a peak incidence on day 2. Median electrocorticography depression time was longer than previously reported (14.7 min, IQR, 9-22 min). Postoperative perihematomal-edema progression (85% of patients) was significantly associated with occurrence of isolated and clustered spreading depolarizations. Monitoring of spreading depolarizations may help to better understand pathophysiologic mechanisms of secondary insults after intracerebral hemorrhage. Whether they may serve as target in the treatment of intracerebral hemorrhage deserves further research.
Collapse
Affiliation(s)
- Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | | | - Christian Friberg
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Ronny Beer
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Mario Kofler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Paul Rhomberg
- Department of Neuroradiology, Medical University Innsbruck, Austria
| | - Iris Unterberger
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University Innsbruck, Austria
| | - John Hauerberg
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Möller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Lackner
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Gregor Broessner
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Martin Ortler
- Department of Neurosurgery, Medical University Innsbruck, Austria
| | - Claudius Thome
- Department of Neurosurgery, Medical University Innsbruck, Austria
| | - Erich Schmutzhard
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Austria
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Mishra A. Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J Physiol 2016; 595:1885-1902. [PMID: 27619153 DOI: 10.1113/jp270979] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Zhong YW, Wu J, Hu HL, Li WX, Zhong Y. Protective effect 3,4-dihydroxyphenylethanol in subarachnoid hemorrhage provoked oxidative neuropathy. Exp Ther Med 2016; 12:1908-1914. [PMID: 27588109 DOI: 10.3892/etm.2016.3526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/22/2016] [Indexed: 12/25/2022] Open
Abstract
Clinical studies have indicated that early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with fatal outcomes. Oxidative stress and brain edema are the characteristic pathological events in occurrence EBI following SAH. The present study aimed to examine the effect of 3,4-dihydroxyphenylethanol (DOPET) against SAH-induced EBI, and to demonstrate whether the effect is associated with its potent free radical scavenging property. SAH was induced in rats using an endovascular perforation technique, and 24 h later the rats displayed diminished neurological scores and brain edema. Furthermore, elevated malondialdehyde (an index of lipid peroxidation) and depleted levels of antioxidants were observed in the rat cerebral cortex tissue. Quantitative polymerase chain reaction analysis indicated the upregulated mRNA expression of the apoptotic markers caspase-3 and -9 in the cerebral cortex. Furthermore, the protein expression levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β and IL-6 were significantly upregulated in SAH-induced rats. By constrast, treatment with DOPET significantly attenuated EBI by reducing brain edema, elevation of antioxidant status, inhibition of apoptosis and inflammation. In this context, DOPET may be a potent agent in the treatment of EBI following SAH, as a result of its free radical scavenging capacity.
Collapse
Affiliation(s)
- Yu-Wen Zhong
- Department of Neurology, Tongcheng People's Hospital, Xianning, Hubei 437400, P.R. China
| | - Juan Wu
- Department of Obstetrics and Gynecology, Tongcheng People's Hospital, Xianning, Hubei 437400, P.R. China
| | - Hua-Long Hu
- Department of Neurology, Tongcheng People's Hospital, Xianning, Hubei 437400, P.R. China
| | - Wei-Xin Li
- Department of Neurology, Tongcheng People's Hospital, Xianning, Hubei 437400, P.R. China
| | - Yong Zhong
- Department of Neurology, Tongcheng People's Hospital, Xianning, Hubei 437400, P.R. China
| |
Collapse
|
27
|
Weidman EK, Foley CP, Kallas O, Dyke JP, Gupta A, Giambrone AE, Ivanidze J, Baradaran H, Ballon DJ, Sanelli PC. Evaluating Permeability Surface-Area Product as a Measure of Blood-Brain Barrier Permeability in a Murine Model. AJNR Am J Neuroradiol 2016; 37:1267-74. [PMID: 26965465 DOI: 10.3174/ajnr.a4712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Permeability surface-area product has been suggested as a marker for BBB permeability with potential applications in clinical care and research. However, few studies have demonstrated its correlation with actual quantitative measurements of BBB permeability. Our aim was to demonstrate the correlation of quantitative permeability surface-area product and BBB permeability in a murine model by histologic confirmation. MATERIALS AND METHODS Coronal MR imaging was performed on mice treated with mannitol (n = 6) for disruption of the BBB and controls treated with saline (n = 5). Permeability surface-area product was determined by ROI placement and was compared between saline- and mannitol-treated mice. Correlation was made with contrast-enhancement measurements and immunohistologic-stained sections of tripeptidyl peptidase-1 distribution in mice treated with mannitol and saline followed by injection of a viral vector containing the CLN2 gene, which directs production of tripeptidyl peptidase-1. RESULTS Significantly increased permeability surface-area product was seen in mannitol- compared with saline-treated mice in the whole brain (P = .008), MCA territory (P = .014), and mixed vascular territories (P = .008). These findings were compared with contrast-enhancement measurements of BBB permeability and were correlated with immunohistologic-stained sections demonstrating BBB permeability to a large vector. CONCLUSIONS Permeability surface-area product is increased in situations with known disruptions of the BBB, as evidenced by immunologic staining of large-vector passage through the BBB and concordance with contrast-enhancement measurements in a murine model. Quantitative permeability surface-area product has potential as an imaging marker of BBB permeability.
Collapse
Affiliation(s)
- E K Weidman
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - C P Foley
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - O Kallas
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - J P Dyke
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - A Gupta
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - A E Giambrone
- Division of Biostatistics and Epidemiology Department of Healthcare Policy and Research (A.E.G.), Weill Cornell Medical College, New York, New York
| | - J Ivanidze
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - H Baradaran
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - D J Ballon
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - P C Sanelli
- From the Department of Radiology (E.K.W., C.P.F., O.K., J.P.D., A.G., J.I., H.B., D.J.B., P.C.S.), New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York Department of Radiology (P.C.S.), Northwell Health, Manhasset, New York.
| |
Collapse
|
28
|
Cao S, Zhu P, Yu X, Chen J, Li J, Yan F, Wang L, Yu J, Chen G. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: Possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression. Neurosci Lett 2016; 621:88-97. [PMID: 27080433 DOI: 10.1016/j.neulet.2016.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
AIMS This study investigated the effect of H2S on brain edema formation and the possible underlying mechanisms in early brain injury (EBI) of SAH using the endovascular perforation model. METHODS 96 male rats were randomly divided into four groups: sham group, SAH+vehicle group, SAH+low-dosage NaHS group, and SAH+high-dosage NaHS group. Brain samples were used for brain water content and blood-brain barrier (BBB) leakage measurement, gelatin zymography, Western blot and immunohistochemistry. RESULTS H2S markedly attenuated brain edema formation and apoptotic cell death, improved neurological dysfunction in the acute stage of SAH. The possible mechanisms of H2S's effect on brain edema formation were through preventing BBB disruption and reducing APQ4 expression on astrocytes. In detail, H2S prevented BBB disruption by inhibiting MMP-9 induced tight junction proteins (TJPs) degradation. H2S down-regulated AQP4 expression on astrocytes by suppressing glial cell activation and pro-inflammatory cytokines secretion. CONCLUSION Taken together, this study showed that H2S attenuated brain edema formation partially by inhibiting the degradation of TJPs via reducing MMP-9 expression/activity and suppressing AQP4 expression via alleviating glia activation and pro-inflammatory cytokines secretion.
Collapse
Affiliation(s)
- Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ping Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Vascular Endothelial Growth Factor in Brain Edema Formation After Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA SUPPLEMENT 2016; 121:173-7. [DOI: 10.1007/978-3-319-18497-5_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Teng Z, Jiang L, Hu Q, He Y, Guo Z, Wu Y, Huang Z, Cao F, Cheng C, Sun X, Guo Z. Peroxisome Proliferator-Activated Receptor β/δ Alleviates Early Brain Injury After Subarachnoid Hemorrhage in Rats. Stroke 2015; 47:196-205. [PMID: 26628385 DOI: 10.1161/strokeaha.115.011701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Early brain injury is proposed to be the primary cause of the poor outcome after subarachnoid hemorrhage (SAH), which is closely related to the neural apoptosis. To date, the relationship between peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and nuclear factor-κB/matrix metalloproteinase-9 (NF-κB/MMP-9) pathway, both of which are closely related to apoptotic effects, has been poorly studied in SAH. The present study was undertaken to evaluate the effects of PPARβ/δ on early brain injury and NF-κB/MMP-9 pathway after SAH in rats. METHODS SAH model was established by injecting nonheparinized autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Adenoviruses or small interfering RNAs were injected into the right lateral cerebral ventricle to, respectively, up- or downregulate PPARβ/δ expression before SAH. All animals were assessed with a neurological score and then killed at 24 hours after SAH surgery. The indexes of brain water content, blood-brain barrier permeability, and apoptosis were used to detect brain injury. The expression of PPARβ/δ, NF-κB, and MMP-9 were measured by immunohistochemistry, gelatin zymography, and Western Blot methods, respectively. In addition, GW0742, a specific agonist of PPARβ/δ, was used to treat SAH in rats, the effects of which were evaluated by neurological scoring and Evans blue extravasation. RESULTS Overexpression of PPARβ/δ by adenoviruses treatment significantly ameliorated brain injury with improvement in neurological deficits, brain edema, blood-brain barrier impairment, and neural cell apoptosis at 24 hours after SAH in rats, whereas downregulation of PPARβ/δ by small interfering RNAs administration resulted in the reverse effects of the above. The expression levels of NF-κB and MMP-9 were markedly downregulated when PPARβ/δ increased after PPARβ/δ adenovirus transfection and upregulated when PPARβ/δ decreased by PPARβ/δ small interfering RNAs treatment. Moreover, GW0742 improved neurological deficits and reduced Evans blue extravasation at 24 hours after SAH. CONCLUSIONS PPARβ/δ's overexpression may attenuate early brain injury after rats' SAH administration, which reduces neural apoptosis possibly through blocking NF-κB/MMP-9 pathway.
Collapse
Affiliation(s)
- Zhipeng Teng
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Li Jiang
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Qin Hu
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Yue He
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Zhenni Guo
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Yue Wu
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Zhijian Huang
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Fang Cao
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Chongjie Cheng
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Xiaochuan Sun
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo).
| | - Zongduo Guo
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo).
| |
Collapse
|
31
|
Terpolilli NA, Brem C, Bühler D, Plesnila N. Are We Barking Up the Wrong Vessels? Stroke 2015; 46:3014-9. [DOI: 10.1161/strokeaha.115.006353] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Angela Terpolilli
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Christian Brem
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Dominik Bühler
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- From the Department of Neurosurgery (N.A.T.), Department of Neuroradiology (C.B.), Institute for Stroke and Dementia Research (D.B., N.P.), and Munich Cluster for Systems Neurology (SyNergy) (N.P.), University of Munich Medical Center, Munich, Germany
| |
Collapse
|
32
|
Huang LT, Li H, Sun Q, Liu M, Li WD, Li S, Yu Z, Wei WT, Hang CH. IL-33 expression in the cerebral cortex following experimental subarachnoid hemorrhage in rats. Cell Mol Neurobiol 2015; 35:493-501. [PMID: 25417195 DOI: 10.1007/s10571-014-0143-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a pervasive and devastating condition in which inflammatory and apoptotic pathways contribute to poor outcome. Interleukin-33 (IL-33) plays a crucial role in the inflammatory and apoptotic pathways through binding of the transmembrane ST2 receptor. This study investigated the expression and cellular localization of IL-33 in the cerebral cortex after SAH in order to clarify the role of IL-33 after SAH. Sprague-Dawley rats were randomly divided into sham and SAH groups and evaluated 2, 6, and 12 h and 1, 2, 3, and 5 days after the surgery, with SAH animals subjected to prechiasmatic cistern SAH. IL-33 expression was measured by western blot analysis, real-time PCR, immunohistochemistry, and immunofluorescence. The mRNA levels of tumor necrosis factor (TNF)-α and IL-1β were also assessed. The expression of IL-33, IL-1β, and TNF-α was markedly elevated in the SAH as compared to the sham group; IL-33 was mainly localized in neurons and astrocytes and not microglia after SAH. Moreover, a significant positive association was observed between IL-33 and IL-1β expression. These findings indicate that IL-33 might play an important role in the inflammatory response following SAH.
Collapse
Affiliation(s)
- Li-Tian Huang
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing, 20002, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li Z, Liang G, Ma T, Li J, Wang P, Liu L, Yu B, Liu Y, Xue Y. Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage. Metab Brain Dis 2015; 30:597-603. [PMID: 25270004 DOI: 10.1007/s11011-014-9609-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/13/2014] [Indexed: 11/24/2022]
Abstract
We aimed to investigate the blood brain barrier (BBB) change caused by subarachnoid hemorrhage (SAH) and to explore the molecular mechanisms of acute brain injury after SAH. The SD rat model of SAH was firstly established by endovascular filament perforation technique. The changes of regional cerebral blood flow (rCBF), BBB permeability and ultrastructure of brain tissue at different time points after SAH were respectively observed by Doppler flowmetry, evans blue extravasation and transmission electron microscopy. Meanwhile, the expression changes of Claudin-5, Occludin, Zo-1 and Caveolin-1 were detected by immunohistochemistry and Western blot. Furthermore, the expressions of Akt, P-Akt and Foxo1A were also measured by Western blot. The change of BBB permeability showed two peaks at 3 and 72 h after SAH, corresponding to the change of rCBF. The BBB tight junction opening can be observed after SAH, and the largest opening was occurred at 3 h and 72 h. There was no significant change in Caveolin-1, Claudin-5 and Akt expressions after SAH (P > 0.05), while Zo-1 and Occludin were significantly down-regulated (P < 0.05). The expression of P-Akt was obviously reduced at 30 min and then increased at 1 and 24 h, while Foxo1A was up-regulated at 1 and 24 h after SAH (P < 0.05). Down-regulated Zo-1 and Occludin, as well as Akt/FOXO signaling pathway may be involved in the regulation of tight junction opening and the BBB permeability in the early stage after SAH.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9:18. [PMID: 25705177 PMCID: PMC4319479 DOI: 10.3389/fncel.2015.00018] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | | | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
35
|
Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, Menon DK, Pickard JD, Kirkpatrick PJ. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014; 85:1343-53. [PMID: 24847164 DOI: 10.1136/jnnp-2014-307711] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerebral vasospasm has traditionally been regarded as an important cause of delayed cerebral ischaemia (DCI) which occurs after aneurysmal subarachnoid haemorrhage, and often leads to cerebral infarction and poor neurological outcome. However, data from recent studies argue against a pure focus on vasospasm as the cause of delayed ischaemic complications. Findings that marked reduction in the incidence of vasospasm does not translate to a reduction in DCI, or better outcomes has intensified research into other possible mechanisms which may promote ischaemic complications. Early brain injury and cell death, blood-brain barrier disruption and initiation of an inflammatory cascade, microvascular spasm, microthrombosis, cortical spreading depolarisations and failure of cerebral autoregulation, have all been implicated in the pathophysiology of DCI. This review summarises the current knowledge about the mechanisms underlying the development of DCI. Furthermore, it aims to describe and categorise the known pharmacological treatment options with respect to the presumed mechanism of action and its role in DCI.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Mathew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Terhi Huuskonen
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK Department of Neurosurgery, Kuopio Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ramez Kirollos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Anaesthesiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. BIOMED RESEARCH INTERNATIONAL 2014; 2014:253746. [PMID: 24900959 PMCID: PMC4037567 DOI: 10.1155/2014/253746] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Cerebral vasospasm of the major cerebral arteries, which is characterized by angiographic narrowing of those vessels, had been recognized as a main contributor to delayed cerebral ischemia (DCI) in subarachnoid hemorrhage (SAH) patients. However, the CONSCIOUS-1 trial revealed that clazosentan could not improve mortality or clinical outcome in spite of successful reduction of relative risk in angiographic vasospasm. This result indicates that the pathophysiology underlying DCI is multifactorial and that other pathophysiological factors, which are independent of angiographic vasospasm, can contribute to the outcome. Recent studies have focused on microcirculatory disturbance, such as microthrombosis and arteriolar constriction, as a factor affecting cerebral ischemia after SAH. Reports detecting microthrombosis and arteriolar constriction will be reviewed, and the role of the microcirculation on cerebral ischemia during vasospasm after SAH will be discussed.
Collapse
|
37
|
Fujii M, Sherchan P, Krafft PR, Rolland WB, Soejima Y, Zhang JH. Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats. J Neurol Sci 2014; 342:101-6. [PMID: 24819918 DOI: 10.1016/j.jns.2014.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 04/22/2014] [Indexed: 12/27/2022]
Abstract
Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.
Collapse
Affiliation(s)
- Mutsumi Fujii
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - William B Rolland
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yoshiteru Soejima
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
38
|
Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int J Cell Biol 2014; 2014:495817. [PMID: 24729786 PMCID: PMC3963111 DOI: 10.1155/2014/495817] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common form of hemorrhagic stroke, accounting for 15% of all strokes. ICH has the highest acute mortality and the worst long-term prognosis of all stroke subtypes. Unfortunately, the dearth of clinically effective treatment options makes ICH the least treatable form of stroke, emphasizing the need for novel therapeutic targets. Recent work by our laboratory identified a novel role for the necroptosis inhibitor, necrostatin-1, in limiting neurovascular injury in tissue culture models of hemorrhagic injury. In the present study, we tested the hypothesis that necrostatin-1 reduces neurovascular injury after collagenase-induced ICH in mice. Necrostatin-1 significantly reduced hematoma volume by 54% at 72 h after-ICH, as compared to either sham-injured mice or mice administered an inactive, structural analogue of necrostatin-1. Necrostatin-1 also limited cell death by 48%, reduced blood-brain barrier opening by 51%, attenuated edema development to sham levels, and improved neurobehavioral outcomes after ICH. These data suggest a potential clinical utility for necrostatin-1 and/or novel necroptosis inhibitors as an adjunct therapy to reduce neurological injury and improve patient outcomes after ICH.
Collapse
|
39
|
Zhou XM, Zhang X, Zhang XS, Zhuang Z, Li W, Sun Q, Li T, Wang CX, Zhu L, Shi JX, Zhou ML. SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. J Neurosci Res 2014; 92:714-22. [PMID: 24482345 DOI: 10.1002/jnr.23359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/01/2013] [Accepted: 12/11/2013] [Indexed: 11/11/2022]
Abstract
Secondary brain injury following subarachnoid hemorrhage (SAH) is poorly understood. We utilized a rat model of SAH to investigate whether SIRT1 has a protective role against brain edema via the tumor suppressor protein p53 pathway. Experimental SAH was induced in adult male Sprague-Dawley rats by prechiasmatic cistern injection. Brain SIRT1 protein levels were examined in the sham controls and in rats 6, 12, 24, 48, and 72 hr after SAH induction. The SIRT1 inhibitor sirtinol was administered by intracerebroventricular infusion. Neurological functions, blood-brain barrier (BBB) disruption, and brain water content were assessed. Endothelial cell apoptosis, caspase 3 protein expression, p53 acetylation, and matrix metalloproteinase-9 (MMP-9) activity were examined. Compared with the control, SIRT1 protein expression increased remarkably, reaching a maximum at 24 hr after SAH. Sirtinol treatment significantly lowered SIRT1 expression, accompanied by deteriorated neurologic function, BBB disruption, brain edema, increased endothelial cell apoptosis, and increased MMP-9 gelatinase activity compared with the rats treated with vehicle only. Our results suggest that increased expression of endogenous SIRT1 may play a neuroprotective role against brain edema after SAH.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Edvinsson L, Larsen SS, Maddahi A, Nielsen J. Plasticity of cerebrovascular smooth muscle cells after subarachnoid hemorrhage. Transl Stroke Res 2014; 5:365-76. [PMID: 24449486 DOI: 10.1007/s12975-014-0331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Subarachnoid hemorrhage (SAH) is most often followed by a delayed phase of cerebral ischemia which is associated with high morbidity and mortality rates. The causes underlying this delayed phase are still unsettled, but are believed to include cerebral vasospasm, cortical spreading depression, inflammatory reactions, and microthrombosis. Additionally, a large body of evidence indicates that vascular plasticity plays an important role in SAH pathophysiology, and this review aims to summarize our current knowledge on the phenotypic changes of vascular smooth muscle cells of the cerebral vasculature following SAH. In light of the emerging view that the whole cerebral vasculature and the cells of the brain parenchyma should be viewed as one integrated neurovascular network, phenotypical changes are discussed both for the cerebral arteries and the microvasculature. Furthermore, the intracellular signaling involved in the vascular plasticity is discussed with a focus on the Raf-MEK1/2-ERK1/2 pathway which seems to play a crucial role in SAH pathology.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Glostrup, Denmark,
| | | | | | | |
Collapse
|
41
|
Abstract
Subarachnoid haemorrhage (SAH) causes early brain injury (EBI) that is mediated by effects of transient cerebral ischaemia during bleeding plus effects of the subarachnoid blood. Secondary effects of SAH include increased intracranial pressure, destruction of brain tissue by intracerebral haemorrhage, brain shift, and herniation, all of which contribute to pathology. Many patients survive these phenomena, but deteriorate days later from delayed cerebral ischaemia (DCI), which causes poor outcome or death in up to 30% of patients with SAH. DCI is thought to be caused by the combined effects of angiographic vasospasm, arteriolar constriction and thrombosis, cortical spreading ischaemia, and processes triggered by EBI. Treatment for DCI includes prophylactic administration of nimodipine, and current neurointensive care. Prompt recognition of DCI and immediate treatment by means of induced hypertension and balloon or pharmacological angioplasty are considered important by many physicians, although the evidence to support such approaches is limited. This Review summarizes the pathophysiology of DCI after SAH and discusses established treatments for this condition. Novel strategies--including drugs such as statins, sodium nitrite, albumin, dantrolene, cilostazol, and intracranial delivery of nimodipine or magnesium--are also discussed.
Collapse
|
42
|
Naranjo D, Arkuszewski M, Rudzinski W, Melhem ER, Krejza J. Brain ischemia in patients with intracranial hemorrhage: pathophysiological reasoning for aggressive diagnostic management. Neuroradiol J 2013; 26:610-28. [PMID: 24355179 PMCID: PMC4202872 DOI: 10.1177/197140091302600603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
Abstract
Patients with intracranial hemorrhage have to be managed aggressively to avoid or minimize secondary brain damage due to ischemia, which contributes to high morbidity and mortality. The risk of brain ischemia, however, is not the same in every patient. The risk of complications associated with an aggressive prophylactic therapy in patients with a low risk of brain ischemia can outweigh the benefits of therapy. Accurate and timely identification of patients at highest risk is a diagnostic challenge. Despite the availability of many diagnostic tools, stroke is common in this population, mostly because the pathogenesis of stroke is frequently multifactorial whereas diagnosticians tend to focus on one or two risk factors. The pathophysiological mechanisms of brain ischemia in patients with intracranial hemorrhage are not yet fully elucidated and there are several important areas of ongoing research. Therefore, this review describes physiological and pathophysiological aspects associated with the development of brain ischemia such as the mechanism of oxygen and carbon dioxide effects on the cerebrovascular system, neurovascular coupling and respiratory and cardiovascular factors influencing cerebral hemodynamics. Consequently, we review investigations of cerebral blood flow disturbances relevant to various hemodynamic states associated with high intracranial pressure, cerebral embolism, and cerebral vasospasm along with current treatment options.
Collapse
Affiliation(s)
- Daniel Naranjo
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Michal Arkuszewski
- Department of Neurology, Medical University of Silesia, Central University Hospital; Katowice, Poland
| | - Wojciech Rudzinski
- Department of Cardiology, Robert Packer Hospital; Sayre, Pennsylvania USA
| | - Elias R. Melhem
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Jaroslaw Krejza
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| |
Collapse
|
43
|
Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, Iversen NK, Secher N, Engedal TS, Anzabi M, Jimenez EG, Cai C, Koch KU, Naess-Schmidt ET, Obel A, Juul N, Rasmussen M, Sørensen JCH. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2013; 33:1825-37. [PMID: 24064495 PMCID: PMC3851911 DOI: 10.1038/jcbfm.2013.173] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/31/2013] [Accepted: 09/08/2013] [Indexed: 02/07/2023]
Abstract
The mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia (DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic reversal of angiographic vasospasms fails to improve patient outcome. The etiology of chronic neurodegenerative changes after SAH remains poorly understood. Brain oxygenation depends on both cerebral blood flow (CBF) and its microscopic distribution, the so-called capillary transit time heterogeneity (CTH). In theory, increased CTH can therefore lead to tissue hypoxia in the absence of severe CBF reductions, whereas reductions in CBF, paradoxically, improve brain oxygenation if CTH is critically elevated. We review potential sources of elevated CTH after SAH. Pericyte constrictions in relation to the initial ischemic episode and subsequent oxidative stress, nitric oxide depletion during the pericapillary clearance of oxyhemoglobin, vasogenic edema, leukocytosis, and astrocytic endfeet swelling are identified as potential sources of elevated CTH, and hence of metabolic derangement, after SAH. Irreversible changes in capillary morphology and function are predicted to contribute to long-term relative tissue hypoxia, inflammation, and neurodegeneration. We discuss diagnostic and therapeutic implications of these predictions.
Collapse
Affiliation(s)
- Leif Østergaard
- 1] Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark [2] Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Altay O, Suzuki H, Hasegawa Y, Ostrowski RP, Tang J, Zhang JH. Isoflurane on brain inflammation. Neurobiol Dis 2013; 62:365-71. [PMID: 24084689 DOI: 10.1016/j.nbd.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/01/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
Brain inflammation may play an important role in the pathophysiology of early brain injury after subarachnoid hemorrhage (SAH). Our aim was to demonstrate brain inflammation development and to determine whether isoflurane, a clinically available volatile anesthetic agent, prevents brain inflammation after SAH. This study used 162 8-week-old male CD-1 mice. We induced SAH with endovascular perforation in mice and randomly assigned animals to sham-operated (n=21), SAH+vehicle-air (n=35) and SAH+2% isoflurane (n=31). In addition to the evaluation of brain injury (neurological scores, brain edema and Evans blue dye extravasation), brain inflammation was evaluated by means of expression changes in markers of inflammatory cells (ionized calcium binding adaptor molecule-1, myeloperoxidase), cytokines (tumor necrosis factor [TNF]-α, interleukin-1β), adhesion molecules (intercellular adhesion molecule [ICAM]-1, P-selectin), inducers of inflammation (cyclooxygenase-2, phosphorylated c-Jun N-terminal kinase [p-JNK]) and endothelial cell activation (von Willebrand factor) at 24h post-SAH. Sphingosine kinase inhibitor (N, N-dimethylsphingosine [DMS]) and sphingosine-1-phosphate receptor-1/3 antagonist (VPC23019) were used to block isoflurane's effects (n=22, each). SAH caused early brain injury, which was associated with inflammation so that all evaluated markers of inflammation were increased. Isoflurane significantly inhibited both brain injury (P<0.001, respectively) and inflammation (myeloperoxidase, P=0.022; interleukin-1β, P=0.002; TNF-α, P=0.015; P-selectin, P=0.010; ICAM-1, P=0.016; p-JNK, P<0.001; cyclooxygenase-2, P=0.003, respectively). This beneficial effect of isoflurane was abolished with DMS and VPC23019. Isoflurane may suppress post-SAH brain inflammation possibly via the sphingosine-related pathway.
Collapse
Affiliation(s)
- Orhan Altay
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA
| | - Hidenori Suzuki
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA
| | - Yu Hasegawa
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA
| | - Robert P Ostrowski
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA
| | - Jiping Tang
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA
| | - John H Zhang
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
45
|
Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 2013; 31:568-81. [DOI: 10.1179/174313209x382412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Abstract
Brain injury after subarachnoid hemorrhage (SAH) is a biphasic event with an acute ischemic insult at the time of the initial bleed and secondary events such as cerebral vasospasm 3 to 7 days later. Although much has been learned about the delayed effects of SAH, less is known about the mechanisms of acute SAH-induced injury. Distribution of blood in the subarachnoid space, elevation of intracranial pressure, reduced cerebral perfusion and cerebral blood flow (CBF) initiates the acute injury cascade. Together they lead to direct microvascular injury, plugging of vessels and release of vasoactive substances by platelet aggregates, alterations in the nitric oxide (NO)/nitric oxide synthase (NOS) pathways and lipid peroxidation. This review will summarize some of these mechanisms that contribute to acute cerebral injury after SAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
47
|
Pathophysiological Role of Global Cerebral Ischemia following Subarachnoid Hemorrhage: The Current Experimental Evidence. Stroke Res Treat 2013; 2013:651958. [PMID: 23844316 PMCID: PMC3694494 DOI: 10.1155/2013/651958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is the subtype of stroke with one of the highest mortality rates and the least well-understood pathophysiologies. One of the very early events which may occur after SAH is a significant decrease of cerebral perfusion pressure (CPP) caused by the excessive increase of intracranial pressure during the initial bleeding. A severely decreased CPP results in global cerebral ischemia, an event also occurring after cardiac arrest. The aim of the current paper is to review the pathophysiological events occurring in experimental models of SAH and global cerebral ischemia and to evaluate the contribution and the importance of global cerebral ischemia for the pathophysiology of SAH.
Collapse
|
48
|
Koide M, Sukhotinsky I, Ayata C, Wellman GC. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat 2013; 2013:819340. [PMID: 23577279 PMCID: PMC3610342 DOI: 10.1155/2013/819340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/17/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is an ongoing process involving coordinated activity of the neurovascular unit-neurons, astrocytes, and parenchymal arterioles. Neuronal activity can also influence cerebral blood flow on a larger scale. Spreading depolarizations (SD) are self-propagating waves of neuronal depolarization and are observed during migraine, traumatic brain injury, and stroke. Typically, SD is associated with increased cerebral blood flow. Emerging evidence indicates that SAH causes inversion of neurovascular communication on both the local and global level. In contrast to other events causing SD, SAH-induced SD decreases rather than increases cerebral blood flow. Further, at the level of the neurovascular unit, SAH causes an inversion of neurovascular coupling from vasodilation to vasoconstriction. Global ischemia can also adversely affect the neurovascular response. Here, we summarize current knowledge regarding the impact of SAH and global ischemia on neurovascular communication. A mechanistic understanding of these events should provide novel strategies to treat these neurovascular disorders.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | - Inna Sukhotinsky
- Neurovascular Research Laboratory, Department of Radiology, Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52990, Israel
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - George C. Wellman
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| |
Collapse
|
49
|
Caner B, Hou J, Altay O, Fuj M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 2012; 123 Suppl 2:12-21. [DOI: 10.1111/j.1471-4159.2012.07939.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Basak Caner
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Jack Hou
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Orhan Altay
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | - Mutsumi Fuj
- Department of Physiology; Loma Linda University, School of Medicine; Loma Linda; California; USA
| | | |
Collapse
|
50
|
Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 2012; 43:2513-6. [PMID: 22773559 DOI: 10.1161/strokeaha.112.661728] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE We examined effects of isoflurane, volatile anesthetics, on blood-brain barrier disruption in the endovascular perforation model of subarachnoid hemorrhage (SAH) in mice. METHODS Animals were assigned to sham-operated, SAH+vehicle-air, SAH+1%, or 2% isoflurane groups. Neurobehavioral function, brain water content, Evans blue dye extravasation, and Western blotting for sphingosine kinases, occludin, claudin-5, junctional adhesion molecule, and vascular endothelial cadherin were evaluated at 24 hours post-SAH. Effects of sphingosine kinase (N,N-dimethylsphingosine) or sphingosine-1-phosphate receptor-1/3 (S1P1/3) inhibitors (VPC23019) on isoflurane's action were also examined. RESULTS SAH aggravated neurological scores, brain edema, and blood-brain barrier permeability, which were prevented by 2% but not 1% isoflurane posttreatment. Two percent isoflurane increased sphingosine kinase-1 expression and prevented a post-SAH decrease in expressions of the blood-brain barrier-related proteins. Both N,N-dimethylsphingosine and VPC23019 abolished the beneficial effects of isoflurane. CONCLUSIONS Two percent isoflurane can suppress post-SAH blood-brain barrier disruption, which may be mediated by sphingosine kinase 1 expression and sphingosine-1-phosphate receptor-1/3 activation.
Collapse
Affiliation(s)
- Orhan Altay
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|