1
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
2
|
Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024; 25:598-606. [PMID: 38565970 DOI: 10.1038/s41590-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.
Collapse
Affiliation(s)
- Eunha Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hwang JW, Lee JS. Korean Clinical Guideline for Autism Spectrum Disorder - Clinical Features, Course, Epidemiology, and Cause. Soa Chongsonyon Chongsin Uihak 2024; 35:8-14. [PMID: 38204746 PMCID: PMC10774551 DOI: 10.5765/jkacap.230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/10/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous developmental disorder characterized by impairments in two core areas: 1) social communication and interaction and 2) restricted and repetitive patterns of behaviors and interests. In general, ASD is known to be a lifelong disorder. Follow-up studies from childhood to adulthood have reported that the severity of the key symptoms ASD decreases over time. However, chronic health problems including mental health occur in many patients with ASD. The prevalence of ASD has increased from around 0.04% in the 1970s to 2.8% at present. The average age of diagnosis in developed countries is 38-120 months of age. Recent evidence suggests that biological factors which include genetic, congenital, immunological, neuroanatomical, biochemical, and environmental ones are important in causing autism. Until now, early signs and various risk factors of ASD have been suggested.
Collapse
Affiliation(s)
- Jun-Won Hwang
- Department of Psychiatry, Kangwon National University
Hospital, Kangwon National University School of Medicine, Chuncheon,
Korea
| | - Jeong-Seop Lee
- Department of Psychiatry, Inha University Hospital, Inha
University School of Medicine, Incheon, Korea
| |
Collapse
|
4
|
Almulla AF, Thipakorn Y, Tunvirachaisakul C, Maes M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res 2023; 16:2302-2315. [PMID: 37909397 DOI: 10.1002/aur.3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social communication and interaction, as well as rigid and unchanging interests and behaviors. Several studies have reported that activated immune-inflammatory and nitro-oxidative pathways are accompanied by depletion of plasma tryptophan (TRP), increased competing amino acid (CAAs) levels, and activation of the TRP catabolite (TRYCAT) pathway. This study aims to systematically review and meta-analyze data on peripheral TRP, CAAs, TRYCAT pathway activity, and individual TRYCATs, including kynurenine (KYN) and kynurenic acid (KA) levels, in the blood and urine of ASD patients. After extensively searching PubMed, Google Scholar, and SciFinder, a total of 25 full-text papers were included in the analysis, with a total of 6653 participants (3557 people with ASD and 3096 healthy controls). Our results indicate that blood TRP and the TRP/CAAs ratio were not significantly different between ASD patients and controls (standardized mean difference, SMD = -0.227, 95% confidence interval, CI: -0.540; 0.085, and SMD = 0.158, 95% CI: -0.042; 0.359), respectively. The KYN/TRP ratio showed no significant difference between ASD and controls (SMD = 0.001, 95% CI: -0.169; 0.171). Blood KYN and KA levels were not significantly changed in ASD. Moreover, there were no significant differences in urine TRP, KYN, and KA levels between ASD and controls. We could not establish increases in neurotoxic TRYCATs in ASD. In conclusion, this study demonstrates no abnormalities in peripheral blood TRP metabolism, indoleamine 2,3-dioxygenase enzyme (IDO) activity, or TRYCAT production in ASD. Reduced TRP availability and elevated neurotoxic TRYCAT levels are not substantial contributors to ASD's pathophysiology.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Korea
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
5
|
Dufour BD, McBride E, Bartley T, Juarez P, Martínez-Cerdeño V. Distinct patterns of GABAergic interneuron pathology in autism are associated with intellectual impairment and stereotypic behaviors. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:1730-1745. [PMID: 36935610 PMCID: PMC10846597 DOI: 10.1177/13623613231154053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental condition characterized by deficits in sociability and communication and the presence of repetitive behaviors. How specific pathological alterations of the brain contribute to the clinical profile of autism spectrum disorder remains unknown. We previously found that a specific type of inhibitory interneuron is reduced in number in the autism spectrum disorder prefrontal cortex. Here, we assessed the relationship between interneuron reduction and autism spectrum disorder symptom severity. We collected clinical records from autism spectrum disorder (n = 20) and assessed the relationship between the severity of symptoms and interneuron number. We found that the reduced number of inhibitory interneurons that we previously reported is linked to specific symptoms of autism spectrum disorder, particularly stereotypic movements and intellectual impairments.
Collapse
Affiliation(s)
- Brett D Dufour
- UC Davis Department of Psychiatry and Behavioral Sciences, USA
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
| | - Erin McBride
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| | - Trevor Bartley
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| | - Pablo Juarez
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
| | - Verónica Martínez-Cerdeño
- UC Davis School of Medicine, USA
- Institute for Pediatric Regenerative Medicine, USA
- UC Davis Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
6
|
Nie ZQ, Han D, Zhang K, Li M, Kwon HK, Im SH, Xu L, Yang JC, Li ZW, Huang XW, Wen J, Shu-Jun Y, Yin F, Shen C, Ashwood P, Kang CY, Cao X. TH1/Treg ratio may be a marker of autism in children with immune dysfunction. RESEARCH IN AUTISM SPECTRUM DISORDERS 2023; 101:102085. [DOI: 10.1016/j.rasd.2022.102085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
7
|
Xu XJ, Lang JD, Yang J, Long B, Liu XD, Zeng XF, Tian G, You X. Differences of gut microbiota and behavioral symptoms between two subgroups of autistic children based on γδT cells-derived IFN-γ Levels: A preliminary study. Front Immunol 2023; 14:1100816. [PMID: 36875075 PMCID: PMC9975759 DOI: 10.3389/fimmu.2023.1100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Autism Spectrum Disorders (ASD) are defined as a group of pervasive neurodevelopmental disorders, and the heterogeneity in the symptomology and etiology of ASD has long been recognized. Altered immune function and gut microbiota have been found in ASD populations. Immune dysfunction has been hypothesized to involve in the pathophysiology of a subtype of ASD. Methods A cohort of 105 ASD children were recruited and grouped based on IFN-γ levels derived from ex vivo stimulated γδT cells. Fecal samples were collected and analyzed with a metagenomic approach. Comparison of autistic symptoms and gut microbiota composition was made between subgroups. Enriched KEGG orthologues markers and pathogen-host interactions based on metagenome were also analyzed to reveal the differences in functional features. Results The autistic behavioral symptoms were more severe for children in the IFN-γ-high group, especially in the body and object use, social and self-help, and expressive language performance domains. LEfSe analysis of gut microbiota revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae and Verrucomicrobiaceae and underrepresentation of Bacteroides xylanisolvens and Bifidobacterium longum in children with higher IFN-γ level. Decreased metabolism function of carbohydrate, amino acid and lipid in gut microbiota were found in the IFN-γ-high group. Additional functional profiles analyses revealed significant differences in the abundances of genes encoding carbohydrate-active enzymes between the two groups. And enriched phenotypes related to infection and gastroenteritis and underrepresentation of one gut-brain module associated with histamine degradation were also found in the IFN-γ-High group. Results of multivariate analyses revealed relatively good separation between the two groups. Conclusions Levels of IFN-γ derived from γδT cell could serve as one of the potential candidate biomarkers to subtype ASD individuals to reduce the heterogeneity associated with ASD and produce subgroups which are more likely to share a more similar phenotype and etiology. A better understanding of the associations among immune function, gut microbiota composition and metabolism abnormalities in ASD would facilitate the development of individualized biomedical treatment for this complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China.,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Dong Lang
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xu-Dong Liu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Geng Tian
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| |
Collapse
|
8
|
Bied A, Njuguna S, Satodiya R. Autism in a Child With X-linked Agammaglobulinemia. Cureus 2022; 14:e21951. [PMID: 35282518 PMCID: PMC8904032 DOI: 10.7759/cureus.21951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
Abstract
A growing evidence base has implicated immune dysfunction in the etiology of some cases of autism spectrum disorder. The precise relationship between immune disorders and autism spectrum disorder remains unclear. Herein we report a 14-year-old-male with agammaglobulinemia, who was diagnosed with autism spectrum disorder, and who has received exogenous immunoglobulins regularly for most of his life. This case study supports current theories implicating antibody deficiencies in some individuals with an autism spectrum disorder. Our case will add to the growing literature of understanding the connection between immune deficiencies in the pathogenesis of autism.
Collapse
|
9
|
Ellul P, Rosenzwajg M, Peyre H, Fourcade G, Mariotti-Ferrandiz E, Trebossen V, Klatzmann D, Delorme R. Regulatory T lymphocytes/Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Mol Autism 2021; 12:68. [PMID: 34641964 PMCID: PMC8507168 DOI: 10.1186/s13229-021-00472-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Immune system dysfunction has been proposed to play a critical role in the pathophysiology of autism spectrum disorders (ASD). Conflicting reports of lymphocyte subpopulation abnormalities have been described in numerous studies of patients with ASD. To better define lymphocytes abnormalities in ASD, we performed a meta-analysis of the lymphocyte profiles from subjects with ASD. Methods We used the PRISMA recommendations to query PubMed, Embase, PsychoINFO, BIOSIS, Science Direct, Cochrane CENTRAL, and Clinicaltrials.gov for terms related to clinical diagnosis of ASD and to lymphocytes’ populations. We selected studies exploring lymphocyte subpopulations in children with ASD. The search protocol has been registered in the international Prospective Register of Systematic Reviews (CRD42019121473). Results We selected 13 studies gathering 388 ASD patients and 326 healthy controls. A significant decrease in the CD4+ lymphocyte was found in ASD patients compared to controls [− 1.51 (95% CI − 2.99; − 0.04) p = 0.04] (I2 = 96% [95% CI 94.6, 97.7], p < 0.01). No significant difference was found for the CD8+ T, B and natural killer lymphocytes. Considering the CD4+ subpopulation, there was a significant decrease in regulatory T lymphocytes (Tregs) in ASD patients (n = 114) compared to controls (n = 107) [− 3.09 (95% CI − 4.41; − 1.76) p = 0.0001]; (I2 = 90.9%, [95% CI 76.2, 96.5], p < 0.0001) associated with an increase oin the Th17 lymphocytes (ASD; n = 147 controls; n = 128) [2.23 (95% CI 0.79; 3.66) p = 0,002] (I2 = 95.1% [95% CI 90.4, 97.5], p < 0.0001). Limitations Several factors inducing heterogeneity should be considered. First, differences in the staining method may be responsible for a part in the heterogeneity of results. Second, ASD population is also by itself heterogeneous, underlying the need of studying sub-groups that are more homogeneous. Conclusion Our meta-analysis indicates defects in CD4+ lymphocytes, specifically decrease oin Tregs and increase in Th17 in ASD patients and supports the development of targeted immunotherapies in the field of ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00472-4.
Collapse
Affiliation(s)
- Pierre Ellul
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France. .,INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.
| | - Michelle Rosenzwajg
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi), Paris, France
| | - Hugo Peyre
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France.,Robert Debré Hospital, UMR 1141, NeuroDiderot Inserm - Paris University, Paris, France
| | - Gwladys Fourcade
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | | | - Vincent Trebossen
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France
| | - David Klatzmann
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi), Paris, France
| | - Richard Delorme
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Sorrell MR, Killian KA. Innate immune system function following systemic RNA-interference of the Fragile X Mental Retardation 1 gene in the cricket Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104097. [PMID: 32791072 DOI: 10.1016/j.jinsphys.2020.104097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fragile X syndrome (FXS), caused by a mutation in the Fragile X Mental Retardation 1 (FMR1) gene, is a common form of inherited mental retardation. Mutation of the gene leads to a loss of the gene product Fragile X Mental Retardation Protein (FMRP). While a loss of FMRP has been primarily associated with neural and cognitive deficits, it has also been reported to lead to immune system dysfunction in both humans and flies. We used the Acheta domesticus transcriptome to identify a highly conserved cricket ortholog of FMR1 (adfmr1). We cloned a partial cDNA of adfmr1, used systemic RNA interference (RNAi) to knockdown adfmr1 expression, and examined the impact of this knockdown (KD) on the cellular and humoral responses of the insect innate immune system. Following RNAi, both male and female crickets exhibited an increase in the number of circulating hemocytes, a decrease in total hemolymph phenoloxidase (PO) activity, and an increase in fat body lysozyme expression. Despite similar changes in these immune parameters in both sexes, male and female crickets responded differently to an immune challenge. Most KD males failed to survive an intra-abdominal injection of bacterial lipopolysaccharide, while KD females were just as likely as control females to survive this challenge. Our results support that decreased fmr1 expression can alter the cellular and humoral defenses of the insect innate immune system, and may lead to a decrease in male, but not female, immunocompetence.
Collapse
Affiliation(s)
- Mollie R Sorrell
- Department of Biology, Miami University, 258 Pearson Hall, Oxford, OH 45056, USA; Department of Biology, Defiance College, Defiance, OH 43512, USA
| | - Kathleen A Killian
- Department of Biology, Miami University, 258 Pearson Hall, Oxford, OH 45056, USA.
| |
Collapse
|
11
|
Ventura G, Calvano CD, Porcelli V, Palmieri L, De Giacomo A, Xu Y, Goodacre R, Palmisano F, Cataldi TRI. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 2020; 412:6859-6874. [DOI: 10.1007/s00216-020-02817-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
|
12
|
Wilod Versprille LJF, van de Loo AJAE, Mackus M, Arnoldy L, Sulzer TAL, Vermeulen SA, Abdulahad S, Huls H, Baars T, Scholey A, Kraneveld AD, Garssen J, Verster JC. Development and Validation of the Immune Status Questionnaire (ISQ). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4743. [PMID: 31783555 PMCID: PMC6926937 DOI: 10.3390/ijerph16234743] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
The self-assessment of perceived immune status is important, as this subjective observation leads individuals to decide whether or not to seek medical help or adapt their lifestyle. In addition, it can be used in clinical settings and research. The aim of this series of studies was to develop and validate a short questionnaire to assess perceived immune functioning. Five surveys were conducted among Dutch and International young healthy adults (18-30 years old), and two others among older age groups with various health complaints. For the first study, an existing immune functioning scale was modified and elaborated resulting in 23 immune-health-related items, of which the occurrence was rated on a 5-point Likert scale. A student sample was surveyed, and the results were used to shorten the 23-item listing into a 7-item scale with a predictive validity of 85%. Items include "sudden high fever", "diarrhea", "headache", "skin problems (e.g., acne and eczema)", "muscle and joint pain", "common cold" and "coughing". The scale is named Immune Status Questionnaire (ISQ), and it aims to assess perceived immune status over the preceding year. The second study revealed that the ISQ score correlated significantly with a 1-item perceived immune functioning (r = 0.383, p < 0.0001). In the third study, the final Likert scale descriptors were determined ("never", "sometimes", "regularly", "often" and "(almost) always)". The fourth study showed that the test-retest reliability of the ISQ is acceptable (r = 0.80). The fifth study demonstrated the association of ISQ scores with various neuropsychological and health correlates in an international sample, including perceived health and immune fitness, as well as levels of stress, fatigue, depression and anxiety. Study 6 demonstrated significant associations between ISQ scores and experiencing irritable bowel syndrome (IBS) symptoms in a sample of insomnia patients. Study 7 compared the effect of a dietary intervention in participants reporting "poor health" versus "normal health". It is shown that ISQ scores can differentiate between those with poor and normal health, and that an effective intervention is associated with a significant improvement in ISQ scores. Data from Study 7 were further used to determine an ISQ cut-off value for reduced immune functioning, and a direct comparison with 1-item perceived immune functioning scores enabled constructing the final scoring format of the ISQ. In conclusion, the ISQ has appropriate face, content, and construct validity and is a reliable, stable and valid method to assess the past 12 month's perceived immune status.
Collapse
Affiliation(s)
- Livia J. F. Wilod Versprille
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Aurora J. A. E. van de Loo
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Marlou Mackus
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Lizanne Arnoldy
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Titia A. L. Sulzer
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Sterre A. Vermeulen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Smedra Abdulahad
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Hendrikje Huls
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Ton Baars
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Aletta D. Kraneveld
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Johan Garssen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
- Immunology Platform for Specialized Nutrition, Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Joris C. Verster
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.J.F.W.V.); (A.J.A.E.v.d.L.); (M.M.); (L.A.); (T.A.L.S.); (S.A.V.); (S.A.); (H.H.); (T.B.); (A.D.K.); (J.G.)
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| |
Collapse
|
13
|
Behmanesh H, Moghaddam HS, Mohammadi MR, Akhondzadeh S. Risperidone Combination Therapy With Propentofylline for Treatment of Irritability in Autism Spectrum Disorders: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin Neuropharmacol 2019; 42:189-196. [DOI: 10.1097/wnf.0000000000000368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives
Propentofylline is a xanthine phosphodiesterase inhibitor and adenosine reuptake blocker with neuroprotective effects linked to anti-inflammatory and antiexcitatory properties. This is a double-blind, placebo-controlled trial investigating the potential beneficial effects of propentofylline, as an adjunctive treatment with risperidone, on the severity and behavioral abnormalities of autism spectrum disorder (ASD).
Methods
A total of 48 children with ASD were randomly allocated into 2 groups of risperidone (initiating at 0.5 mg/d) plus propentofylline (initiating at 300 mg/d) and risperidone plus placebo. The Aberrant Behavior Checklist—Community (ABC-C) and Childhood Autism Rating Scale (CARS) were used for the evaluation of ASD severity and behavioral disruptions at baseline, week 4, and week 10. Primary outcome measure of the study was ABC-C irritability subscale score, whereas CARS score along with other 4 subscales of ABC-C (lethargy/social withdrawal, stereotypic behavior, hyperactivity/noncompliance, and inappropriate speech subscales) were considered as secondary outcome measures.
Results
Results from the general linear model repeated measures analysis demonstrated significant time-treatment interaction on irritability subscale (F
1.55 = 3.45; P = 0.048) and CARS (F
1.41 = 4.08; P = 0.034) scores. Compared with the placebo group, children receiving propentofylline showed greater improvements in the CARS score (P = 0.037) from baseline to the study endpoint. Our results found no significant time-treatment effect on other subscales of ABC-C. Two trial groups were comparable based on the frequency of adverse effects.
Conclusions
Our findings demonstrated that adjunctive treatment with propentofylline is effective in alleviating disease severity and improving irritability in ASD patients. However, larger studies with longer durations are required to confirm these results.
Collapse
|
14
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
15
|
Barfi S, Narges C, Pouretemad HR, Poortahmasebi V, Norouzi M, Farahmand M, Yahyapour Y, Ghorbani S, Ghalichi L, Ofoghi H, Jazayeri SM. Measurement of serum hepatitis B surface antibody levels in Iranian autistic children and evaluation of immunological memory after booster dose injection in comparison with controls. J Med Virol 2019; 91:1272-1278. [PMID: 30761573 DOI: 10.1002/jmv.25429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Responsiveness to hepatitis B vaccine among patients with autism spectrum disorders (ASD) has not been evaluated worldwide. We aimed to determine the anti-HBs antibody duration in autistic and healthy children few years after primary vaccination and evaluate their immunological memory against hepatitis B virus (HBV) vaccine with booster dose administration. METHODS One hundred seven and 147 HBsAg-negative children from ASD and normal population were recruited, respectively. HBV seromarkers (HBc-Ab, HBsAg, and HBs-Ab) were assessed and subsequently, molecular tests were used on all the subjects. A booster dose of vaccine was injected for those who showed low levels (<10 mIU/mL) of anti-HBs and their antibody levels was measured 4 weeks later. RESULTS The mean ages of ASD and control groups were 7.14 ± 2.42 and 8.68 ± 1.96, respectively. Seven (6.5%) of the ASD group were positive for anti-HBc and one child was positive for occult hepatitis B infection (HBsAg negative, HBV DNA positive). In ASD, 54 (50.4%) and 53 (49.6%) had adequate (>10 mIU/mL) and low anti-HBs levels, respectively. Among control group, 74 (50.4%) and 73 (49.6%) had sufficient and low antibody levels, respectively. After injection of a booster dose for all children with low antibody, 100% of ASD and 92% (59 of 64) of control pupils contained >10 mIU/mL of antibody, respectively. In both the groups, the HBs-Ab titer increased similarly in response to the booster injection (P < 0.05). CONCLUSION Despite previous investigations regarding immune impairment in individuals with autism, the immune system of these individuals was able to manage the hepatitis B vaccine challenge.
Collapse
Affiliation(s)
- Shahram Barfi
- Department of Virology, School of Public Health, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Chimeh Narges
- Rehabilitation Clinic for Children with Special needs (RCCS), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Pouretemad
- Clinical Neurophysiology Section, Department of Psychological Medicine, Institute of Psychiatry, Shahid Beheshti University, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, Tehran University of Medical Science, Tehran, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Saeid Ghorbani
- Iran University of Medical Sciences Tehrān, Tehran, Iran
| | - Leila Ghalichi
- Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Haleh Ofoghi
- Rehabilitation Clinic for Children with Special needs (RCCS), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
17
|
Finotti G, Migliorati D, Costantini M. Multisensory integration, body representation and hyperactivity of the immune system. Conscious Cogn 2018; 63:61-73. [PMID: 29957448 DOI: 10.1016/j.concog.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
Multisensory stimuli are integrated over a delimited window of temporal asynchronies. This window is highly variable across individuals, but the origins of this variability are still not clear. We hypothesized that immune system functioning could partially account for this variability. In two experiments, we investigated the relationship between key aspects of multisensory integration in allergic participants and healthy controls. First, we tested the temporal constraint of multisensory integration, as measured by the temporal binding window. Second, we tested multisensory body representation, as indexed by the Rubber Hand Illusion (RHI). Results showed that allergic participants have a narrower temporal binding window and are less susceptible to the RHI than healthy controls. Overall, we provide evidence linking multisensory integration processes and the activity of the immune system. The present findings are discussed within the context of the effect of immune molecules on the brain mechanisms enabling multisensory integration and multisensory body representation.
Collapse
Affiliation(s)
- Gianluca Finotti
- Centre for Brain Science, Department of Psychology, University of Essex, United Kingdom; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy; Institute for Advanced Biomedical Technologies - ITAB, University G. d'Annunzio, Chieti, Italy.
| | - Daniele Migliorati
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy; Institute for Advanced Biomedical Technologies - ITAB, University G. d'Annunzio, Chieti, Italy
| | - Marcello Costantini
- Centre for Brain Science, Department of Psychology, University of Essex, United Kingdom; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy; Institute for Advanced Biomedical Technologies - ITAB, University G. d'Annunzio, Chieti, Italy.
| |
Collapse
|
18
|
Sanctuary MR, Kain JN, Angkustsiri K, German JB. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front Nutr 2018; 5:40. [PMID: 29868601 PMCID: PMC5968124 DOI: 10.3389/fnut.2018.00040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the “fragile gut” in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the “fragile gut” in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.
Collapse
Affiliation(s)
- Megan R Sanctuary
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennifer N Kain
- Department of Neurobiology, Physiology and Behavior Department, University of California, Davis, Davis, CA, United States
| | - Kathleen Angkustsiri
- School of Medicine, Department of Pediatrics, University of California, Davis, Sacramento, CA, United States.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res 2017; 331:92-101. [DOI: 10.1016/j.bbr.2017.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
20
|
Evidence of Mitochondrial Dysfunction in Autism: Biochemical Links, Genetic-Based Associations, and Non-Energy-Related Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28630658 PMCID: PMC5467355 DOI: 10.1155/2017/4314025] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD), the fastest growing developmental disability in the United States, represents a group of neurodevelopmental disorders characterized by impaired social interaction and communication as well as restricted and repetitive behavior. The underlying cause of autism is unknown and therapy is currently limited to targeting behavioral abnormalities. Emerging studies suggest a link between mitochondrial dysfunction and ASD. Here, we review the evidence demonstrating this potential connection. We focus specifically on biochemical links, genetic-based associations, non-energy related mechanisms, and novel therapeutic strategies.
Collapse
|
21
|
Meltzer A, Van de Water J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017; 42:284-298. [PMID: 27534269 PMCID: PMC5143489 DOI: 10.1038/npp.2016.158] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.
Collapse
Affiliation(s)
- Amory Meltzer
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
- The M.I.N.D. Institute, University of California, Davis, CA, USA
- NIEHS Center for Children's Environmental Health, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Torres A, Westover J, Benson M, Johnson R, Dykes A. A Killer Immunoglobulin - Like Receptor Gene - Content Haplotype and A Cognate Human Leukocyte Antigen Ligand are Associated with Autism. AUTISM-OPEN ACCESS 2016; 6:171. [PMID: 27853655 PMCID: PMC5108574 DOI: 10.4172/2165-7890.1000171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The killing activity of natural killer cells is largely regulated by the binding of class I human leukocyte antigen cognate ligands to killer cell immunoglobulin - like receptor proteins. The killer cell immunoglobulin - like receptor gene - complex contains genes that activate and others that inhibit the killing state of natural killer cells depending on the binding of specific human leukocyte antigen cognate ligands. It has been suggested in previous publications that activating human leukocyte antigen/killer - cell immunoglobulin - like receptor complexes are increased in people with autism. We present data, which suggests that an activating cB01/tA01 killer cell immunoglobulin - like receptor gene - content haplotype and the cognate ligand human leukocyte antigen - C1k that activates this haplotype is significantly increased in autism. This is an important observation suggesting that the interaction between two proteins encoded on different chromosomes increases natural killer cell killing in autism.
Collapse
Affiliation(s)
- Anthony Torres
- Center for Persons with Disabilities, Utah State University, Logan, Utah, USA
| | - Jonna Westover
- Center for Persons with Disabilities, Utah State University, Logan, Utah, USA
| | - Michael Benson
- Center for Persons with Disabilities, Utah State University, Logan, Utah, USA
| | - Randall Johnson
- Center for Persons with Disabilities, Utah State University, Logan, Utah, USA
| | - Annelise Dykes
- Center for Persons with Disabilities, Utah State University, Logan, Utah, USA
| |
Collapse
|
23
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
24
|
Ibrahim S, El-Waleely T, Zakaria N, Ismail R. A study of serum interleukin-12 in a sample of autistic children in Egypt. ACTA ACUST UNITED AC 2015. [DOI: 10.4103/1110-1105.158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Chang SC, Pauls DL, Lange C, Sasanfar R, Santangelo SL. Sex-specific association of a common variant of the XG gene with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:742-50. [PMID: 24132906 DOI: 10.1002/ajmg.b.32165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorders (ASD) are much more common in males than in females. Studies using both linkage and candidate gene association approaches have identified genetic variants specific to families in which all affected cases were male, suggesting that sex may interact with or otherwise influence the expression of specific genes in association with ASD. In this study, we specifically evaluated the sex-specific genetic effects of ASD with a family-based genome-wide association study approach using the data from the Autism Genetic Resource Exchange repository. We evaluated the male-specific genetic effects of ASD in 374 multiplex families of European ancestry in which all affected were male (male-only; MO) and identified a novel genome-wide significant association in the pseudoautosomal boundary on chromosome Xp22.33/Yp11.31 in the MO families of predominantly paternal origin (rs2535443, p = 3.8 × 10(-8) ). Five markers that reside within a 550 kb intergenic region on chromosome 13q33.3, between the MYO16 and IRS2 genes, also showed suggestive association with ASD in the MO families (p = 3.3 × 10(-5) to 5.3 × 10(-7) ). In contrast, none of these markers appeared to be associated with ASD in the families containing any affected females. Our results suggest that the pseudoautosomal boundary on Xp22.33/Yp11.31 may harbor male-specific genetic variants for ASD.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
26
|
The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord 2012; 42:1403-10. [PMID: 21969075 DOI: 10.1007/s10803-011-1373-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and neurons, autistic children also show an altered immune response of peripheral blood mononuclear cells (PBMCs). In this study, we investigated the activation of caspases, cysteinyl aspartate-specific proteases involved in apoptosis and several other cell functions in PBMCs from 15 ASD children compared to age-matched normal healthy developing controls. The mRNA levels for caspase-1, -2, -4, -5 were significantly increased in ASD children as compared to healthy subjects. Protein levels of Caspase-3, -7, -12 were also increased in ASD patients. Our data are suggestive of a possible role of the caspase pathway in ASD clinical outcome and of the use of caspase as potential diagnostic and/or therapeutic tools in ASD management.
Collapse
|
27
|
Wasilewska J, Kaczmarski M, Stasiak-Barmuta A, Tobolczyk J, Kowalewska E. Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Arch Med Sci 2012; 8:324-31. [PMID: 22662007 PMCID: PMC3361046 DOI: 10.5114/aoms.2012.28561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/23/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Immune system dysfunction is considered to be one of many medical disorders found in children with autism. The primary objective of the study was to assess if blood tests reflecting humoral immunity (IgA, IgG, IgM, IgE) are useful in identifying children with regressive autism. The secondary objective was to evaluate a part of the cellular arm of immunity (CD4/CD25 Tregs, CD4/CD23 cells) in those children. MATERIAL AND METHODS Using a clinical case-control design, the systemic levels of immunoglobulins and lymphocyte subpopulations analysed by flow cytometry were compared in children aged 3-6 years old with a new diagnosis of regressive autism (n = 24; mean age: 4.25 ±1.70 years; male 23/24) and in sex- and age-matched healthy children (n = 24; aged 4.25 ±2.20 years; male 23/24). RESULTS The humoral immunity profile, described by three binary variables, IgA < 0.97 g/l, IgE > 36 IU/ml, and IgG > 6.3 g/l, with a sensitivity of 79% and a specificity of 83% (p < 0.0001), was able to identify children with autism. The highest risk of autism diagnosis was associated with IgA < 0.97g/l (OR - 23.0; p < 0.001). A higher number of CD19/CD23 was found in children diagnosed with autism than in the control group (36.82 ±6.72% vs. 18.20 ±3.95%; p < 0.02). No correlation between the number of CD23-positive cells and serum IgE levels was observed. CONCLUSIONS A subtle shift of serum immunoglobulins consisting of low-normal IgA and B cell activation expressed by an increase of CD23-positive cells may characterize children with regressive autism aged 3-6 years old.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Paediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Poland
| | - Maciej Kaczmarski
- Department of Paediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
28
|
Manzardo AM, Henkhaus R, Dhillon S, Butler MG. Plasma cytokine levels in children with autistic disorder and unrelated siblings. Int J Dev Neurosci 2012; 30:121-7. [PMID: 22197967 PMCID: PMC6675569 DOI: 10.1016/j.ijdevneu.2011.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The pathogenesis of autistic disorder (AD) is not clearly understood but genetic factors and the immune system have been implicated. Disturbed immunoglobulin levels and autoantibodies to neuronal elements have been reported in AD including cytokines encoded by genes involved with cell proliferation, migration and adhesion but there is a paucity of data comparing cytokine levels in children with AD and unrelated siblings without AD. METHODS We analyzed 39 plasma cytokines in 99 well-characterized children with AD between 5 and 10 years of age and 40 age and gender matched healthy unrelated siblings without AD under the same clinical assessments, specimen processing and laboratory conditions. Multiplex sandwich immunoassays were used with the Luminex fluorescent-bead based platform. Log-transformed values of the 29 cytokines meeting laboratory criteria for inclusion were analyzed by analysis of covariance with a general linear model adjusting for diagnosis, gender, diagnosis by gender interaction effects, age and days of specimen handling. The Tukey-Kramer post hoc test was used to control for multiple comparisons. RESULTS Eight of 29 cytokine levels analyzed were significantly lower in children with AD compared with unrelated siblings without the diagnosis of AD. Three of the cytokines are known to be involved with hematopoiesis and five with attraction of T-cells, natural killer cells and monocytes. CONCLUSIONS Plasma cytokine levels representing chemokines involved in the T-helper cell immune system and hematopoiesis were lower in the children with AD compared with unrelated siblings without AD necessitating further studies to confirm immunological disturbances influencing hematopiesis and antibody production in the children with AD. Linking genes that encode immune related proteins and cytokines are important to study for their impact on critical periods of brain development and function.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry & Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Autism spectrum disorders (ASD) are classified as neurological developmental disorders. Several studies have been carried out to find a candidate biomarker linked to the development of these disorders, but up to date no reliable biomarker is available. Mass spectrometry techniques have been used for protein profiling of blood plasma of children with such disorders in order to identify proteins/peptides that may be used as biomarkers for detection of the disorders. Three differentially expressed peptides with mass-charge (m/z) values of 2020 ± 1, 1864 ± 1 and 1978 ± 1 Da in the heparin plasma of children with ASD that were significantly changed as compared with the peptide pattern of the non-ASD control group are reported here. This novel set of biomarkers allows for a reliable blood-based diagnostic tool that may be used in diagnosis and potentially, in prognosis of ASD.
Collapse
|
30
|
HLA Immune Function Genes in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:959073. [PMID: 22928105 PMCID: PMC3420779 DOI: 10.1155/2012/959073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
The human leukocyte antigen (HLA) genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.
Collapse
|
31
|
Abstract
Autism spectrum disorders (ASD) are complex and heterogeneous with a spectrum of diverse symptoms. Mounting evidence from a number of disciplines suggests a link between immune function and ASD. Although the causes of ASD have yet to be identified, genetic studies have uncovered a host of candidate genes relating to immune regulation that are altered in ASD, while epidemiological studies have shown a relationship with maternal immune disturbances during pregnancy and ASD. Moreover, decades of research have identified numerous systemic and cellular immune abnormalities in individuals with ASD and their families. These include changes in immune cell number, differences in cytokine and chemokine production, and alterations of cellular function at rest and in response to immunological challenge. Many of these changes in immune responses are associated with increasing impairment in behaviors that are core features of ASD. Despite this evidence, much remains to be understood about the precise mechanism by which the immune system alters neurodevelopment and to what extent it is involved in the pathogenesis of ASD. With estimates of ASD as high as 1% of children, ASD is a major public health issue. Improvements in our understanding of the interactions between the nervous and immune system during early neurodevelopment and how this interaction is different in ASD will have important therapeutic implications with wide ranging benefits.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
32
|
Bailey AR, Hou H, Obregon DF, Tian J, Zhu Y, Zou Q, Nikolic WV, Bengtson M, Mori T, Murphy T, Tan J. Aberrant T-lymphocyte development and function in mice overexpressing human soluble amyloid precursor protein-α: implications for autism. FASEB J 2011; 26:1040-51. [PMID: 22085641 DOI: 10.1096/fj.11-195438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abnormalities in T-lymphocyte populations and function are observed in autism. Soluble amyloid precursor protein α (sAPP-α) is elevated in some patients with autism and is known to be produced by immune cells. In light of the well-established role of sAPP-α in proliferation, growth, and survival of neurons, we hypothesized an analogous role in the immune system. Thus, we explored whether sAPP-α could modulate immune development and function, especially aspects of the pinnacle cell of the adaptive arm of the immune system: the T cell. To do this, we generated mice overexpressing human sAPP-α and characterized elements of T-cell development, signal transduction, cytokine production, and innate/adaptive immune functions. Here, we report that transgenic sAPP-α-overexpressing (TgsAPP-α) mice displayed increased proportions of CD8(+) T cells, while effector memory T cells were decreased in the thymus. Overall apoptotic signal transduction was decreased in the thymus, an effect that correlated with dramatic elevations in Notch1 activation; while active-caspase-3/total-caspase-3 and Bax/Bcl-2 ratios were decreased. Greater levels of IFN-γ, IL-2, and IL-4 were observed after ex vivo challenge of TgsAPP-α mouse splenocytes with T-cell mitogen. Finally, after immunization, splenocytes from TgsAPP-α mice displayed decreased levels IFN-γ, IL-2, and IL-4, as well as suppressed ZAP70 activation, after recall antigen stimulation. Given elevated levels of circulating sAPP-α in some patients with autism, sAPP-α could potentially drive aspects of immune dysfunction observed in these patients, including dysregulated T-cell apoptosis, aberrant PI3K/AKT signaling, cytokine alterations, and impaired T-cell recall stimulation.
Collapse
Affiliation(s)
- Antoinette R Bailey
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Neurosciences, College of Medicine, University of South Florida, 3515 E. Fletcher Ave. Tampa, FL 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
High complement factor I activity in the plasma of children with autism spectrum disorders. AUTISM RESEARCH AND TREATMENT 2011; 2012:868576. [PMID: 22928102 PMCID: PMC3420436 DOI: 10.1155/2012/868576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental and behavioural syndromes affecting social orientation, behaviour, and communication that can be classified as developmental disorders. ASD is also associated with immune system abnormality. Immune system abnormalities may be caused partly by complement system factor I deficiency. Complement factor I is a serine protease present in human plasma that is involved in the degradation of complement protein C3b, which is a major opsonin of the complement system. Deficiency in factor I activity is associated with an increased incidence of infections in humans. In this paper, we show that the mean level of factor I activity in the ASD group is significantly higher than in the control group of typically developed and healthy children, suggesting that high activity of complement factor I might have an impact on the development of ASD.
Collapse
|
34
|
Brown AC, Mehl-Madrona L. Autoimmune and gastrointestinal dysfunctions: does a subset of children with autism reveal a broader connection? Expert Rev Gastroenterol Hepatol 2011; 5:465-77. [PMID: 21780894 DOI: 10.1586/egh.11.46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A large number of autoimmune disorders have a gastrointestinal (GI) dysfunction component that may interplay with genetic, hormonal, environmental and/or stress factors. This narrarive review investigates possible links between autism, immune system abnormalities and GI symptoms in a subgroup of children with autism. A literature search on Medline (1950 to September 2010) was conducted to identify relevant articles by using the keywords 'autism and gastrointestinal' (71 publications) and 'autism and immune' (237 publications), cross-referencing and general searching to evaluate the available literature on the immunological and GI aspects of autism. Sufficient evidence exists to support that a subgroup of children with autism may suffer from concomitant immune-related GI symptoms.
Collapse
Affiliation(s)
- Amy C Brown
- Department of Complementary & Alternative Medicine, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
35
|
Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 2011; 668 Suppl 1:S70-80. [PMID: 21810417 DOI: 10.1016/j.ejphar.2011.07.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders, characterized by impairments in social interaction and communication and the presence of limited, repetitive and stereotyped interests and behavior. Bowel symptoms are frequently reported in children with ASD and a potential role for gastrointestinal disturbances in ASD has been suggested. This review focuses on the importance of (allergic) gastrointestinal problems in ASD. We provide an overview of the possible gut-to-brain pathways and discuss opportunities for pharmaceutical and/or nutritional approaches for therapy.
Collapse
|
36
|
Abstract
Autism is dramatically increasing in incidence and is now considered an epidemic. There are no objective means to diagnose the disorder. Diagnosis is made subjectively, based on the perceived behavior of the subject. This review presents an approach toward development of an objective measure of autism. Covering the literature from 1943 to the present in the PubMed and Ovid Medline databases, this review summarizes evidence of hormones, metabolites, amino acids, and other biomarkers present in significantly different quantities in autistic subjects compared to age- and sex-matched controls. These differences can be measured in the gastrointestinal, immunologic, neurologic, and toxicologic systems of the body, with some biomarkers showing ubiquitous application. In addition, there are unifying concepts, i.e., increased vulnerability to oxidative stress, immune glutamatergic dysfunction, and pineal gland malfunction. The variances of the biomarkers from the norm present the opportunity to create biomarker arrays that when properly developed and analyzed could result in an objective diagnosis with a ranking of the severity of autism for each subject. The contribution of each biomarker to the overall diagnosis could be calculated, thus providing a profile pattern unique to the individual. This profile could consequently provide information for therapeutic interventions on an individual basis.
Collapse
|
37
|
Ashwood P, Corbett BA, Kantor A, Schulman H, Van de Water J, Amaral DG. In search of cellular immunophenotypes in the blood of children with autism. PLoS One 2011; 6:e19299. [PMID: 21573236 PMCID: PMC3087757 DOI: 10.1371/journal.pone.0019299] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/30/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism. METHODS We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4-6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ ≥ 68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry. RESULTS There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls. CONCLUSIONS These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of
California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
| | - Blythe A. Corbett
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| | - Aaron Kantor
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Howard Schulman
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Division of Rheumatology, Allergy and Clinical Immunology University of
California Davis, Davis, California, United States of America
| | - David G. Amaral
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Amaral DG. The promise and the pitfalls of autism research: an introductory note for new autism researchers. Brain Res 2011; 1380:3-9. [PMID: 21129367 PMCID: PMC3307796 DOI: 10.1016/j.brainres.2010.11.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/07/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
The last decade has seen an enormous growth in the quantity of research directed at understanding the biological underpinnings of autism spectrum disorders. This increase has been spurred on, in part, by research funding provided through private, parent advocacy groups. While increased funding and entry into autism research by scientists from many disciplines has facilitated the speed of discoveries germane to establishing the etiologies of autism, there remain a number of roadblocks to understanding autism sufficiently well to foster new treatments. This short article provides a brief overview of some of the achievements and some of the difficulties in conducting autism research.
Collapse
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
39
|
Chez MG, Guido-Estrada N. Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics 2010; 7:293-301. [PMID: 20643382 PMCID: PMC5084233 DOI: 10.1016/j.nurt.2010.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/23/2010] [Accepted: 05/26/2010] [Indexed: 12/12/2022] Open
Abstract
Autism affects 1 in 110 new births, and it has no single etiology with uniform agreement. This has a significant impact on the quality of life for individuals who have been diagnosed with autism. Although autism has a spectrum quality with a shared diagnosis, it presents a uniquely different clinical appearance in each individual. Recent research of suspected immunological factors have provided more support for a probable immunological process or for processes that may play a role in the acquisition of an autistic condition. These factors include prenatal, genetic, and postnatal findings, as well as the discovery of a dysfunctional chronic pro-inflammatory state in brain tissue and cerebrospinal fluid in subsets of autistic patients. These findings offer new theories that may lead to the development of disease modification or preventative therapeutic options in the near future. This article reviews prenatal, genetic, and observed immune aspects of the autism condition that may be risk factors in the presentation of the autistic clinical phenotype. Historical immune interventions in autism are reviewed and potential new therapies and interventions are discussed.
Collapse
Affiliation(s)
- Michael G Chez
- Pediatric Neurology and Autism Neurodevelopmental Program, Sutter Neuroscience Institute, Sacramento, California 95816, USA.
| | | |
Collapse
|
40
|
Careaga M, Van de Water J, Ashwood P. Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 2010; 7:283-92. [PMID: 20643381 PMCID: PMC5084232 DOI: 10.1016/j.nurt.2010.05.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022] Open
Abstract
Autism is a complex and clinically heterogeneous disorder with a spectrum of symptoms. Clinicians, schools, and service agencies worldwide have reported a dramatic increase in the number of children identified with autism. Despite expanding research, the etiology and underlying biological processes of autism remain poorly understood, and the relative contribution from genetic, epigenetic, and environmental factors remains unclear. Although autism affects primarily brain function (especially affect, social functioning, and cognition), it is unknown to what extent other organs and systems are disrupted. Published findings have identified widespread changes in the immune systems of children with autism, at both systemic and cellular levels. Brain specimens from autism subjects exhibit signs of active, ongoing inflammation, as well as alterations in gene pathways associated with immune signaling and immune function. Moreover, many genetic studies have indicated a link between autism and genes that are relevant to both the nervous system and the immune system. Alterations in these pathways can affect function in both systems. Together, these reports suggest that autism may in fact be a systemic disorder with connections to abnormal immune responses. Such immune system dysfunction may represent novel targets for treatment. A better understanding of the involvement of the immune response in autism, and of how early brain development is altered, may have important therapeutic implications.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology, University of California at Davis, 95817 Sacramento, California
- M.I.N.D. Institute, University of California at Davis, 2805 50th Street, 95817 Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 95817 Sacramento, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, 95817 Sacramento, California
- M.I.N.D. Institute, University of California at Davis, 2805 50th Street, 95817 Sacramento, CA
| |
Collapse
|
41
|
An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol Psychiatry 2009; 66:978-84. [PMID: 19699471 DOI: 10.1016/j.biopsych.2009.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Endophenotypes are simple biological aspects of a disease that can be observed in unaffected relatives at a higher rate than in the general population; an "autism endophenotype" justifies the observation that a mild reduction in ideational fluency and nonverbal generativity might be observed in healthy, unaffected relatives of children with autism. Because it is becoming apparent that autism is associated with given alleles encoding within the human leukocyte antigens region, a region of pivotal importance in immunity, we examined whether the "autism endophenotype" would extend its effects on the immune system. METHODS Multiple immune parameters were analyzed in autistic children (AC) (n = 20), their siblings (HSAC) (n = 15), and age- and gender-comparable healthy control subjects (HC) (n = 20) without any familiarity for autism. RESULTS The immune profiles of HSAC were significantly more similar to those of their autistic siblings than to what was observed in HC. Thus, in AC and HSAC compared with HC: 1) proinflammatory and interleukin-10-producing immune cells were augmented (p < .01 in both comparisons); 2) CD8(+) naïve (CD45RA(+)/CCR7+) T lymphocytes were increased (p < .0001 and p = .001); and 3) CD8(+) effector memory (CD45RA(-)/CCR7-) (p < .0001 and p = .03) as well as CD4(+) terminally differentiated (CD45RA(-)/CCR7+) (p < .05 in both comparisons) lymphocytes were diminished. Serum autoantibodies (GM1) could be detected in 10% of AC children alone. CONCLUSIONS Results of this pilot study indicate that a complex immune dysfunction is present both in autistic children and in their non-autistic siblings and show the presence of an "autism endophenotype" that expands its effects on immunologic functions.
Collapse
|
42
|
Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van de Water J, Ashwood P. Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. J Neuroimmunol 2009; 216:126-9. [PMID: 19800697 DOI: 10.1016/j.jneuroim.2009.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/25/2009] [Accepted: 09/04/2009] [Indexed: 02/04/2023]
Abstract
A potential role for T(H)17 cells has been suggested in a number of conditions including neurodevelopmental disorders such as autism spectrum disorders (ASD). In the current study, we investigated cellular release of IL-17 and IL-23 following an in-vitro immunological challenge of peripheral blood mononuclear cells (PBMC) from children with ASD compared to age-matched typically developing controls. Following stimulation, the concentration of IL-23, but not IL-17, was significantly reduced (p=0.021) in ASD compared to controls. Decreased cellular IL-23 production in ASD warrants further research to determine its role on the generation and survival of T(H)17 cells, a cell subset important in neuroinflammatory conditions that may include ASD.
Collapse
Affiliation(s)
- Charity Onore
- Department of Medical Microbiology and Immunology, University of California at Davis, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Halladay AK, Amaral D, Aschner M, Bolivar VJ, Bowman A, DiCicco-Bloom E, Hyman SL, Keller F, Lein P, Pessah I, Restifo L, Threadgill DW. Animal models of autism spectrum disorders: information for neurotoxicologists. Neurotoxicology 2009; 30:811-21. [PMID: 19596370 PMCID: PMC3014989 DOI: 10.1016/j.neuro.2009.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/26/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022]
Abstract
Recent findings derived from large-scale datasets and biobanks link multiple genes to autism spectrum disorders. Consequently, novel rodent mutants with deletions, truncations and in some cases, overexpression of these candidate genes have been developed and studied both behaviorally and biologically. At the Annual Neurotoxicology Meeting in Rochester, NY in October of 2008, a symposium of clinicians and basic scientists gathered to present the behavioral features of autism, as well as strategies to model those behavioral features in mice and primates. The aim of the symposium was to provide researchers with up-to-date information on both the genetics of autism and how they are used in differing in vivo and in vitro animal models as well as to provide a background on the environmental exposures being tested on several animal models. In addition, researchers utilizing complementary approaches, presented on cell culture, in vitro or more basic models, which target neurobiological mechanisms, including Drosophila. Following the presentation, a panel convened to explore the opportunities and challenges of using model systems to investigate genetic and environment interactions in autism spectrum disorders. The following paper represents a summary of each presentation, as well as the discussion that followed at the end of the symposium.
Collapse
Affiliation(s)
- Alycia K Halladay
- Autism Speaks, 2 Park Avenue, 4th Floor, New York, NY 10016, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Autism spectrum disorders (ASDs) are relatively infrequent but are devastating developmental conditions characterized by marked deficiencies in social, communicative and other behavioral domains. It has been known for a substantial period of time that these disorders are genetic in nature. However, elucidating the specific mechanisms of these disorders has been difficult. A major reason for such difficulty is the recognized genetic heterogeneity of ASDs. Specifically, many genetic mechanisms related to structural variations in the genome have been reported as possible genetic causes of these disorders. This review briefly exemplifies these genetic mechanisms, presents a concise overview of the evidence for the genetic basis of ASDs and provides an appraisal of the specific structural genetic variants thought to contribute to the pathogenesis of these complex disorders.
Collapse
Affiliation(s)
- Elena L Grigorenko
- Child Study Center, Department of Psychology, Department of Epidemiology & Public Health, Yale University, 230 South Frontage Road, New Haven, CT 06519-1124, USA, Tel.: +1 203 737 2316, ,
| |
Collapse
|
45
|
Marazziti D, Mungai F, Masala I, Baroni S, Vivarelli L, Ambrogi F, Catena Dell'Osso M, Consoli G, Massimetti G, Dell'Osso L. Normalisation of immune cell imbalance after pharmacological treatments of patients suffering from obsessive-compulsive disorder. J Psychopharmacol 2009; 23:567-73. [PMID: 18755814 DOI: 10.1177/0269881108089605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent data have shown the presence of immunological alterations in adult patients suffering from obsessive-compulsive disorder (OCD). The objective of this study was to examine the possible effects of 12 months of treatment with different serotonergic drugs, such as clomipramine and selective serotonin reuptake inhibitors (SSRIs) on peripheral immunological cells of 18 OCD patients. Both the absolute number and percent of CD4+, CD8+, CD3+, CD19+ and CD56+ cells were measured in peripheral blood before and after treatment by means of a Facstar Flow Sorter apparatus. At baseline, all patients showed a significant increase of CD8+ and decrease of CD4+ lymphocytes when compared with a similar group of healthy control subjects; after the treatment, CD8+ and CD4+ cells, respectively, decreased and increased significantly, and the CD4+/CD8+ ratio increased, when compared with baseline values, in parallel with the clinical improvement. These data suggest that the alterations of immune cells reported in patients with OCD at baseline may be reverted by treatment with SRIs and should be considered a state-dependent marker, perhaps related to a condition of stress.
Collapse
Affiliation(s)
- D Marazziti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Pisa 56100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Russo AJ. Anti-metallothionein IgG and levels of metallothionein in autistic children with GI disease. DRUG HEALTHCARE AND PATIENT SAFETY 2009; 1:1-8. [PMID: 21701604 PMCID: PMC3108685 DOI: 10.2147/dhps.s4342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM To assess both serum concentration of metallotionein (MT) and anti-metallothionein (anti-MT) immunoglobulin G (IgG) in autistic children with gastrointestinal (GI) symptoms and controls, and to test the hypothesis that there is an association between the presence of MT, anti-MT IgG, and inflammatory GI disease seen in many children with autistic spectrum disorder (ASD). SUBJECTS AND METHODS ELISAs were used to measure serum MT and anti-MT IgG in 41 autistic children with chronic digestive disease (many with ileo-colonic lymphoid nodular hyperplasia [LNH] and inflammation of the colorectum, small bowel, and/or stomach), and 33 controls (17 age-matched autistic children with no GI disease and 16 age-matched children without autism or GI disease). RESULTS Ten of 41 autistic children with chronic digestive disease had high serum concentration of MT compared to only one of the 33 controls (p < 0.01). Thirteen of the 41 autistic children with chronic digestive disease had anti-MT IgG compared to only four of 33 controls (p < 0.01). Nine of 10 (90%) of autistic children with GI disease with high MT levels had a regressive onset (compared to the expected 25 of 41, or 61%, in this group) (p < 0.05), whereas only nine of 13 of the autistic children with GI disease and anti-MT IgG had a regressive onset (70%) which was not significantly higher than the expected. We didn't find any correlation between severity of GI disease and MT concentration or anti-MT IgG. DISCUSSION These results suggest a relationship between MT, anti-MT IgG and GI disease seen in many ASD individuals.
Collapse
Affiliation(s)
- A J Russo
- Mount Saint Mary's University, Emmitsburg, MD, USA
| |
Collapse
|
47
|
Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009; 23:124-33. [PMID: 18762240 PMCID: PMC2636576 DOI: 10.1016/j.bbi.2008.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/02/2008] [Accepted: 08/06/2008] [Indexed: 11/20/2022] Open
Abstract
Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNgamma) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNgamma in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.
Collapse
Affiliation(s)
- Amanda M Enstrom
- Department of Medical Microbiology and Immunology, University of California at Davis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Can Children with Autism Recover? If So, How? Neuropsychol Rev 2008; 18:339-66. [PMID: 19009353 DOI: 10.1007/s11065-008-9075-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
49
|
Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, Bock K, Hirani K, Neubrander J, Woeller KN, O'Hara N, Usman A, Schneider C, Hebroni F, Berookhim J, McCandless J. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol 2008; 205:148-54. [PMID: 18929414 DOI: 10.1016/j.jneuroim.2008.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/28/2008] [Accepted: 09/05/2008] [Indexed: 12/21/2022]
Abstract
Although many articles have reported immune abnormalities in autism, NK cell activity has only been examined in one study of 31 patients, of whom 12 were found to have reduced NK activity. The mechanism behind this low NK cell activity was not explored. For this reason, we explored the measurement of NK cell activity in 1027 blood samples from autistic children obtained from ten clinics and compared the results to 113 healthy controls. This counting of NK cells and the measurement of their lytic activity enabled us to express the NK cell activity/100 cells. At the cutoff of 15-50 LU we found that NK cell activity was low in 41-81% of the patients from the different clinics. This NK cell activity below 15 LU was found in only 8% of healthy subjects (p<0.001). Low NK cell activity in both groups did not correlate with percentage and absolute number of CD16(+)/CD56(+) cells. When the NK cytotoxic activity was expressed based on activity/100 CD16(+)/CD56(+) cells, several patients who had displayed NK cell activity below 15 LU exhibited normal NK cell activity. Overall, after this correction factor, 45% of the children with autism still exhibited low NK cell activity, correlating with the intracellular level of glutathione. Finally, we cultured lymphocytes of patients with low or high NK cell activity/cell with or without glutathione, IL-2 and IL-15. The induction of NK cell activity by IL-2, IL-15 and glutathione was more pronounced in a subgroup with very low NK cell activity. We conclude that that 45% of a subgroup of children with autism suffers from low NK cell activity, and that low intracellular levels of glutathione, IL-2 and IL-15 may be responsible.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 10350 Santa Monica Blvd., Ste. 205, Los Angeles, CA 90025, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|