1
|
Khmelinskii I, Makarov VI. Theoretical approaches used in the modelling of reversible and irreversible mitochondrial swelling in vitro. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:15-23. [PMID: 35447196 DOI: 10.1016/j.pbiomolbio.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Existing theoretical approaches were considered that allow modelling of mitochondrial swelling (MS) dynamics. Simple phenomenological kinetic models were reviewed. Simple and extended biophysical and bioenergetic models that ignore mechanical properties of inner mitochondrial membrane (IMM), and similar models that include these mechanical properties were also reviewed. Limitations of these models we considered, as regards correct modelling of MS dynamics. It was found that simple phenomenological kinetic models have significant limitations, due to dependence of the kinetic parameter values estimated by fitting of the experimental data on the experimental conditions. Additionally, such simple models provide no understanding of the detailed mechanisms behind the MS dynamics, nor of the dynamics of various system parameters during MS. Thus, biophysical and bioenergetic models ignoring IMM mechanical properties can't be used to model the transition between reversible and irreversible MS. However, simple and extended biophysical models that include IMM mechanical properties allow modelling the transition to irreversible swelling. These latter models are still limited due to significantly simplified description of biochemistry, compared to those of bioenergetic models. Finally, a strategy of model development is proposed, towards correct interpretation of the mitochondrial life cycle, including the effects of MS dynamics.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139, Faro, Portugal
| | - Vladimir I Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR, 00931-3343, USA.
| |
Collapse
|
2
|
Khmelinskii I, Makarov V. Theoretical analysis of reversible and irreversible mitochondrial swelling in vivo. Biosystems 2022; 217:104679. [DOI: 10.1016/j.biosystems.2022.104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
|
3
|
Khmelinskii I, Makarov VI. Mitochondrial ATP Synthesis Activated by Exciton Energy Transfer from Müller cell Intermediate Filaments. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Khmelinskii I, Makarov V. Reversible and irreversible mitochondrial swelling in vitro. Biophys Chem 2021; 278:106668. [PMID: 34418677 DOI: 10.1016/j.bpc.2021.106668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Mitochondrial activity as regards ATP production strongly depends on mitochondrial swelling (MS) mode. Therefore, this work analyzes reversible and irreversible MS using a detailed biophysical model. The reported model includes mechanical properties of the inner mitochondrial membrane (IMM). The model describes MS dynamics for spherically symmetric, axisymmetric ellipsoidal and general ellipsoidal mitochondria. Mechanical stretching properties of the IMM were described by a second-rank rigidity tensor. The tensor components were estimated by fitting to the earlier reported results of in vitro experiments. The IMM rigidity constant of ca. 0.008 dyn/nm was obtained for linear deformations. The model also included membrane bending effects, which were small compared to those of membrane stretching. The model was also tested by simulation of the earlier reported experimental data and of the system dynamics at different initial conditions, predicting the system behavior. The transition criteria from reversible to irreversible swelling were determined and tested. The presently developed model is applicable directly to the analysis of in vitro experimental data, while additional improvements are necessary before it could be used to describe mitochondrial swelling in vivo. The reported theoretical model also provides an idea of physically consistent mechanism for the permeability transport pore (PTP) opening, which depends on the IMM stretching stress. In the current study, this idea is discussed briefly, but a detailed theoretical analysis of these ideas will be performed later. The currently developed model provides new understanding of the detailed MS mechanism and of the conditions for the transition between reversible and irreversible MS modes. On the other hand, the current model provides useful mathematical tools, that may be successfully used in mitochondrial biophysics research, and also in other applications, predicting the behavior of mitochondria in different conditions of the surrounding media in vitro or cellular cyto(sarco)plasm in vivo. These mathematical tools are based on real biophysical processes occurring in mitochondria. Thus, we note a significant progress in the theoretical approach, which may be used in real biological systems, compared to the earlier reported models. Significance of this study derives from inclusion of IMM mechanical properties, which directly impact the reversible and irreversible mitochondrial swelling dynamics. Reversible swelling corresponds to reversible IMM deformations, while irreversible swelling corresponds to irreversible deformations, with eventual membrane disruption. The IMM mechanical properties are directly dependent on the membrane biochemical composition and structure. The IMM deformationas are induced by osmotic pressure created by the ionic/neutral solute imbalance between the mitochondrial matrix media and the bulk solution in vitro, or cyto(sarco)plasm in vivo. The novelty of the reported model is in the biophysical mechanism detailing ionic and neutral solute transport for a large number of solutes, which were not taken into account in the earlier reported biophysical models of MS. Therefore, the reported model allows understanding response of mitochondria to the changes of initial concentration(s) of any of the solute(s) included in the model. Note that the values of all of the model parameters and kinetic constants have been estimated and the resulting complete model may be used for quantitative analysis of mitochondrial swelling dynamics in conditions of real in vitro experiments.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139 Faro, Portugal
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR 00931-3343, USA.
| |
Collapse
|
5
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
6
|
Ware KM, Feinstein DL, Rubinstein I, Weinberg G, Rovin BH, Hebert L, Muni N, Cianciolo RE, Satoskar AA, Nadasdy T, Brodsky SV. Brodifacoum induces early hemoglobinuria and late hematuria in rats: novel rapid biomarkers of poisoning. Am J Nephrol 2015; 41:392-9. [PMID: 26111556 DOI: 10.1159/000433568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Brodifacoum (BDF) is a superwarfarin that is used primarily as a rodenticide. There have been increasing numbers of reports of human cases of accidental or intentional BDF ingestion with high mortality rate. Its broad availability and high lethality suggest that BDF should be considered a potential chemical threat. Currently, there is no biomarker for early detection of BDF ingestion in humans; patients typically present with severe coagulopathy. Since we demonstrated earlier that warfarin can induce acute kidney injury with hematuria, we tested whether BDF would also lead to change in urinary biomarkers. MATERIAL AND METHODS BDF was administered to Sprague Dawley rats via oral gavage. N-acetylcysteine (NAC) was given per os in drinking water 24 h prior to BDF. Urinalysis was performed at different times after BDF administration. Anticoagulation and serum creatinine levels were analyzed in the blood. RESULTS We observed that within a few hours the animals developed BDF-dose-dependent transient hemoglobinuria, which ceased within 24 h. This was accompanied by a transient decrease in hematocrit, gross hemolysis and an increase in free hemoglobin in the serum. At later times, animals developed true hematuria with red blood cells in the urine, which was associated with BDF anticoagulation. NAC prevented early hemoglobinuria, but not late hematuria associated with BDF. CONCLUSIONS We propose that transient early hemoglobinuria (associated with oxidative stress) with consecutive late hematuria (associated with anticoagulation) are novel biomarkers of BDF poisoning, and they can be used in clinical setting or in mass casualty with BDF to identify poisoned patients.
Collapse
Affiliation(s)
- Kyle M Ware
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wellard RM, Adam WR. Functional hepatocyte cation compartmentation demonstrated with 133Cs NMR. Magn Reson Med 2002; 48:810-8. [PMID: 12417995 DOI: 10.1002/mrm.10287] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study utilized the large intrinsic chemical shift range of (133)Cs, a potassium congener, in an NMR study of intracellular cation distribution. It demonstrates two distinct intracellular environments in isolated perfused hepatocytes from cesium-fed rats, evident as compartments with different (133)Cs chemical shifts and containing different proportions of total detected cesium. The chemical shifts of the two intracellular compartments were 2.44 +/- 0.07 and 1.21 +/- 0.18 ppm, relative to the cesium signal from the perfusate. The observation of two distinct intracellular cesium signals suggests slow exchange on an NMR chemical shift time-scale (k exchange > 0.02 s). The area of the high-frequency component represented 62 +/- 10% (N = 12) of the total intracellular cesium signal. Manipulation of the intracellular environment using anoxia with aglycemia or digitonin produced changes in the distribution between the two intracellular compartments, showing their dynamic nature. Changes measured in association with metabolic manipulation suggest cytoplasm and mitochondria as the origin of the high and low-frequency intracellular peaks, respectively.
Collapse
Affiliation(s)
- R M Wellard
- Brain Research Institute, Austin and Repatriation Medical Center, Repatriation Campus, Heidelberg West, Australia.
| | | |
Collapse
|
8
|
Zhang B, Paxton R, Goodwin GW, Shimomura Y, Harris RA. Preservation of the activity state of hepatic branched-chain 2-oxo acid dehydrogenase during the isolation of mitochondria. Biochem J 1987; 246:625-31. [PMID: 3689325 PMCID: PMC1148326 DOI: 10.1042/bj2460625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A comparison was conducted of current methods for estimation of the activity states (proportion of enzyme in active, dephosphorylated, form) of hepatic branched-chain 2-oxo acid dehydrogenase. Practically all of the enzyme was active in freeze-clamped liver obtained from chow-fed and 48 h-starved rats, regardless of the presence of fluoride in the extraction and assay media to inhibit phosphatase activity. Likewise, the enzyme was almost completely active in mitochondria isolated by a conventional method from livers of chow-fed and starved rats. However, when fluoride and 4-methyl-2-oxopentanoate were included in the mitochondrial isolation medium the activity state was decreased to 73% and 47% in mitochondria isolated from chow-fed and starved rats respectively. Furthermore, branched-chain 2-oxo acid dehydrogenase became partially inactivated upon incubation of isolated mitochondria on ice in fluoride- and/or 4-methyl-2-oxopentanoate-supplemented media. The rate of inactivation was greater in mitochondria prepared from starved than from chow-fed rats, which correlated with the lower activity state found in mitochondria of starved rats isolated in the fluoride- and 4-methyl-2-oxopentanoate-supplemented media. Thus the activity state of branched-chain 2-oxo acid dehydrogenase is underestimated in mitochondria isolated in media supplemented with fluoride plus 4-methyl-2-oxopentanoate.
Collapse
Affiliation(s)
- B Zhang
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46223
| | | | | | | | | |
Collapse
|
9
|
Shi GY, Jung DW, Brierley GP. Induction of Na+/K+ exchange in swollen heart mitochondria. J Bioenerg Biomembr 1980; 12:233-47. [PMID: 7217042 DOI: 10.1007/bf00744686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heart mitochondria swollen passively in nitrate salts contract in a respiration-dependent reaction which can be attributed to an endogenous cation/H+ exchange component (or components). The rate of contraction increases with increased extent of passive swelling in both Na+ and K+ salts. Since nearly constant internal cation concentrations are maintained during osmotic swelling, this result suggests that both Na+/H+ and K+/H+ exchange is enhanced by increased matrix volume. Endogenous Mg2+ is also lost with increased matrix volume, and this observation, in conjunction with other evidence available in the literature, suggests that monovalent cation/H+ exchanges may be regulated by divalent cations. Passive exchange of Na+/K+, 42K+/K+, and 24Na+/Na+ can be readily demonstrated in mitochondria swollen in nitrate. All these exchanges are low or not detectable in unswollen control mitochondria, and it appears that they are manifestations of the activated cation/H+ component (or components) functioning in the absence of delta pH.
Collapse
|
10
|
Brierley GP. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem 1976; 10:41-63. [PMID: 2858 DOI: 10.1007/bf01731680] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The factors involved in the movement of monovalent cations across the inner membrane of the isolate heart mitochondrion are reviewed. The evidence suggests that the energy-dependent uptake of K+ and Na+ which results in swelling of the matrix is an electrophoretic response to a negative internal potential. There are no clear cut indications that this electrophoretic cation movement is carrier-mediated and possible modes of entry which do not require a carrier are examined. The evidence also suggests that the monovalent cation for proton exchanger (Na+ greater than K+) present in the membrane may participate in the energy-dependent extrusion of accumulated ions. The two processes, electrophoreti c cation uptake (swelling) and exchange-dependent cation extrusion (contraction) may represent a means of controlling the volume of the mitochondrion within the functioning cell. A number of indications point to the possibility that the volume control process may be mediated by the divalent cations Ca+2 and Mg+2. Studies with mercurial reagents also implicate certain membrane thiol groups in the postulated volume control process.
Collapse
|
11
|
Green DE. The electromechanochemical model for energy coupling in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 346:27-78. [PMID: 4151654 DOI: 10.1016/0304-4173(74)90011-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Southard JH, Penniston JT, Green DE. Induction of Transmembrane Proton Transfer by Mercurials in Mitochondria. J Biol Chem 1973. [DOI: 10.1016/s0021-9258(19)43965-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Holland PC, Sherratt HS. Biochemical effects of the hypoglycaemic compound diphenyleneiodonnium. Catalysis of anion-hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem J 1972; 129:39-54. [PMID: 4265024 PMCID: PMC1174040 DOI: 10.1042/bj1290039] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. The hypoglycaemic compound diphenyleneiodonium causes rapid and extensive swelling of rat liver mitochondria suspended in 150mm-NH(4)Cl, and in 150mm-KCl in the presence of 2,4-dinitrophenol and valinomycin. This indicates that diphenyleneiodonium catalyses a compulsory exchange of OH(-) for Cl(-) across the mitochondrial inner membrane. Br(-) and SCN(-) were the only other anions found whose exchange for OH(-) is catalysed by diphenyleneiodonium. 2. Diphenyleneiodonium inhibited state 3 respiration of mitochondria and slightly stimulated state 4 respiration with succinate or glutamate as substrate in a standard Cl(-)-containing medium. 3. Diphenyleneiodonium did not inhibit state 3 respiration significantly in two Cl(-)-free media (based on glycerol 2-phosphate or sucrose) but caused some stimulation of state 4. 4. In Cl(-)-containing medium diphenyleneiodonium only slightly inhibited the 2,4-dinitrophenol-stimulated adenosine triphosphatase and it had little effect in the absence of Cl(-). 5. The inhibition of respiration in the presence of Cl(-) is dependent on the Cl(-)-OH(-) exchange. 2,4-Dichlorodiphenyleneiodonium is ten times as active as diphenyleneiodonium both in causing swelling of mitochondria suspended in 150mm-NH(4)Cl and in inhibiting state 3 respiration in Cl(-)-containing medium. Indirect evidence suggests that the Cl(-)-OH(-) exchange impairs the rate of uptake of substrate anions. 6. It is proposed that stimulation of state 4 respiration in the absence of Cl(-) depends, at least in part, on an electrogenic uptake of diphenyleneiodonium cations. 7. Tripropyl-lead acetate, methylmercuric iodide and nine substituted diphenyleneiodonium derivatives also catalyse Cl(-)-OH(-) exchange across the mitochondrial membrane. 8. Diphenyleneiodonium is compared with the trialkyltin compounds, which are also known to mediate Cl(-)-OH(-) exchange and which have in addition strong oligomycin-like effects on respiration. It is concluded that diphenyleneiodonium is specific for catalysing anion-OH(-) exchange and will be a useful reagent for investigating membrane-dependent systems.
Collapse
|
14
|
|
15
|
Brierley GP, Jurkowitz M, Scott KM, Merola AJ. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Arch Biochem Biophys 1971; 147:545-56. [PMID: 5136102 DOI: 10.1016/0003-9861(71)90412-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Lee MJ, Harris RA, Wakabayashi T, Green DE. The inhibition of mitochondrial energized processes by fluorescein mercuric acetate. JOURNAL OF BIOENERGETICS 1971; 2:13-31. [PMID: 5137336 DOI: 10.1007/bf01521320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
The mechanism of mitochondrial swelling. VIII. Permeability of mitochondria to alkali metal acetates. J Bioenerg Biomembr 1970. [DOI: 10.1007/bf01517186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Korman EF, Blondin GA, Vail WJ, Green DE. The mechanism of mitochondrial swelling. VII. The constant topology of the mitochondrial inner membrane during swelling. JOURNAL OF BIOENERGETICS 1970; 1:379-86. [PMID: 5527912 DOI: 10.1007/bf01654575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Young JH, Blondin GA, Vanderkooi G, Green DE. Conformational model of active transport. Proc Natl Acad Sci U S A 1970; 67:550-9. [PMID: 5289009 PMCID: PMC283243 DOI: 10.1073/pnas.67.2.550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A model of active transport of monovalent cations in mitochondria is developed. The model is based on the coupling of electron transfer to the generation of a metastable protein conformation which in turn leads to the generation of an asymmetric surface charge, a membrane potential, and a redistribution of diffusible ions across the inner mitochondrial membrane. The ions at all times move spontaneously down an electrochemical potential gradient in this model so that there is no need to invoke the concept of an ion pump. It is shown that a wide variety of experimental facts can be rationalized in terms of the present model.
Collapse
|