1
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
2
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
4
|
Glycation modulates alpha-synuclein fibrillization kinetics: a sweet spot for inhibition. J Biol Chem 2022; 298:101848. [PMID: 35314196 PMCID: PMC9034100 DOI: 10.1016/j.jbc.2022.101848] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
Glycation is a nonenzymatic posttranslational modification (PTM) known to be increased in the brains of hyperglycemic patients. Alpha-synuclein (αSN), a central player in the etiology of Parkinson’s disease, can be glycated at lysine residues, thereby reducing αSN fibril formation in vitro and modulating αSN aggregation in cells. However, the molecular basis for these effects is unclear. To elucidate this, we investigated the aggregation of αSN modified by eight glycating agents, namely the dicarbonyl compound methylglyoxal (MGO) and the sugars ribose, fructose, mannose, glucose, galactose, sucrose, and lactose. We found that MGO and ribose modify αSN to the greatest extent, and these glycation products are the most efficient inhibitors of fibril formation. We show glycation primarily inhibits elongation rather than nucleation of αSN and has only a modest effect on the level of oligomerization. Furthermore, glycated αSN is not significantly incorporated into fibrils. For both MGO and ribose, we discovered that a level of ∼5 modifications per αSN is optimal for inhibition of elongation. The remaining sugars showed a weak but optimal inhibition at ∼2 modifications per αSN. We propose that this optimal level balances the affinity for the growing ends of the fibril (which decreases with the extent of modification) with the ability to block incorporation of subsequent αSN subunits (which increases with modification). Our results are not only relevant for other αSN PTMs but also for understanding PTMs affecting other fibrillogenic proteins and may thus open novel avenues for therapeutic intervention in protein aggregation disorders.
Collapse
|
5
|
Zemerov SD, Roose BW, Farenhem KL, Zhao Z, Stringer MA, Goldman AR, Speicher DW, Dmochowski IJ. 129Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration. Anal Chem 2020; 92:12817-12824. [PMID: 32897053 PMCID: PMC7649717 DOI: 10.1021/acs.analchem.0c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Kelsey L. Farenhem
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Madison A. Stringer
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Aaron R. Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
- Molecular and Cellular Oncogenesis Program, The Wistar
Institute, Philadelphia, PA 19104, USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Cao W, Qiu J, Cai T, Yi L, Benardot D, Zou M. Effect of D-ribose supplementation on delayed onset muscle soreness induced by plyometric exercise in college students. J Int Soc Sports Nutr 2020; 17:42. [PMID: 32778175 PMCID: PMC7418385 DOI: 10.1186/s12970-020-00371-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
Objective Previous investigations suggest that appropriate nutritional interventions may reduce delayed onset muscle soreness (DOMS). This study examined the effect of D-ribose supplementation on DOMS induced by plyometric exercise. Methods For the purpose of inducing DOMS, 21 untrained male college students performed a lower-limb plyometric exercise session that involved 7 sets of 20 consecutive frog hops with 90-s of rest between each set. Muscle soreness was measured with a visual analogue scale 1-h before, 24-h after, and 48-h after exercise. Subjects were then randomly placed into the D-ribose group (DRIB, n = 11) and the placebo group (PLAC, n = 10) to assure equivalent BMI and muscle soreness. After a 14-d washout/recovery period, subjects performed the same exercise session, with DRIB ingesting a 200 ml solution containing 15 g D-ribose 1-h before, 1-h, 12-h, 24-h, and 36-h after exercise, and PLAC ingesting a calorically equivalent placebo of the same volume and taste containing sorbitol and β-cyclodextrin. Muscle soreness and isokinetic muscle strength were measured, and venous blood was assessed for markers of muscle damage and oxidative stress 1-h before, 24-h and 48-h after exercise. Results In DRIB, muscle soreness after 24-h and 48-h in the second exercise session were significantly lower (p < 0.01) than was experienced in the first exercise session. In the second exercise, blood-related markers of muscle soreness, including creatine kinase, lactate dehydrogenase (LDH), myoglobin and malondialdehyde (MDA) in DRIB after 24-h were lower in DRIB after 24-h than in PLAC (MDA, p < 0.05; rest outcomes, p < 0.01). In addition, LDH and MDA in DRIB were significantly lower (p < 0.01) after 24-h in DRIB than in PLAC. No difference was found in isokinetic muscle strength and oxidative stress markers, including superoxide dismutase and total antioxidant capacity, between DRIB and PLAC after 24-h and 48-h. Conclusion D-ribose supplementation reduces muscle soreness, improves recovery of muscle damage, and inhibits the formation of lipid peroxides. Young adult males performing plyometric exercise are likely to realize a DOMS reduction through consumption of D-ribose in 15 g/doses both before (1-h) and after (1-h, 12-h, 24-h, 36-h) exercise. These results suggest that appropriately timed consumption of D-ribose may induce a similar alleviation of exercise-induced DOMS in the general public.
Collapse
Affiliation(s)
- Wei Cao
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, China
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, China.
| | - Tianwei Cai
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, China
| | - Longyan Yi
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, China
| | - Dan Benardot
- Department of Nutrition, Georgia State University, Atlanta, GA, USA.,Center for the Study of Human Health, Emory University, Atlanta, GA, USA
| | - Menghui Zou
- China Athletics College, Beijing Sport University, Beijing, BJ, China
| |
Collapse
|
7
|
Purines: From Diagnostic Biomarkers to Therapeutic Agents in Brain Injury. Neurosci Bull 2020; 36:1315-1326. [PMID: 32542580 DOI: 10.1007/s12264-020-00529-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The purines constitute a family of inter-related compounds that serve a broad range of important intracellular and extracellular biological functions. In particular, adenosine triphosphate (ATP) and its metabolite and precursor, adenosine, regulate a wide variety of cellular and systems-level physiological processes extending from ATP acting as the cellular energy currency, to the adenosine arising from the depletion of cellular ATP and responding to reduce energy demand and hence to preserve ATP during times of metabolic stress. This inter-relationship provides opportunities for both the diagnosis of energy depletion during conditions such as stroke, and the replenishment of ATP after such events. In this review we address these opportunities and the broad potential of purines as diagnostics and restorative agents.
Collapse
|
8
|
Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, Bandapalli OR, Gorbunova V, Seluanov A, Mall MA, Herzig S, Nawroth PP. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J 2020; 39:e103477. [PMID: 32338774 PMCID: PMC7265245 DOI: 10.15252/embj.2019103477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 11/09/2022] Open
Abstract
Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Aparamita Pandey
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Manuel Hoeffgen
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Hopp Children's Cancer Center, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany.,Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
9
|
Frenguelli BG. The Purine Salvage Pathway and the Restoration of Cerebral ATP: Implications for Brain Slice Physiology and Brain Injury. Neurochem Res 2019; 44:661-675. [PMID: 28836168 PMCID: PMC6420432 DOI: 10.1007/s11064-017-2386-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/24/2022]
Abstract
Brain slices have been the workhorse for many neuroscience labs since the pioneering work of Henry McIlwain in the 1950s. Their utility is undisputed and their acceptance as appropriate models for the central nervous system is widespread, if not universal. However, the skeleton in the closet is that ATP levels in brain slices are lower than those found in vivo, which may have important implications for cellular physiology and plasticity. Far from this being a disadvantage, the ATP-impoverished slice can serve as a useful and experimentally-tractable surrogate for the injured brain, which experiences similar depletion of cellular ATP. We have shown that the restoration of cellular ATP in brain slices to in vivo values is possible with a simple combination of D-ribose and adenine (RibAde), two substrates for ATP synthesis. Restoration of ATP in slices to physiological levels has implications for synaptic transmission and plasticity, whilst in the injured brain in vivo RibAde shows encouraging positive results. Given that ribose, adenine, and a third compound, allopurinol, are all separately in use in man, their combined application after acute brain injury, in accelerating ATP synthesis and increasing the reservoir of the neuroprotective metabolite, adenosine, may help reduce the morbidity associated with stroke and traumatic brain injury.
Collapse
|
10
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle H, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel KH, Marchelli R, Pöting A, Poulsen M, Schlatter JR, Germini A, Van Loveren H. Safety of d-ribose as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2018; 16:e05265. [PMID: 32625902 PMCID: PMC7009719 DOI: 10.2903/j.efsa.2018.5265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on D-ribose as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The applicant intends to market the NF as ingredient in a variety of foods, food supplements and in certain foods for specific groups. The NF is produced by fermentation using a transketolase-deficient strain of Bacillus subtilis and marketed as Bioenergy Ribose™. The information provided on the batch-to-batch variability, specifications, stability, production process and history of the organism used as a source of the NF is sufficient and does not raise safety concerns. The Panel considers that the effects observed in a subchronic toxicity study in rats could be the consequence of nutritional imbalances, but toxicological effects could not be ruled out; from this study, the Panel derived a No observed adverse effect level (NOAEL) of 3.6 g/kg body weight (bw) per day. From the human studies indicating a potential decrease in glucose levels and/or the occurrence of transient symptomatic hypoglycaemia at intakes of 10 g of d-ribose, the Panel defined 70 mg/kg bw per day as the NOAEL with respect to hypoglycaemia that can be considered applicable for adults. For children, the Panel acknowledges the lack of human data directly relevant for this population group. Based on the NOAEL derived from the subchronic toxicity study in rats, an acceptable level of intake of 36 mg/kg bw per day was defined that would also take into account the potentially increased sensitivity of certain population groups to hypoglycaemia. The Panel concludes that the NF is safe for the general population at intake levels up to 36 mg/kg bw per day and considers that the safety of the NF at the intended uses and use levels as proposed by the applicant has not been established.
Collapse
|
11
|
Lorenz C, Sandoval W, Mortellaro M. Interference Assessment of Various Endogenous and Exogenous Substances on the Performance of the Eversense Long-Term Implantable Continuous Glucose Monitoring System. Diabetes Technol Ther 2018; 20:344-352. [PMID: 29600877 PMCID: PMC5963543 DOI: 10.1089/dia.2018.0028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of prescriptions and over-the-counter medications interfere with transcutaneous continuous glucose monitoring (CGM) sensors. This study characterized the interference profile of the Eversense® CGM System (Senseonics, Inc., Germantown, MD), which has a different mechanism of glucose detection than other CGM systems. MATERIALS AND METHODS Sensor bias (sensor glucose concentration measurement - plasma glucose concentration measured by a reference test) was measured in vitro against 41 different substances at supratherapeutic/supraphysiologic plasma concentrations. Testing was performed using a paired-sample method adapted from the Clinical and Laboratory Standards Institute guidance document EP7-A2. Any substance producing sensor bias that exceeded the International Organization for Standardization (ISO) document 15197:2013 limits was then tested using an in vitro dose-response method to determine whether the concentration producing a significant sensor bias was within physiologic/therapeutic concentration ranges. RESULTS Eight of 41 substances produced a sensor bias that exceeded ISO 15197:2013 limits when tested in vitro at supratherapeutic/supraphysiologic plasma concentrations. Only two of these substances (tetracycline and mannitol) exceeded bias limits within therapeutic concentration ranges. Notably, neither acetaminophen nor ascorbic acid, which are substances reported to interfere with other CGM systems, produced sensor bias that exceeded ISO limits when used at physiologic concentrations. CONCLUSIONS Although tetracycline and mannitol interfered with the Eversense sensor, substances frequently reported to interfere with enzymatic, electrochemical-based transcutaneous CGM systems, such as acetaminophen and ascorbic acid, did not affect Eversense readings.
Collapse
|
12
|
Faller KME, Leach J, Johnston P, Holmes WM, Macrae IM, Frenguelli BG. Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat. Brain Neurosci Adv 2017; 1:2398212817717112. [PMID: 32166133 PMCID: PMC7058219 DOI: 10.1177/2398212817717112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Background Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. Methods After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. Results Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. Conclusion These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joshua Leach
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pamela Johnston
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
13
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
14
|
Liu Y, Li TRR, Xu C, Xu T. Ribose Accelerates Gut Motility and Suppresses Mouse Body Weight Gaining. Int J Biol Sci 2016; 12:701-9. [PMID: 27194947 PMCID: PMC4870713 DOI: 10.7150/ijbs.13635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is closely related to excessive energy consumption. Clinical intervention of energy intake is an attractive strategy to fight obesity. However, the current FDA-approved weight-loss drugs all have significant side effects. Here we show that ribose upregulates gut motility and suppresses mice body weight gain. Ribokinase, which is encoded by Rbks gene, is the first enzyme for ribose metabolism in vivo. Rbks mutation resulted in ribose accumulation in the small intestine, which accelerated gut movement. Ribose oral treatment in wild type mice also enhanced bowel motility and rendered mice resistance to high fat diets. The suppressed weight gain was resulted from enhanced ingested food excretion. In addition, the effective dose of ribose didn't cause any known side effects (i.e. diarrhea and hypoglycemia). Overall, our results show that ribose can regulate gut motility and energy homeostasis in mice, and suggest that administration of ribose and its analogs could regulate gastrointestinal motility, providing a novel therapeutic approach for gastrointestinal dysfunction and weight control.
Collapse
Affiliation(s)
- Yan Liu
- 1. State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research, Fudan-Yale Center for Biomedical Research, School of Life Sciences, Fudan University, Shanghai 200433, China; 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Tong-Ruei R Li
- 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Cong Xu
- 2. Shanghai Yao Yuan Biotechnology (Drug Farm) Limited, Co. Room 701, 43 Handan Rd, Shanghai, 200437, China
| | - Tian Xu
- 1. State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, National Center for International Research, Fudan-Yale Center for Biomedical Research, School of Life Sciences, Fudan University, Shanghai 200433, China; 3. Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
| |
Collapse
|
15
|
RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus. J Bacteriol 2015; 197:3666-75. [PMID: 26350136 DOI: 10.1128/jb.00640-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Staphylococcus aureus capsule is an important virulence factor that is regulated by a large number of regulators. Capsule genes are expressed from a major promoter upstream of the cap operon. A 10-bp inverted repeat (IR) located 13 bp upstream of the -35 region of the promoter was previously shown to affect capsule gene transcription. However, little is known about transcriptional activation of the cap promoter. To search for potential proteins which directly interact with the cap promoter region (Pcap), we directly analyzed the proteins interacting with the Pcap DNA fragment from shifted gel bands identified by electrophoretic mobility shift assay. One of these regulators, RbsR, was further characterized and found to positively regulate cap gene expression by specifically binding to the cap promoter region. Footprinting analyses showed that RbsR protected a DNA region encompassing the 10-bp IR. Our results further showed that rbsR was directly controlled by SigB and that RbsR was a repressor of the rbsUDK operon, involved in ribose uptake and phosphorylation. The repression of rbsUDK by RbsR could be derepressed by D-ribose. However, D-ribose did not affect RbsR activation of capsule. IMPORTANCE Staphylococcus aureus is an important human pathogen which produces a large number of virulence factors. We have been using capsule as a model virulence factor to study virulence regulation. Although many capsule regulators have been identified, the mechanism of regulation of most of these regulators is unknown. We show here that RbsR activates capsule by direct promoter binding and that SigB is required for the expression of rbsR. These results define a new pathway wherein SigB activates capsule through RbsR. Our results further demonstrate that RbsR inhibits the rbs operon involved in ribose utilization, thereby providing an example of coregulation of metabolism and virulence in S. aureus. Thus, this study further advances our understanding of staphylococcal virulence regulation.
Collapse
|
16
|
Sroga GE, Siddula A, Vashishth D. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose. PLoS One 2015; 10:e0117240. [PMID: 25679213 PMCID: PMC4334514 DOI: 10.1371/journal.pone.0117240] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023] Open
Abstract
To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Alankrita Siddula
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
17
|
Positron emission tomography probe demonstrates a striking concentration of ribose salvage in the liver. Proc Natl Acad Sci U S A 2014; 111:E2866-74. [PMID: 24982199 DOI: 10.1073/pnas.1410326111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PET is a powerful technique for quantifying and visualizing biochemical pathways in vivo. Here, we develop and validate a novel PET probe, [(18)F]-2-deoxy-2-fluoroarabinose ([(18)F]DFA), for in vivo imaging of ribose salvage. DFA mimics ribose in vivo and accumulates in cells following phosphorylation by ribokinase and further metabolism by transketolase. We use [(18)F]DFA to show that ribose preferentially accumulates in the liver, suggesting a striking tissue specificity for ribose metabolism. We demonstrate that solute carrier family 2, member 2 (also known as GLUT2), a glucose transporter expressed in the liver, is one ribose transporter, but we do not know if others exist. [(18)F]DFA accumulation is attenuated in several mouse models of metabolic syndrome, suggesting an association between ribose salvage and glucose and lipid metabolism. These results describe a tool for studying ribose salvage and suggest that plasma ribose is preferentially metabolized in the liver.
Collapse
|
18
|
Thompson J, Neutel J, Homer K, Tempero K, Shah A, Khankari R. Evaluation of D-ribose pharmacokinetics, dose proportionality, food effect, and pharmacodynamics after oral solution administration in healthy male and female subjects. J Clin Pharmacol 2013; 54:546-54. [DOI: 10.1002/jcph.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jeff Thompson
- RiboCor, Inc.; 7077 Northland Circle North Suite 100 Minneapolis MN 55428 USA
| | - Joel Neutel
- Orange County Research Center; 14351 Myford Road Suite B Tustin CA 92780 USA
| | - Ken Homer
- Integrium, LLC; 100 E. Hanover Avenue Suite 401 Cedar Knolls NJ 07927 USA
| | - Ken Tempero
- KTC, Inc.; 1901 Lake Road Wayzata MN 55391 USA
| | - Ajit Shah
- Ajit Pharma LLC; 9671 LaForet Drive Eden Prairie MN 55347 USA
| | - Raj Khankari
- RiboCor, Inc.; 7077 Northland Circle North Suite 100 Minneapolis MN 55428 USA
| |
Collapse
|
19
|
Wei Y, Han CS, Zhou J, Liu Y, Chen L, He RQ. d-ribose in glycation and protein aggregation. Biochim Biophys Acta Gen Subj 2012; 1820:488-94. [DOI: 10.1016/j.bbagen.2012.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 12/23/2022]
|
20
|
Freeman ML, Mertens-Talcott SU, St Cyr J, Percival SS. Ribose enhances retinoic acid-induced differentiation of HL-60 cells. Nutr Res 2009; 28:775-82. [PMID: 19083487 DOI: 10.1016/j.nutres.2008.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
Abstract
Ribose, a critical building block for nucleotides, plays an important role in energy metabolism, transcription, translation, and second messenger systems. This 5-carbon sugar, synthesized from glucose via the pentose phosphate pathway, has a rate-limiting step at glucose-6-phosphate dehydrogenase. Therefore, we hypothesized that when cells are required to proliferate or differentiate, as in an immune response, the requirement for D-ribose may be greater than what could be supplied by the synthetic pathway. We hypothesized that providing an exogenous source of D-ribose during cell differentiation will enhance the process of differentiation. We used a retinoic acid-induced HL-60 cell differentiation culture as a model of neutrophil maturation. The addition of 10 to 25 mmol/L D-ribose was shown to reduce cell proliferation and move the cell population toward apoptosis in a dose-dependent manner. The expression of a cell surface marker representing maturity (CD11b) significantly increased and a cell surface marker indicative of immaturity (CD117) significantly decreased. Functionally, the cells had a greater oxidative burst function dependent on time and dose. The mechanism by which ribose enhances HL-60 cell differentiation is not known; however, as adenosine triphosphate levels did not change, adenosine triphosphate is not thought to be involved. We conclude that in this cell culture model, ribose supplementation enhanced cellular differentiation and function. Thus, ribose might be conditionally essential during time of higher need as in an immune response.
Collapse
|
21
|
Seifert J, Frelich A, Shecterle L, St Cyr J. Assessment of Hematological and Biochemical parameters with extended D-Ribose ingestion. J Int Soc Sports Nutr 2008; 5:13. [PMID: 18793439 PMCID: PMC2569905 DOI: 10.1186/1550-2783-5-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
D-ribose, a naturally occurring pentose carbohydrate, has been shown to replenish high- energy phosphates following myocardial ischemia and high intensity, repetitive exercise. Human studies have mainly involved short-term assessment, including potential toxicity. Reports describing adverse effects of D-ribose with prolonged ingestion have been lacking. Therefore, this study assessed the toxicity of extended consumption of D-ribose in healthy adults. Nineteen subjects ingested 20 grams/Day (10 grams, twice a Day) of ribose with serial measurements of biochemical and hematological parameters at Days 0, 7, and 14. No significant toxic changes over the 14-day assessment period occurred in complete blood count, albumin, alkaline phosphatase, gamma glutamyltransferase, alanine amiotransferase, and aspartate aminotransferase. However, D-ribose did produce an asymptomatic, mild hypoglycemia of short duration. Uric acid levels increased at Day 7, but decreased to baseline values by Day 14. D-ribose consumption for 14 days appears not to produce significant toxic changes in both hematological and biochemical parameters in healthy human volunteers.
Collapse
Affiliation(s)
- John Seifert
- Human Performance Laboratory, St. Cloud State University, St. Cloud, MN, USA.
| | | | | | | |
Collapse
|
22
|
Salerno C, D'Eufemia P, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifò C, Giardini O. Effect of D-ribose on purine synthesis and neurological symptoms in a patient with adenylosuccinase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:135-40. [PMID: 9989253 DOI: 10.1016/s0925-4439(98)00093-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oral supplementation of 10 mmol/kg/day of D-ribose to a patient with an inherited deficit of adenylosuccinase, severe psychomotor retardation, and epilepsy caused a marked increase in plasma concentration and urinary excretion of urate, while minor changes in succinylpurine levels were observed. D-Ribose administration was accompanied by a slight improvement of behaviour and a progressive reduction of seizure frequency, which increased dramatically upon two attempts to withdraw the drug. Substitution of D-ribose with an equivalent amount of D-glucose did not result in an increase of seizure frequency.
Collapse
Affiliation(s)
- C Salerno
- Clinical Biochemistry Laboratory, University of Roma La Sapienza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Salerno C, Celli M, Finocchiaro R, D'Eufemia P, Iannetti P, Crifò C, Giardini O. Effect of D-ribose administration to a patient with inherited deficit of adenylosuccinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:177-80. [PMID: 9598054 DOI: 10.1007/978-1-4615-5381-6_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Salerno
- Institute of Paediatrics, University of Roma, La Sapienza
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In man, there are at least four isoforms of adenosine monophosphate deaminase (AMPD): myoadenylate deaminase in skeletal muscle, the L isoform in liver, and the E1 and E2 isoforms in erythrocytes. Myoadenylate deaminase is encoded by the AMPD1 gene located on chromosome 1 p13-p21, the L isoform by the AMPD2 gene, and both isoforms in erythrocytes by the AMPD3 gene. Myoadenylate deaminase deficiency is found in 2-3% of all muscle biopsies. The inborn type of myoadenylate deaminase deficiency is caused by a single mutant allele harbouring two mutations: C34-->T (Gln-->Stop) and C143-->T (Pro-48-->Leu). Population studies revealed a frequency of the mutant allele of 0.12 in Caucasian Americans and Germans. The C34-->T mutation is located in exon 2, which is alternatively spliced in part of the AMPD1 transcript in human muscle. Since the second mutation does not affect enzyme function, alternatively spliced mRNA encodes a catalytically active enzyme. Only one patient with a disorder linked to liver AMPD has been described so far. In this patient the decreased inhibition of this enzyme by GTP resulted in uric acid overproduction and gout. A complete lack of erythroyte AMPD activity is found in asymptomatic subjects. The molecular basis of both disorders is not yet known.
Collapse
Affiliation(s)
- M Gross
- Medizinische Poliklinik, Universität München, Germany
| |
Collapse
|
25
|
Pliml W, von Arnim T, Hammer C. Effects of therapeutic ribose levels on human lymphocyte proliferation in vitro. THE CLINICAL INVESTIGATOR 1993; 71:770-3. [PMID: 8305831 DOI: 10.1007/bf00190316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ribose has been used successfully in the treatment of ischemic heart disease and muscular enzyme deficiencies, and its administration also facilitates the diagnosis of coronary artery disease by influencing thallium-201 scintigraphy. Concerns about the safety of ribose therapy have been triggered by reports about inhibitory effects of ribose on cell proliferation in vitro. This study examines possible side effects of ribose on human lymphocytes. Unstimulated and mitogen-stimulated human lymphocytes were incubated with ribose concentrations associated with high-dose oral administration, i.e., 3.5 mM, and with two- (7 mM) and tenfold (35 mM) higher concentrations. Cell cultures with matching glucose concentrations served as controls. Incorporation of [3H]thymidine into cells was used to measure cell proliferation. No significant inhibition of human lymphocyte proliferation in vitro was observed in mitogen-stimulated cells. Unstimulated cultures showed significant inhibition only at 35 mM ribose. It is concluded that ribose plasma levels associated with high-dose oral administration do not inhibit human lymphocyte proliferation in vitro. No evidence was found that short-term ribose therapy is harmful to human lymphocytes.
Collapse
Affiliation(s)
- W Pliml
- Medizinische Klinik, Klinikum Innestadt, Ludwig-Maximilians-Universität München
| | | | | |
Collapse
|
26
|
Gross M, Kormann B, Zöllner N. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. KLINISCHE WOCHENSCHRIFT 1991; 69:151-5. [PMID: 1904121 DOI: 10.1007/bf01665856] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nine healthy men and a patient with myoadenylate deaminase deficiency were exercised on a bicycle ergometer (30 minutes, 125 Watts) with and without oral ribose administration at a dose of 2 g every 5 minutes of exercise. Plasma or serum levels of glucose, free fatty acids, lactate, ammonia and hypoxanthine and the urinary hypoxanthine excretion were determined. After 30 minutes of exercise without ribose intake the healthy subjects showed significant increases in plasma lactate (p less than 0.05), ammonia (p less than 0.01) and hypoxanthine (p less than 0.05) concentrations and a decrease in serum glucose concentration (p less than 0.05). When ribose was administered, the plasma lactate concentration increased significantly higher (p less than 0.05) and the increase in plasma hypoxanthine concentration was no longer significant. The patient showed the same pattern of changes in serum or plasma concentrations with exercise with the exception of hypoxanthine in plasma which increased higher when ribose was administered.
Collapse
Affiliation(s)
- M Gross
- Medizinische Poliklinik, Universität München, FRG
| | | | | |
Collapse
|