1
|
Yeganeh FA, Summerill C, Hu Z, Rahmani H, Taylor DW, Taylor KA. The cryo-EM 3D image reconstruction of isolated Lethocerus indicus Z-discs. J Muscle Res Cell Motil 2023; 44:271-286. [PMID: 37661214 PMCID: PMC10843718 DOI: 10.1007/s10974-023-09657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
The Z-disk of striated muscle defines the ends of the sarcomere, which repeats many times within the muscle fiber. Here we report application of cryoelectron tomography and subtomogram averaging to Z-disks isolated from the flight muscles of the large waterbug Lethocerus indicus. We use high salt solutions to remove the myosin containing filaments and use gelsolin to remove the actin filaments of the A- and I-bands leaving only the thin filaments within the Z-disk which were then frozen for cryoelectron microscopy. The Lethocerus Z-disk structure is similar in many ways to the previously studied Z-disk of the honeybee Apis mellifera. At the corners of the unit cell are positioned trimers of paired antiparallel F-actins defining a large solvent channel, whereas at the trigonal positions are positioned F-actin trimers converging slowly towards their (+) ends defining a small solvent channel through the Z-disk. These near parallel F-actins terminate at different Z-heights within the Z-disk. The two types of solvent channel in Lethocerus are similar in size compared to those of Apis which are very different in size. Two types of α-actinin crosslinks were observed between oppositely oriented actin filaments. In one of these, the α-actinin long axis is almost parallel to the F-actins it crosslinks. In the other, the α-actinins are at a small but distinctive angle with respect to the crosslinked actin filaments. The utility of isolated Z-disks for structure determination is discussed.
Collapse
Affiliation(s)
- Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Corinne Summerill
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, 33 Gilmer Street SE, Atlanta, GA, 30303, USA
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Facebook, Inc, 1 Hacker Way, Menlo Park, CA, 94025, USA
| | - Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA.
| |
Collapse
|
2
|
Taylor KA, Rahmani H, Edwards RJ, Reedy MK. Insights into Actin-Myosin Interactions within Muscle from 3D Electron Microscopy. Int J Mol Sci 2019; 20:ijms20071703. [PMID: 30959804 PMCID: PMC6479483 DOI: 10.3390/ijms20071703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023] Open
Abstract
Much has been learned about the interaction between myosin and actin through biochemistry, in vitro motility assays and cryo-electron microscopy (cryoEM) of F-actin, decorated with myosin heads. Comparatively less is known about actin-myosin interactions within the filament lattice of muscle, where myosin heads function as independent force generators and thus most measurements report an average signal from multiple biochemical and mechanical states. All of the 3D imaging by electron microscopy (EM) that has revealed the interplay of the regular array of actin subunits and myosin heads within the filament lattice has been accomplished using the flight muscle of the large water bug Lethocerus sp. The Lethocerus flight muscle possesses a particularly favorable filament arrangement that enables all the myosin cross-bridges contacting the actin filament to be visualized in a thin section. This review covers the history of this effort and the progress toward visualizing the complex set of conformational changes that myosin heads make when binding to actin in several static states, as well as the fast frozen actively contracting muscle. The efforts have revealed a consistent pattern of changes to the myosin head structures as determined by X-ray crystallography needed to explain the structure of the different actomyosin interactions observed in situ.
Collapse
Affiliation(s)
- Kenneth A Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| | - Hamidreza Rahmani
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| | - Robert J Edwards
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, USA.
| | - Michael K Reedy
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, USA.
| |
Collapse
|
3
|
Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 2010; 5. [PMID: 20844746 PMCID: PMC2936580 DOI: 10.1371/journal.pone.0012643] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
Collapse
Affiliation(s)
- Shenping Wu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mary C. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard T. Tregear
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | - Hanspeter Winkler
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Clara Franzini-Armstrong
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Carmen Lucaveche
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
4
|
Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle. J Mol Biol 2009; 390:99-111. [PMID: 19433094 DOI: 10.1016/j.jmb.2009.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
Upon activation of living or skinned vertebrate skeletal muscle fibers, the sixth X-ray layer-line reflection from actin (6th ALL) is known to intensify, without a shift of its peak position along the layer line. Since myosin attachment to actin is expected to shift the peak towards the meridian, this intensification is considered to reflect the structural change of individual actin monomers in the thin filament. Here, we show that the 6th ALL of skinned insect flight muscles (IFMs) is rather weakened upon isometric calcium activation, and its peak shifts away from the meridian. This suggests that the actin monomers in the two types of muscles change their structures in substantially different manners. The changes that occurred in the 6th ALL of IFM were not diminished by lowering the temperature from 20 to 5 degrees C, while active force was greatly reduced. The inclusion of 100 microM blebbistatin (a myosin inhibitor) did not affect the changes either. This suggests that calcium binding to troponin C, rather than myosin binding to actin, causes the structural change of IFM actin.
Collapse
|
5
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
6
|
Squire JM, Bekyarova T, Farman G, Gore D, Rajkumar G, Knupp C, Lucaveche C, Reedy MC, Reedy MK, Irving TC. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation? J Mol Biol 2006; 361:823-38. [PMID: 16887144 DOI: 10.1016/j.jmb.2006.06.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 06/29/2006] [Accepted: 06/29/2006] [Indexed: 11/28/2022]
Abstract
Low-angle X-ray diffraction patterns from relaxed fruitfly (Drosophila) flight muscle recorded on the BioCat beamline at the Argonne Advanced Photon Source (APS) show many features similar to such patterns from the "classic" insect flight muscle in Lethocerus, the giant water bug, but there is a characteristically different pattern of sampling of the myosin filament layer-lines, which indicates the presence of a superlattice of myosin filaments in the Drosophila A-band. We show from analysis of the structure factor for this lattice that the sampling pattern is exactly as expected if adjacent four-stranded myosin filaments, of repeat 116 nm, are axially shifted in the hexagonal A-band lattice by one-third of the 14.5 nm axial spacing between crowns of myosin heads. In addition, electron micrographs of Drosophila and other flies (e.g. the house fly (Musca) and the flesh fly (Sarcophaga)) combined with image processing confirm that the same A-band superlattice occurs in all of these flies; it may be a general property of the Diptera. The different A-band organisation in flies compared with Lethocerus, which operates at a much lower wing beat frequency (approximately 30 Hz) and requires a warm-up period, may be a way of optimising the myosin and actin filament geometry needed both for stretch activation at the higher wing beat frequencies (50 Hz to 1000 Hz) of flies and their need for a rapid escape response.
Collapse
Affiliation(s)
- John M Squire
- Biological Structure & Function Section, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM. Myosin head configuration in relaxed insect flight muscle: x-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding. Biophys J 2003; 85:1063-79. [PMID: 12885653 PMCID: PMC1303227 DOI: 10.1016/s0006-3495(03)74545-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 04/14/2003] [Indexed: 10/21/2022] Open
Abstract
Low-angle x-ray diffraction patterns from relaxed insect flight muscle recorded on the BioCAT beamline at the Argonne APS have been modeled to 6.5 nm resolution (R-factor 9.7%, 65 reflections) using the known myosin head atomic coordinates, a hinge between the motor (catalytic) domain and the light chain-binding (neck) region (lever arm), together with a simulated annealing procedure. The best head conformation angles around the hinge gave a head shape that was close to that typical of relaxed M*ADP*Pi heads, a head shape never before demonstrated in intact muscle. The best packing constrained the eight heads per crown within a compact crown shelf projecting at approximately 90 degrees to the filament axis. The two heads of each myosin molecule assume nonequivalent positions, one head projecting outward while the other curves round the thick filament surface to nose against the proximal neck of the projecting head of the neighboring molecule. The projecting heads immediately suggest a possible cross-bridge cycle. The relaxed projecting head, oriented almost as needed for actin attachment, will attach, then release Pi followed by ADP, as the lever arm with a purely axial change in tilt drives approximately 10 nm of actin filament sliding on the way to the nucleotide-free limit of its working stroke. The overall arrangement appears well designed to support precision cycling for the myogenic oscillatory mode of contraction with its enhanced stretch-activation response used in flight by insects equipped with asynchronous fibrillar flight muscles.
Collapse
Affiliation(s)
- Hind A AL-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Frisbie SM, Xu S, Chalovich JM, Yu LC. Characterizations of cross-bridges in the presence of saturating concentrations of MgAMP-PNP in rabbit permeabilized psoas muscle. Biophys J 1998; 74:3072-82. [PMID: 9635761 PMCID: PMC1199383 DOI: 10.1016/s0006-3495(98)78014-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several earlier studies have led to different conclusions about the complex of myosin with MgAMP-PNP. It has been suggested that subfragment 1 of myosin (S1)-MgAMP-PNP forms an S1-MgADP-like state, an intermediate between the myosin S1-MgATP and myosin S1-MgADP states or a mixture of cross-bridge states. We suggest that the different states observed result from the failure to saturate S1 with MgAMP-PNP. At saturating MgAMP-PNP, the interaction of myosin S1 with actin is very similar to that which occurs in the presence of MgATP. 1) At 1 degrees C and 170 mM ionic strength the equatorial x-ray diffraction intensity ratio I11/I10 decreased with an increasing MgAMP-PNP concentration and leveled off by approximately 20 mM MgAMP-PNP. The resulting ratio was the same for MgATP-relaxed fibers. 2) The two dimensional x-ray diffraction patterns from MgATP-relaxed and MgAMP-PNP-relaxed bundles are similar. 3) The affinity of S1-MgAMP-PNP for the actin-tropomyosin-troponin complex in solution in the absence of free calcium is comparable with that of S1-MgATP. 4) In the presence of calcium, I11/I10 decreased toward the relaxed value with increasing MgAMP-PNP, signifying that the affinity between cross-bridge and actin is weakened by MgAMP-PNP. 5) The degree to which the equatorial intensity ratio decreases as the ionic strength increases is similar in MgAMP-PNP and MgATP. Therefore, results from both fiber and solution studies suggest that MgAMP-PNP acts as a non hydrolyzable MgATP analogue for myosin.
Collapse
Affiliation(s)
- S M Frisbie
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-7182, USA
| | | | | | | |
Collapse
|
10
|
Tregear RT, Edwards RJ, Irving TC, Poole KJ, Reedy MC, Schmitz H, Towns-Andrews E, Reedy MK. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J 1998; 74:1439-51. [PMID: 9512040 PMCID: PMC1299490 DOI: 10.1016/s0006-3495(98)77856-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor.
Collapse
Affiliation(s)
- R T Tregear
- MRC Laboratory of Molecular Biology, Cambridge, England.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schmitz H, Reedy MC, Reedy MK, Tregear RT, Taylor KA. Tomographic three-dimensional reconstruction of insect flight muscle partially relaxed by AMPPNP and ethylene glycol. J Cell Biol 1997; 139:695-707. [PMID: 9348286 PMCID: PMC2141709 DOI: 10.1083/jcb.139.3.695] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1997] [Revised: 07/10/1997] [Indexed: 02/05/2023] Open
Abstract
Rigor insect flight muscle (IFM) can be relaxed without ATP by increasing ethylene glycol concentration in the presence of adenosine 5'-[beta'gamma- imido]triphosphate (AMPPNP). Fibers poised at a critical glycol concentration retain rigor stiffness but support no sustained tension ("glycol-stiff state"). This suggests that many crossbridges are weakly attached to actin, possibly at the beginning of the power stroke. Unaveraged three-dimensional tomograms of "glycol-stiff" sarcomeres show crossbridges large enough to contain only a single myosin head, originating from dense collars every 14.5 nm. Crossbridges with an average 90 degrees axial angle contact actin midway between troponin subunits, which identifies the actin azimuth in each 38.7-nm period, in the same region as the actin target zone of the 45 degrees angled rigor lead bridges. These 90 degrees "target zone" bridges originate from the thick filament and approach actin at azimuthal angles similar to rigor lead bridges. Another class of glycol-PNP crossbridge binds outside the rigor actin target zone. These "nontarget zone" bridges display irregular forms and vary widely in axial and azimuthal attachment angles. Fitting the acto-myosin subfragment 1 atomic structure into the tomogram reveals that 90 degrees target zone bridges share with rigor a similar contact interface with actin, while nontarget crossbridges have variable contact interfaces. This suggests that target zone bridges interact specifically with actin, while nontarget zone bridges may not. Target zone bridges constitute only approximately 25% of the myosin heads, implying that both specific and nonspecific attachments contribute to the high stiffness. The 90 degrees target zone bridges may represent a preforce attachment that produces force by rotation of the motor domain over actin, possibly independent of the regulatory domain movements.
Collapse
Affiliation(s)
- H Schmitz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy.
Collapse
Affiliation(s)
- J F Ménétret
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
13
|
Schmitz H, Lucaveche C, Reedy MK, Taylor KA. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J 1994; 67:1620-33. [PMID: 7819494 PMCID: PMC1225524 DOI: 10.1016/s0006-3495(94)80635-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this work we examined the arrangement of cross-bridges on the surface of myosin filaments in the A-band of Lethocerus flight muscle. Muscle fibers were fixed using the tannic-acid-uranyl-acetate, ("TAURAC") procedure. This new procedure provides remarkably good preservation of native features in relaxed insect flight muscle. We computed 3-D reconstructions from single images of oblique transverse sections. The reconstructions reveal a square profile of the averaged myosin filaments in cross section view, resulting from the symmetrical arrangement of four pairs of myosin heads in each 14.5-nm repeat along the filament. The square profiles form a very regular right-handed helical arrangement along the surface of the myosin filament. Furthermore, TAURAC fixation traps a near complete 38.7 nm labeling of the thin filaments in relaxed muscle marking the left-handed helix of actin targets surrounding the thick filaments. These features observed in an averaged reconstruction encompassing nearly an entire myofibril indicate that the myosin heads, even in relaxed muscle, are in excellent helical register in the A-band.
Collapse
Affiliation(s)
- H Schmitz
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- M K Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
15
|
Hirose K, Lenart TD, Murray JM, Franzini-Armstrong C, Goldman YE. Flash and smash: rapid freezing of muscle fibers activated by photolysis of caged ATP. Biophys J 1993; 65:397-408. [PMID: 8369445 PMCID: PMC1225734 DOI: 10.1016/s0006-3495(93)81061-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new approach was used to study transient structural states of cross-bridges during activation of muscle fibers. Rabbit skinned muscle fibers were rapidly and synchronously activated from the rigor state by photolysis of caged ATP in the presence of Ca2+. At several different times during the switch from rigor to fully active tension development, the fibers were rapidly frozen on a liquid helium-cooled metal block, freeze-substituted, and examined in an electron microscope. The limits of structural preservation and resolution with this technique were analyzed. We demonstrate that the resolution of our images is sufficient to draw the following conclusions about cross-bridge structure. Rigor cross-bridges point away from the Z-line and most of them are wider near the thin filaments than near the backbone of the thick filaments. In contrast, cross-bridges in actively contracting fibers stretch between the thick and thin filaments at a variable angle, and are uniformly thin. Diffraction patterns computed from contracting muscle show layer lines both at 38 and 43 nm indicating that active cross-bridges contribute mass to both the actin- and myosin-based helical periodicities. The images obtained from fibers frozen 20 ms after release of ATP show a mixture of rigor and active type cross-bridge configurations. There is little evidence of cross-bridges with the rigor shape by 50 ms, and the difference in configurations between 50 and 300 ms after photolysis is surprisingly subtle.
Collapse
Affiliation(s)
- K Hirose
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | |
Collapse
|
16
|
Tregear RT, Townes E, Gabriel J, Ellington C. Inferences concerning crossbridges from work on insect muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:557-64; discussion 565. [PMID: 8109367 DOI: 10.1007/978-1-4615-2872-2_50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper presents a number of separate results concerning crossbridge attachment: [1] X-ray diffraction from live bumble bee flight muscle shows a set of layer lines distinct from that of relaxed Lethocerus, in which the apparent myosin helix is shorter than that of the actin. [2] Rigor crossbridges of Lethocerus are not rotatable by stretch. [3] Rabbit and Lethocerus fibres in rigor relaxed by ATP at -35 degrees C show evidence of non-rigor crossbridge attachment.
Collapse
Affiliation(s)
- R T Tregear
- AFRC Institute of Animal Physiology, Babraham, Cambridge, UK
| | | | | | | |
Collapse
|
17
|
Reedy MK, Lucaveche C, Reedy MC, Somasundaram B. Experiments on rigor crossbridge action and filament sliding in insect flight muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:33-44; discussion 44-6. [PMID: 8109347 DOI: 10.1007/978-1-4615-2872-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have explored three aspects of rigor crossbridge action: 1. Under rigor conditions, slow stretching (2% per hour) of insect flight muscle (IFM) from Lethocerus causes sarcomere ruptures but never filament sliding. However, in 1 mM AMPPNP, slow stretching (5%/h) causes filament sliding but no sarcomere ruptures, although stiffness equals rigor values. Thus loaded rigor attachments in IFM show no strain relief over several hours, but near-rigor states that allow short-term strain relief indicate different grades of strongly bound bridges, and suggest approaches to annealing the rigor lattice. 2. Sarcomeres of Lethocerus flight muscle, stretched 20-60% and then rigorized, show "hybrid" crossbridge patterns, with overlap zones in rigor, but H-bands relaxed and revealing four-stranded R-hand helical thick filament structure. The sharp boundary exhibits precise phasing between relaxed and rigor arrays along each thick filament. Extrapolating one lattice into the other should allow detailed modeling of the action of each myosin head as it enters rigor. 3. The "A-(bee)-Z problem" exposes a conflict about actin rotational alignment between A-bands and Z-bands of bee IFM, raising the possibility that rigor induction might rotate actins forcefully from one pattern to the other. As Squire noted, 3-D reconstructions of Z-bands in relaxed bee IFM2) imply A-bands where actin target zones form rings rather than helices around thick filaments. However, we confirm Trombitás et al. that rigor crossbridges in bee IFM mark helically arrayed target zones. Moreover, we find that loose crossbridge interactions in relaxed bee IFM mark the same helical pattern. Thus no change of actin rotational alignment by rigor crossbridges seems necessary, but 3-D structure of IFM Z-bands should be re-evaluated regarding the apparent contradiction with A-band symmetry.
Collapse
|
18
|
Reedy MK, Lucaveche C, Naber N, Cooke R. Insect crossbridges, relaxed by spin-labeled nucleotide, show well-ordered 90 degrees state by X-ray diffraction and electron microscopy, but spectra of electron paramagnetic resonance probes report disorder. J Mol Biol 1992; 227:678-97. [PMID: 1328652 DOI: 10.1016/0022-2836(92)90217-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structure of glycerinated Lethocerus insect flight muscle fibers, relaxed by spin-labeled ATP and vanadate (Vi), was examined using X-ray diffraction, electron microscopy and electron paramagnetic resonance (e.p.r.) spectra. We obtained excellent relaxation of MgATP quality as determined by mechanical criteria, using vanadate trapping of 2' spin-labeled 3' deoxyATP at 3 degree C. In rigor fibers, when the diphosphate analog is bound in the absence of Vi, the probes on myosin heads are well-ordered, in agreement with electron microscopic and X-ray patterns showing that myosin heads are ordered when attached strongly to actin. In relaxed muscle, however, e.p.r. spectra report orientational disorder of bound (Vi-trapped) spin-labeled nucleotide, while electron microscopic and X-ray patterns both show well-ordered bridges at a uniform 90 degrees angle to the filament axis. The spin-labeled nucleotide orientation is highly disordered, but not completely isotropic; the slight anisotropy observed in probe spectra is consistent with a shift of approximately 10% of probes from angles close to 0 degrees to angles close to 90 degrees. Measurements of probe mobility suggest that the interaction between probe and protein remains as tight in relaxed fibers as in rigor, and thus that the disorder in relaxed fibers arises from disorders of (or within) the protein and not from disorder of the probe relative to the protein. Fixation of the relaxed fibers with glutaraldehyde did not alter any aspect of the spectrum of the Vi-trapped analog, including the slight order observed, showing that the extensive inter- and intra-molecular cross-linking of the first step of sample preparation for electron microscopy had not altered relaxed crossbridge orientations. Two models that may reconcile the apparently disparate results obtained on relaxed fibers are presented: (1) a rigid myosin head could possess considerable disorder in the regular array about the thick filament; or (2) the nucleotide site could be on a disordered, probably distal, domain of myosin, while a more proximal region is well ordered on the thick filament backbone. Our findings suggest that when e.p.r. probes signal disorder of a local site or domain, this is complementary, not contradictory, to signals of general order. The e.p.r. spectra show that a portion of the myosin molecule can be disordered at the same time as the X-ray diffraction and electron microscopy show the bulk of myosin head mass to be uniformly oriented and regularly arrayed.
Collapse
Affiliation(s)
- M K Reedy
- Department of Cell Biology, Duke University, Durham NC, 27710
| | | | | | | |
Collapse
|
19
|
Schröder RR, Hofmann W, Menetret JF, Holmes KC, Goody RS. Cryo-electron microscopy of vitrified muscle samples. ELECTRON MICROSCOPY REVIEWS 1992; 5:171-92. [PMID: 1730075 DOI: 10.1016/0892-0354(92)90009-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A great deal of information on the 3-dimensional structure of the protein assemblies involved in muscle contraction has been obtained using conventional transmission electron microscopy. In recent years, developments in cryo-electron microscopy have facilitated work with fully hydrated, non-chemically fixed specimens. It is shown how this technique can be used to visualize muscle sarcomere filaments in quasi-native conditions, to access hitherto inaccessible states of the crossbridge cycle, and to obtain new high resolution structural information on their 3-dimensional protein structure. A short introduction to the crossbridge cycle and its biochemically accessible states illustrates the problems amenable to studies using the electron microscope, as well as the possibilities offered by cryo-microscopy on vitrified samples. Work on vitrified cryo-sections and myosin filament suspensions demonstrates the accessibility of crossbridge states and gives implications on the gross structural features of myosin filaments. Recent studies on actin filaments and myosin (S1) decorated actin filaments provide the first high resolution data on vitrified samples. The use of photolabile nucleotide precursors allows the trapping of short lived states in the millisecond time range, thereby visualizing intermediate states of the crossbridge cycle.
Collapse
Affiliation(s)
- R R Schröder
- Max-Planck-Institute for Medical Research, Department of Biophysics, Heidelberg F.R.G
| | | | | | | | | |
Collapse
|
20
|
Rapp G, Güth K, Maeda Y, Poole KJ, Goody RS. Time-resolved X-ray diffraction studies on stretch-activated insect flight muscle. J Muscle Res Cell Motil 1991; 12:208-15. [PMID: 2061413 DOI: 10.1007/bf01774040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The specific feature of stretch activation of the indirect flight muscle of the tropical waterbug Lethocerus was used to correlate mechanical and structural aspects of muscle contraction. The time courses of the changes in intensities of the strongest equatorial reflections, the (10) and (20) and of the first meridional reflection at 14.5 nm-1 were monitored using synchrotron radiation as a high intensity X-ray source. The ratio of the intensities of the equatorial reflections, (I20/I10), which reflects the mass distribution within the filament lattice array, increases by about 10% relative to the Ca(2+)-activated level when a rapid stretch is imposed, compared with a 200% change seen when fibres change from the relaxed to the rigor state, while the spacing of the lattice planes decreases by about 1%. The intensity of the first meridional reflection at 14.5 nm-1 decreases by about 35% during stretch activation with a slightly faster time course than the delayed tension increase. The results suggest that the average structure of cycling crossbridges is different from that present in the rigor state.
Collapse
Affiliation(s)
- G Rapp
- EMBL Outstation, Hamburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Tregear RT, Wakabayashi K, Tanaka H, Iwamoto H, Reedy MC, Reedy MK, Sugi H, Amemiya Y. X-ray diffraction and electron microscopy from Lethocerus flight muscle partially relaxed by adenylylimidodiphosphate and ethylene glycol. J Mol Biol 1990; 214:129-41. [PMID: 2370660 DOI: 10.1016/0022-2836(90)90152-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The low-angle X-ray diffraction pattern from Lethocerus flight muscle fibres was recorded in rigor or under two conditions that modify crossbridge structure and behaviour, aqueous adenylylimidodiphosphate (AMPPNP) and AMPPNP + calcium in an ethylene glycol-water mixture. The effects on the 38.7 nm layer-line peaks (hk.6) of the diffraction patterns were studied in detail. In aqueous AMPPNP at room temperature, a condition in which rigor tension drops to half without loss of stiffness, the peaks remained nearly as intense as in rigor except for the 10.6, which dropped to half. In 20% (v/v) ethylene glycol-AMPPNP + 100 microM-Ca2+ at 23 degrees C (gly + pnp + Ca), a condition which removed muscle tension but left stiffness close to the rigor value, the 10.6 and 11.6 peaks greatly decreased but the 31.6 remained relatively high. The 14.5 nm meridional peak (00.16) became stronger on addition of AMPPNP and again on adding glycol + calcium. Considered in terms of constructively interfering filaments and crossbridges, the X-ray data indicated a transfer of diffracting crossbridge mass towards the thick filament as relaxation proceeds. We compared the X-ray diffraction patterns and crossbridge structure seen with electron microscopy (EM) under the same chemical conditions. EM and X-ray observations were mutually quite consistent overall. However, X-ray data indicated that more crossbridge mass was stereospecifically related to actin before fixation in the partially relaxed state (gly + pnp + Ca) than was suggested by the disordered crossbridge profiles seen by EM. We conclude that myosin heads at the start of the power stroke may both be closely related to their thick filament origins and form actin-determined attachments to the thin filament.
Collapse
Affiliation(s)
- R T Tregear
- Institute of Animal Physiology and Genetics Research Babraham, Cambridge, U.K
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Biosca JA, Eisenberg E, Reedy MC, Reedy MK. Binding of ADP and adenosine 5'-[beta, gamma-imido]triphosphate to insect flight muscle fibrils. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:395-9. [PMID: 2338083 DOI: 10.1111/j.1432-1033.1990.tb15501.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have studied the binding of ADP and adenosine 5'-[beta, gamma-imido]triphosphate (AdoPP[NH]P) to insect flight muscle fibrils. We find that 25% of the myosin heads, presumably those which do not interact with actin, bind AdoPP[NH]P with a binding constant greater than 3 X 10(6) M-1, similar to the binding constant of the same compound to the rabbit myosin heads which do not overlap with actin. The remaining heads in insect myofibrils bind AdoPP[NH]P with an association constant of 8 X 10(3) M-1, which is eight times stronger than the affinity of this compound for rabbit myosin heads in overlap with actin. Therefore, in contrast to the situation with rabbit myofibrils where AdoPP[NH]P binds much more weakly than ADP, with insect myofibrils these two adenosine phosphates bind with almost equal affinity. This is consistent with the numerous structural studies on insect flight muscle which were interpreted on the basis that most of the actomyosin sites were saturated with nucleotide at an AdoPP[NH]P concentration of 1 mM.
Collapse
Affiliation(s)
- J A Biosca
- Laboratory of Cell Biology, National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda
| | | | | | | |
Collapse
|
23
|
Abstract
It is commonly believed, for both vertebrate striated and insect flight muscle, that when the ATP analogue adenyl-5'-yl imidodiphosphate (AMPPNP) is added to the muscle fiber in rigor, it causes the fiber to lengthen by 0.15%. This has been interpretated (Marston S.B., C.D. Roger, and R.T. Tregear. 1976. J. Mol. Biol. 104:263-267) as suggesting (a) that in rigor the crossbridge is fixed to, i.e., almost never detaches from the actin filament; (b), that the crossbridge remains fixed to the actin filament after AMPPNP addition; and (c) that the ability of AMPPNP to cause apparent lengthening of a muscle fiber is due to its ability to cause a conformational change in the myosin crossbridge that has an axial component of approximately 1.6 nm/half-sarcomere. The present study, done only on chemically-skinned rabbit psoas fibers, confirms that AMPPNP can cause muscle fibers to lengthen by 0.15% but only for a narrow set of experimental conditions. When experimental conditions are varied over a wider range, it becomes apparent that the extent of lengthening of a rigor muscle fiber upon AMPPNP addition depends almost entirely on the strain present in the rigor fiber before AMPPNP addition. Addition of AMPPNP to an unstrained rigor fiber (one supporting zero tension), induces zero length change while addition of AMPPNP to very highly strained rigor fibers induces length changes greater than 0.15%. The data thus do not support the hypotheses that the crossbridges remain fixed to the actin filament after AMPPNP addition and that the size of the apparent length change induced by AMPPNP is related to the size of the axial component of a conformational change. Instead, the data support the idea that the ability of AMPPNP to cause lengthening of a rigor muscle fiber is related to its ability to accelerate the rate at which strained crossbridges detach from actin and reattach in positions in lesser strain. The data do not rule out a conformational change upon AMPPNP binding, they simply make clear that any attempt to measure a force response conceivably due to a conformational change, would be more than obscured by the force changes due to crossbridges detaching and reattaching in positions of lesser strain.
Collapse
Affiliation(s)
- M Schoenberg
- Laboratory of Physical Biology, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Abstract
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.
Collapse
Affiliation(s)
- M C Reedy
- Department of Anatomy, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
25
|
Tregear R. Constraints on the attachment of myosin to actin. J Muscle Res Cell Motil 1988; 9:293-5. [PMID: 3220948 DOI: 10.1007/bf01773872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R Tregear
- AFRC Institute of Animal Physiology & Genetics Research, Babraham, Cambridge
| |
Collapse
|