1
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
2
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
5
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
6
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2021; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
7
|
Afroz R, Tanvir EM, Tania M, Fu J, Kamal MA, Khan MA. LPS/TLR4 pathways in breast cancer: insights into cell signalling. Curr Med Chem 2021; 29:2274-2289. [PMID: 34382520 DOI: 10.2174/0929867328666210811145043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer cells are usually recognized as foreign particles by the immune cells. Mounting evidences suggest important link between toll like receptors (TLRs) and carcinogenesis. This review article focused on the role of TLRs, especially TLR4 in breast cancer. <p> Methods: Research data on TLRs and cancer was explored in PubMed, Scopus, Google Scholar, and reviewed. Although some pioneer works are referenced, papers published in last ten years were mostly cited. <p> Results: TLRs are widely investigated pattern recognition receptors (PRR), and TLR4 is the most studied TLRs, implicated with occurrence of several types of cancers including breast cancer. TLR4 activation occurs via the binding of its ligand lipopolysaccharide (LPS), a component of the outer membrane of gram negative bacteria. Upon LPS binding, TLR4 dimerizes and recruits downstream signalling and/or adapter molecules leading to gene expression related to cancer cell proliferation, survival, invasion, and metastasis. Although LPS/TLR4 signalling seems a single signal transduction pathway, the TLR4 activation results in the activation of multiple diverse intracellular networks with huge cellular responses in both immune and cancer cells. The role of TLR4 in growth, invasion and metastasis of breast cancer is attracting huge attention in oncology research. Several clinical and preclinical studies utilize both TLR4 agonists and antagonists as treatment option for cancer therapy either as monotherapy or adjuvants for vaccine development. <p> Conclusion: This review narrates the role of LPS/TLR4 signalling in breast cancer development and future prospective for targeting LPS/TLR4 axis in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland. Australia
| | - E M Tanvir
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland. Australia
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka. Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan. China
| | | | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan. China
| |
Collapse
|
8
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
11
|
Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2020; 73:10-25. [PMID: 33217774 DOI: 10.1002/iub.2412] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
At the forefront of the battle against pathogens or any endogenously released molecules, toll-like receptors (TLRs) play an important role as the most noble pattern recognition receptors. The ability of these receptors in distinguishing "self" and "non-self" antigens is a cornerstone in the innate immunity system; however, misregulation links inflammatory responses to the development of human cancers. It has been known for some time that aberrant expression and regulation of TLRs not only endows cancer cells an opportunity to escape from the immune system but also supports them through enhancing proliferation and angiogenesis. Over the past decades, cancer research studies have witnessed a number of preclinical and clinical breakthroughs in the field of TLR modulators and some of the agents have exceptionally performed well in advanced clinical trials. In the present review, we have provided a comprehensive review of different TLR agonists and antagonists and discuss their limitations, toxicities, and challenges to outline their future incorporation in cancer treatment strategies.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gao T, Cen Q, Lei H. A review on development of MUC1-based cancer vaccine. Biomed Pharmacother 2020; 132:110888. [PMID: 33113416 DOI: 10.1016/j.biopha.2020.110888] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Mucin 1 (MUC1) is a transmembrane mucin glycoprotein expressed on the surface of almost all epithelial cells. Aberrantly glycosylated MUC1 is associated with cellular transformation from a normal to malignant phenotype in human cancers. Therefore, MUC1 is the major target for the design and development of cancer vaccines. MUC1-based cancer vaccines are a promising strategy for preventing cancer progression and metastasis. This review summarizes the most significant milestones achieved to date in the development of different MUC-1-based vaccine approaches in clinical trials. Further, it provides perspectives for future research that may promote clinical advances in infection-associated cancers.
Collapse
Affiliation(s)
- Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
13
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
14
|
Li Q, Jin WX, Jin YX, Zheng ZC, Zhou XF, Wang QX, Ye DR, Sun YH, Zhang XH, Wang OC, Chen ED, Cai YF. Clinical effect of MUC1 and its relevance to BRAF V600E mutation in papillary thyroid carcinoma: a case-control study. Cancer Manag Res 2018; 10:1351-1358. [PMID: 29881305 PMCID: PMC5985787 DOI: 10.2147/cmar.s161501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the clinical effects of MUC1 on papillary thyroid cancer (PTC) and explore the relationship between MUC1 expression and BRAF mutation. METHODS The data of 69 patients subjected to fine-needle aspiration biopsy in our hospital and 486 patient data downloaded from The Cancer Genome Atlas (TCGA) database were used. Univariate and multivariate analyses were performed. RESULTS The results on the 486 patients recorded in the TCGA indicated that high MUC1 expression was independently related to BRAF mutation, lymph node metastasis (LNM), and unifocal type. In the 69 fine-needle aspiration biopsy patients with PTC, high MUC1 expression was significantly related to LNM and extrathyroid extension (ETE). The result of Pearson's correlation coefficient showed that BRAF mutation and MUC1 expression were moderately correlated. Moreover, in the subgroup with low MUC1 expression, the patients with BRAF mutation had higher ETE frequency and LNM than those without BRAF mutation. In the subgroup with BRAF mutation, patients with high MUC1 expression exhibited higher ETE frequency than those with low MUC1 expression, and high MUC1 expression occurred in older patients. In the subgroup with BRAF wild-type mutation, patients with high MUC1 expression had a higher incidence of ETE and LNM than those with low expression. CONCLUSION We demonstrated that the MUC1 is an important oncogene in PTC and may have great significance on therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Quan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Xu Jin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Xiang Jin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhou-Ci Zheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Fen Zhou
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Xuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan-Rong Ye
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Han Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Hua Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ou-Chen Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - En-Dong Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye-Feng Cai
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Shi M, Kleski KA, Trabbic KR, Bourgault JP, Andreana PR. Sialyl-Tn Polysaccharide A1 as an Entirely Carbohydrate Immunogen: Synthesis and Immunological Evaluation. J Am Chem Soc 2016; 138:14264-14272. [PMID: 27726393 DOI: 10.1021/jacs.6b05675] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengchao Shi
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kristopher A. Kleski
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Kevin R. Trabbic
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jean-Paul Bourgault
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R. Andreana
- Department of Chemistry and
Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
16
|
van Rooijen JM, Stutvoet TS, Schröder CP, de Vries EG. Immunotherapeutic options on the horizon in breast cancer treatment. Pharmacol Ther 2015; 156:90-101. [DOI: 10.1016/j.pharmthera.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
|
17
|
Rivalland G, Loveland B, Mitchell P. Update on Mucin-1 immunotherapy in cancer: a clinical perspective. Expert Opin Biol Ther 2015; 15:1773-87. [PMID: 26453294 DOI: 10.1517/14712598.2015.1088519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mucin 1 (MUC1) is particularly well suited as a cancer immunotherapy target due to the elevated protein expression and aberrant forms associated with malignancy. A variety of therapeutic strategies have been explored, including antibodies intended to induce cancer cell destruction, and vaccinations with peptides, tumor extracts, and gene expression systems. AREAS COVERED MUC1 immunotherapeutic strategies have included vaccination with peptide sequences, glycan molecules, viruses, and dendritic cells, monoclonal antibodies and monoclonal antibody conjugates. Here we review the relevant clinical trials in each field of immunotherapy with particular focus on large and recently published trials. EXPERT OPINION Long clinical experience in the trial setting has reduced concerns of immunotherapy associated toxicities and inappropriate immune responses, with the main limitation (common to many experimental approaches) being a lack of clinical efficacy. However, there have been sufficient treatment-associated responses to justify continued pursuit of MUC1 targeted immunotherapies. The focus now should be on application to the relevant cancers under appropriate circumstances and combination with the emerging non-specific immunotherapy approaches such as the PD-1 pathway inhibitors.
Collapse
Affiliation(s)
- Gareth Rivalland
- a 1 Austin Health, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia
| | - Bruce Loveland
- b 2 Burnet Institute, Centre for Biomedical Research , Melbourne VIC 3004, Australia
| | - Paul Mitchell
- c 3 Austin Health, Level 4, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia +613 94 96 57 63 ; +613 94 57 66 98 ;
| |
Collapse
|
18
|
Abstract
Decades of research are now leading to therapeutics that target the molecular mechanisms of the cancer-specific immune response. These therapeutics include tumor antigen vaccines, dendritic cell activators, adjuvants that activate innate immunity, adoptive cellular therapy, and checkpoint blockade. The advances in targeted immunotherapy have led to clinical advances in the treatment of solid tumors such as melanoma, prostate cancer, lung cancer, and hematologic malignancies. Preclinical and translational studies suggest that patients with breast cancer may also benefit from augmenting effective immune responses. These results have led to early-phase clinical trials of tumor antigen vaccines, adjuvants, and combinations of checkpoint inhibitor blockade to boost breast cancer-specific immunity in patients. This review focuses on the current and emerging development of cancer immunotherapy for breast cancer.
Collapse
|
19
|
Abstract
MUC1 is a glycoprotein that is overexpressed in tumor cells. In normal cells it forms a protective layer against microbes and toxic chemicals, besides providing lubrication on ductal surfaces. Oversecretion of MUC1 provide cancer cells with invasiveness, metastasis, and resistance to death induced by reactive oxygen species. MUC1 is made up of 2 heterodimers, MUC1-N and MUC1-C. MUC1-N is heavily glycosylated at 5 regions of the variable N-tandem repeats. MUC1-C is divisible into extracellular, intracellular, and cytoplasmic domain (MUC1-C/CD). The extracellular domain serves as a docking site for epidermal growth factor receptors and other receptor kinases; the transmembrane domain serves to relay messages from extracellular to MUC1-C/CD. The MUC1-C/CD has 5 phosphorylating sites that on interacting with the SH2 domain of specific proteins can stimulate tumor growth. Therapies targeting MUC1 consists of monoclonal antibodies (MAb), vaccines, or small molecules (aptamers). MAb therapies are mainly aimed at MUC1-N with little success, however, new generation of MAb are being developed for MUC1-C. Vaccines (peptide, carbohydrate, glycopeptide, DNA, and dendritic cell) have been developed that recognizes the aberrant glycosylated region of the variable N-tandem repeats in MUC1-N, whereas new generation vaccines are aimed at the cytoplasmic region of MUC1-C. Aptamers (peptides that resemble DNA, RNA) have been used for blocking the dimerization of CQC region and the 5 phosphorylating region of MUC1-C. In addition, aptamers have been used as cytotoxic drug carriers. However, none of the therapies for MUC1 are currently in clinical application, as they need further refinement and evaluation.
Collapse
|
20
|
Milani A, Sangiolo D, Aglietta M, Valabrega G. Recent advances in the development of breast cancer vaccines. BREAST CANCER-TARGETS AND THERAPY 2014; 6:159-68. [PMID: 25339848 PMCID: PMC4204811 DOI: 10.2147/bctt.s38428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
The manipulation of the immune system through the administration of a vaccine to direct an effective and long-lasting immune response against breast cancer (BC) cells is an attractive strategy. Vaccines would have several theoretical advantages over standard therapies, including low toxicities, high specificity, and long-lasting efficacy due to the establishment of immunological memory. However, BC vaccines have failed to demonstrate meaningful results in clinical trials so far. This reflects the intrinsic difficulty in breaking the complex immune-escaping mechanisms developed by cancer cells. New vaccines should be able to elicit complex immunologic response involving multiple immune effectors such as cytotoxic and antibody-secreting B cells, innate immunity effectors, and memory cells. Moreover, especially in patients with large tumor burdens and metastatic disease, combining vaccines with other strategies, such as systemic BC therapies, passive immunotherapy, or immunomodulatory agents, could increase the effectiveness of each approach. Here, we review recent advances in BC vaccines, focusing on suitable targets and innovative strategies. We report results of most recent trials investigating active immunotherapy in BC and provide possible future perspectives in this field of research.
Collapse
Affiliation(s)
- Andrea Milani
- Department of Oncology, University of Torino, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| |
Collapse
|
21
|
|
22
|
Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 2014; 10:227-51. [DOI: 10.1586/erv.10.142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
23
|
Nitcheu Tefit J, Serra V. Outlining novel cellular adjuvant products for therapeutic vaccines against cancer. Expert Rev Vaccines 2014; 10:1207-20. [DOI: 10.1586/erv.11.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
24
|
Abstract
The immune system recognizes breast and ovarian cancer cells but whether it is effective in controlling these cancers in patients has yet to be proven. The challenge with vaccination strategies is to break tolerance so that the patient's immune system will recognize cancer cells. The success of vaccines depends on the identification of appropriate tumor antigens, establishment of effective immunization strategies and their ability to circumvent inhibitory immune mechanisms.
Collapse
Affiliation(s)
- Leona A Holmberg
- Department of Medicine, University of Washington School of Medicine, and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
25
|
Jin H, Xu M, Padakanti PK, Liu Y, Lapi S, Tu Z. Preclinical evaluation of the novel monoclonal antibody H6-11 for prostate cancer imaging. Mol Pharm 2013; 10:3655-64. [PMID: 23964702 DOI: 10.1021/mp400130w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The biological properties of the novel monoclonal antibody (mAb) H6-11 and its potential utility for oncological imaging studies were evaluated using in vitro and in vivo assays. Immunoreactivity of H6-11 to the human prostate cancer PC-3 cell line and solid tumor xenografts was initially demonstrated using immunofluorescence staining; the specificity of H6-11 for prostate cancer was further evaluated using a commercial array of human prostate cancer and normal tissue samples (n=49) in which H6-11 detected 95% of prostate adenocarcinomas. The Kd value of 61.7±30 nM was determined using 125I-labeled H6-11. Glycosylation analysis suggested the antigenic epitope of the glycan is an O-linked β-N-acetylglucoside (O-GlcNAc) group. Imaging studies of PC-3 tumor-bearing mice were performed using both optical imaging with NIR fluorescent dye-labeled H6-11 and microPET imaging with 89Zr-labeled H6-11. These in vivo studies revealed that the labeled probes accumulated in PC-3 tumors 48-72 h postinjection, although significant retention in liver was also observed. By 120 h postinjection, the tumors were still evident, although the liver showed significant clearance. These studies suggest that the mAb H6-11 may be a useful tool to detect prostate cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine , 510 S. Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | | | | | | | | | | |
Collapse
|
26
|
Ibrahim NK, Murray JL, Zhou D, Mittendorf EA, Sample D, Tautchin M, Miles D. Survival Advantage in Patients with Metastatic Breast Cancer Receiving Endocrine Therapy plus Sialyl Tn-KLH Vaccine: Post Hoc Analysis of a Large Randomized Trial. J Cancer 2013; 4:577-84. [PMID: 23983823 PMCID: PMC3753533 DOI: 10.7150/jca.7028] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022] Open
Abstract
Background: A multicenter, double blinded, randomized phase III trial of the therapeutic cancer vaccine sialy1-Tn (STn) conjugated to keyhole-limpet Hemocyanin (KLH) was completed in an international cohort of 1,028 women with metastatic breast cancer who had nonprogressive disease or no evidence of disease after first-line chemotherapy (ClinicalTrials.gov, (NCT00003638). STn-KLH was safe and relatively well tolerated but did not affect time to progression (TTP) or overall survival (OS) duration. The purpose of this post hoc analysis was to explore whether patients who received concurrent endocrine therapy and STn-KLH had a TTP or OS benefit. Methods: A retrospective, blinded review of the data from the phase III trial of STn-KLH was performed to ensure that strata assignments were appropriate. We then studied the effect of concomitant endocrine therapy and STn-KLH or KLH on TTP and OS in the cohort described above. We also assessed the TTP and OS by antibody responses in patients who received endocrine therapy. Results: The women treated with concomitant endocrine therapy, a pre-stratified subset comprising approximately one-third of the original study population, and STn-KLH had longer TTP and OS than the control group of women who received KLH alone. Moreover, of the women who received endocrine therapy, those who had a median or greater antibody response (titer >1:320 toward ovine sub maxillary mucin) to the STn-KLH vaccine had significantly longer median OS than those who had a below-median antibody response. Conclusion: Adding STn-KLH to endocrine therapy may improve clinical outcomes with few adverse effects for women with metastatic breast cancer.
Collapse
Affiliation(s)
- Nuhad K Ibrahim
- 1. Departments of Breast Medical Oncology (NKI, JLM), Melanoma Medical Oncology (DZ), and Surgical Oncology (EAM), The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
|
30
|
|
31
|
Progress with Tumour Vaccines. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
32
|
Stuchlová Horynová M, Raška M, Clausen H, Novak J. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 2012; 70:829-39. [PMID: 22864623 DOI: 10.1007/s00018-012-1082-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Glycosylation abnormalities have been observed in autoimmune diseases and cancer. Here, we compare mechanisms of aberrant O-glycosylation, i.e., formation of Tn and sialyl-Tn structures, on MUC1 in breast cancer, and on IgA1 in an autoimmune disease, IgA nephropathy. The pathways of aberrant O-glycosylation, although different for MUC1 and IgA1, include dysregulation in glycosyltransferase expression, stability, and/or intracellular localization. Moreover, these aberrant glycoproteins are recognized by antibodies, although with different consequences. In breast cancer, elevated levels of antibodies recognizing aberrant MUC1 are associated with better outcome, whereas in IgA nephropathy, the antibodies recognizing aberrant IgA1 are part of the pathogenetic process.
Collapse
Affiliation(s)
- Milada Stuchlová Horynová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
33
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
34
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
35
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
36
|
Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 667:111-23. [PMID: 20665204 DOI: 10.1007/978-1-4419-1603-7_10] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
As technological advances allow for the identification of tumor-associated antigens (TAAs) against which adaptive immune responses can be raised, efforts to develop vaccines for the treatment of cancer continue to gain momentum. Some of these vaccines target differentiation antigens that are expressed by tumors derived from one particular tissue (e. g., Melan-A/ MART-1, tyrosinase, gp 100). Some target antigens are specifically expressed in tumors of different types but not in normal tissues (e. g., MAGE-3), while other possible targets are antigens that are expressed at low level in normal tissues and are over-expressed in tumors of different types (e. g., HER2, Muc 1). Oncogenes (HER2/neu, Ras, E7 HPV 16), tumor suppressor genes (pS3) or tumor-specific post-translational modified proteins (under glycosylated Muc 1) can also be used as cancer vaccine candidates. In either case, these antigens tend to be poorly inmmunogenic by themselves and vaccines containing them generally require the inclusion of potent immunological adjuvants in order to generate robust anti-tumor immune responses in humans. Many adjuvants currently under evaluation for use in cancer vaccines activate relevant antigen presenting cells, such as dendritic cells and macrophages, via toll-like receptors (TLRs) and promote effective uptake, processing and presentation of antigen to T-cells in draining lymph nodes.Lipid A, the biologically active portion of the gram-negative bacterial cell wall constituent lipopolysaccharide (LPS), is known to possess strong immunostimulatory properties and has been evaluated for more than two decades as an adjuvant for promoting immune responses to minimally immunogenic antigens, including TAAs. The relatively recent discovery of TLRs and the identification of TLR4 as the signaling receptor for lipid A have allowed for a better understanding of how this immunostimulant functions with regard to induction of innate and adaptive immune responses.Although several lipid A species, including LPS and synthetic analogs, have been developed and tested as monotherapeutics for the treatment of cancer,1-8 only 3-O-desacyl-4'-monophosphoryl lipid A (MPL) has been evaluated as a cancer vaccine adjuvant in published human clinical trials. MPL comprises the lipid A portion of Salmonella minnesota LPS from which the (R)-3-hydroxytetrade canoyl group and the l-phosphare have been removed by successive acid and base hydrolysis.9 LPS and MPL induce similar cytokine profiles, but MPLis at least 1OO-fold less toxic.9,10 lOMPL has been administered to more than 300, 000 human subjects in studies of next-generation vaccines.11 In this chapter, published clinical trials conducted to evaluate the safety and/or efficacy of various cancer vaccines containing MPL, either alone or combined with other immunostimulants, Such as cell wall skeleton (CWS) of Mycobacterium phlei in the adjuvant Detox; Biomira, Inc.), the saponin QS-21 (in the adjuvants AS01B and AS02B; GSK Biologicals) or with QS-21 and CpG oligonucleotides (in the adjuvant AS15; GSK Biologicals) will be summarized. Combining MPL with other immunostimulants has been demonstrated to be advantageous in many cases and may be required to elicit the full complement of activities necessary to achieve an effective immune response and overcome the ability of tumors to evade attack by the immune system. In this chapter, information relating to vaccines targeting specific cancers will be presented in the first section, while information relating to vaccines targeting multiple tumor types by the induction of immune responses to shared TAAs is presented in the second section.
Collapse
|
37
|
Ding L, Yu H, Lau K, Li Y, Muthana S, Wang J, Chen X. Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem Commun (Camb) 2011; 47:8691-3. [PMID: 21725542 DOI: 10.1039/c1cc12732b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
An N-terminal and C-terminal truncated recombinant α2-6-sialyltransferase cloned from Photobacterium sp. JH-ISH-224, Psp2,6ST(15-501)-His(6), was shown to be an efficient catalyst for one-pot three-enzyme synthesis of sialyl Tn (STn) antigens and derivatives containing natural and non-natural sialic acid forms.
Collapse
Affiliation(s)
- Li Ding
- College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, Dodwell D, Parker J, Mayordomo J, Tres A, Murray JL, Ibrahim NK. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 2011; 16:1092-100. [PMID: 21572124 DOI: 10.1634/theoncologist.2010-0307] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE This double-blind, randomized, phase III clinical trial evaluated time to progression (TTP) and overall survival in women with metastatic breast cancer (MBC) who received sialyl-TN (STn) keyhole limpet hemocyanin (KLH) vaccine. Secondary endpoints included vaccine safety and immune response. EXPERIMENTAL DESIGN The study population consisted of 1,028 women with MBC across 126 centers who had previously received chemotherapy and had had either a complete or a partial response or no disease progression. All women received one-time i.v. cyclophosphamide (300 mg/m(2)) 3 days before s.c. injection of 100 μg STn-KLH plus adjuvant (treatment group) or 100 μg KLH plus adjuvant (control group) at weeks 0, 2, 5, and 9. Subsequently, STn-KLH without adjuvant or KLH without adjuvant was then administered monthly for 4 months, and then quarterly until disease progression, without cyclophosphamide. RESULTS STn-KLH vaccine was well tolerated; patients had mild to moderate injection-site reactions and reversible flu-like symptoms. Week-12 antibody testing revealed high specific IgG titers and a high rate of IgM-to-IgG seroconversion; the median IgG titers in STn-KLH recipients were 320 (anti-ovine submaxillary mucin) and 20,480 (anti-STn), with no detectable antimucin antibodies in the control group. The TTP was 3.4 months in the treatment group and 3.0 months in the control group. The median survival times were 23.1 months and 22.3 months, respectively. CONCLUSIONS Although STn-KLH was well tolerated in this largest to date metastatic breast cancer vaccine trial, no overall benefit in TTP or survival was observed. Lessons were learned for future vaccine study designs.
Collapse
Affiliation(s)
- David Miles
- Mount Vernon Cancer Center, Northwood, Middlesex, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies.
Collapse
|
40
|
Abstract
Therapeutic immunization leading to cancer regression remains a significant challenge. Successful immunization requires activation of adaptive immunity, including tumor specific CD4 T cells and CD8 T cells. Generally, the activation of T cells is compromised in patients with cancer because of immune suppression, loss of tumor antigen expression, and dysfunction of antigen-presenting cells. Antigen-presenting cells such as dendritic cells (DCs) are key for the induction of adaptive antitumor immune responses. Recently, attention has focused on novel adjuvants that enhance dendritic cell function and their ability to prime T cells. Agonists that target toll-like receptors are being used clinically either alone or in combination with tumor antigens and showing initial success both in terms of enhancing immune responses and eliciting antitumor activity. This review summarizes the application of these adjuvants to treat cancer and the potential for boosting responses in vivo.
Collapse
Affiliation(s)
- Nina Bhardwaj
- New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1303, New York, NY 10016, Office: (212) 263-5814, Fax: (212) 263-6729,
| | | | | |
Collapse
|
41
|
Laing P, Tighe P, Kwiatkowski E, Milligan J, Price M, Sewell H. Selection of peptide ligands for the antimucin core antibody C595 using phage display technology: definition of candidate epitopes for a cancer vaccine. Mol Pathol 2010; 48:M136-41. [PMID: 16695994 PMCID: PMC407946 DOI: 10.1136/mp.48.3.m136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Aims-To further define the specificity of the antimucin core antibody C595 by fitting it with a family of hexapeptide ligands by immunoselection of filamentous bacteriophage from a gene III display library of approximately 6.4 x 10(7) random hexapeptides.Methods-Three rounds of immuno-selection were used to enrich for C595 binding phage. DNA sequencing revealed the hexapeptides expressed. Bacteriophage and corresponding synthetic hexapeptides were used in ELISA assay to determine binding affinities.Results-Twenty nine clones from this selected population were analysed. Seven contained the natural epitope RPAP, encoded by two different DNA sequences; 17/29 contained the motif RLPP. In all, 28/29 clones contained the motif RXXP and one clone (RVRPAP) contained the motif RXXP in two peptidic registers; 24/28 clones (6/8 DNA sequences) contained a hydrophobic residue (V or I) at position 1 relative to the RXXP motif. In addition the proximity of RXXP to glycine (position 5) suggests that this contributes in the natural epitope to antibody/antigen binding, which was not detected by chemical synthetic methods. One clone, KSKAGV, bears no obvious relationship to the natural epitope and therefore qualifies as a weakly binding mimotope.Conclusions-This approach has rapidly defined the specificity of this antibody in unprecedented detail, and provides a more comprehensive molecular basis for exploring the immune recognition of the MUC1 mucin by the C595 antibody. Importantly, the novel but related epitopes seen provide peptide specificities and a strategy which may prove useful in generating cancer vaccine candidates.
Collapse
Affiliation(s)
- P Laing
- Division of Molecular and Clinical Immunology, Clinical Laboratory Science Dept, University Hospital, Queens Medical Centre, Nottingham NG7 2UH
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- F Dall'olio
- Dipartimento di Patologia Sperimentale, Università di Bologna, Via S. Giacomo, 14, 40126 Bologna, Italy
| |
Collapse
|
43
|
Jeon I, Lee D, Krauss IJ, Danishefsky SJ. A new model for the presentation of tumor-associated antigens and the quest for an anticancer vaccine: a solution to the synthesis challenge via ring-closing metathesis. J Am Chem Soc 2009; 131:14337-44. [PMID: 19746915 DOI: 10.1021/ja9052625] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Fully synthetic, carbohydrate-based antitumor vaccine candidates have been synthesized in highly clustered modes. Multiple copies of tumor-associated carbohydrate antigens, Tn and STn, were assembled on a single cyclic peptide scaffold in a highly convergent manner. Ring-closing metathesis-mediated incorporation of an internal cross-linker was also demonstrated. In particular, this rigidified cross-linked construct would enhance a cluster-recognizing antibody response by retaining an appropriate distance between glycans attached to the peptide platform. Details of the design and synthesis of highly clustered antigens are described herein.
Collapse
Affiliation(s)
- Insik Jeon
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
44
|
Wang Q, Ekanayaka SA, Wu J, Zhang J, Guo Z. Synthetic and immunological studies of 5'-N-phenylacetyl sTn to develop carbohydrate-based cancer vaccines and to explore the impacts of linkage between carbohydrate antigens and carrier proteins. Bioconjug Chem 2008; 19:2060-7. [PMID: 18816108 PMCID: PMC2652678 DOI: 10.1021/bc800243f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
5'- N-Phenylacetyl sTn (sTnNPhAc), an unnatural derivative of sTn antigen expressed by many tumors, and its alpha-linked protein conjugates were prepared and investigated to explore glycoconjugate cancer vaccines. sTnNPhAcalpha-KLH elicited a robust T cell dependent immunity. The antiserum derived from sTnNPhAcalpha- or sTnNPhAcbeta-KLH-inoculated mice was similarly reactive to sTnNPhAcalpha and sTnNPhAcbeta but showed very little reactivity to sTn, NeuNPhAcalpha(2,3)GalNAc--a regioisomer of sTnNPhAc, isolated phenylacetyl group, and the linker employed to conjugate sTnNPhAc and carrier protein. It was concluded that the sTnNPhAc-elicited immunity was specific for the whole antigen rather than the phenylacetyl group or other partial structures of sTnNPhAc and that the reducing end configuration or linkage of sTnNPhAc did not affect its immunological identity. It was also concluded that a new linker designed to conjugate carbohydrates and proteins did not provoke any immune reaction and that the linker, as well as the associated new and convenient coupling strategy, can be safely used for the development of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | - Jian Wu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Junping Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
45
|
Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008; 60:915-28. [PMID: 18325628 PMCID: PMC7103321 DOI: 10.1016/j.addr.2007.05.017] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2007] [Accepted: 05/01/2007] [Indexed: 01/19/2023]
Abstract
With very few adjuvants currently being used in marketed human vaccines, a critical need exists for novel immunopotentiators and delivery vehicles capable of eliciting humoral, cellular and mucosal immunity. Such crucial vaccine components could facilitate the development of novel vaccines for viral and parasitic infections, such as hepatitis, HIV, malaria, cancer, etc. In this review, we discuss clinical trial results for various vaccine adjuvants and delivery vehicles being developed that are approximately nanoscale (< 1000 nm) in size. Humoral immune responses have been observed for most adjuvants and delivery platforms while only viral vectors, ISCOMs and Montanide™ ISA 51 and 720 have shown cytotoxic T cell responses in the clinic. MF59 and MPL® have elicited Th1 responses, and virus-like particles, non-degradable nanoparticles and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical successes reported for intranasal delivery of viral vectors and proteosomes and oral delivery of a VLP vaccine.
Collapse
|
46
|
Abstract
Cancer immunosurveillance is a process that results from activity of recognition and destruction of cancer cells by innate and adaptive immune effector cells and molecules. Cancer cells can avoid immunosurveillance through the immunoselection, that is the development of poorly immunogenic tumor-cell variants, and through subversion of the immune system (also known as immunosubversion). Identification of tumor antigens (Ags) that can be recognized by immune effector cells has opened the perspective of developing therapeutic vaccines in the field of breast cancer. Breast cancer vaccines can induce immunogenic response against tumors weakly immunogenic; usually have a good tolerance and safety profile and can induce a long-term immune memory, critical to prevent efficiently tumor recurrence. Several studies evaluating breast cancer vaccines have been performed in patients with extended metastatic breast cancer, usually refractory to other standard treatments so that clinical efficacy was difficult to achieve. Significant immune responses against tumor Ags induced upon vaccinations were described to several tumor Ag vaccines. A better understanding of the relation between innate and adaptive immune responses, of the immune escape mechanisms employed by tumor cells and acknowledgment of the importance of both cell-mediated and humoral adaptive immunity for the control of tumor growth are necessary for leading to a more comprehensive immunotherapeutic approach in breast cancer.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Department of Medicine, Division of Medical Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milano, Italy.
| | | | | |
Collapse
|
47
|
Gilewski TA, Ragupathi G, Dickler M, Powell S, Bhuta S, Panageas K, Koganty RR, Chin-Eng J, Hudis C, Norton L, Houghton AN, Livingston PO. Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin Cancer Res 2007; 13:2977-85. [PMID: 17504999 DOI: 10.1158/1078-0432.ccr-06-2189] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the clinical toxicities and antibody response against sTn and tumor cells expressing sTn following immunization of high-risk breast cancer patients with clustered sTn-KLH [sTn(c)-KLH] conjugate plus QS-21. EXPERIMENTAL DESIGN Twenty-seven patients with no evidence of disease and with a history of either stage IV no evidence of disease, rising tumor markers, stage II (>or=4 positive axillary nodes), or stage III disease received a total of five injections each during weeks 1, 2, 3, 7, and 19. Immunizations consisted of sTn(c)-KLH conjugate containing 30, 10, 3, or 1 microg sTn(c) plus 100 microg QS-21. Induction of IgM and IgG antibodies against synthetic sTn(c) and natural sTn on ovine submaxillary mucin were measured before and after therapy. Fluorescence-activated cell sorting analyses assessed reactivity of antibodies to LSC and MCF-7 tumor cells. RESULTS The most common toxicities were transient local skin reactions at the injection site and mild flu-like symptoms. All patients developed significant IgM and IgG antibody titers against sTn(c). Antibody titers against ovine submaxillary mucin were usually of lower titers. IgM reactivity with LSC tumor cells was observed in 21 patients and with MCF-7 cells in 13 patients. There was minimal IgG reactivity with LSC cells. CONCLUSION Immunization with sTn(c)-KLH conjugate plus QS-21 is well tolerated and immunogenic in high-risk breast cancer patients. Future trials will incorporate sTn(c) as a component of a multiple antigen vaccine.
Collapse
Affiliation(s)
- Teresa A Gilewski
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu J, Guo Z. Improving the antigenicity of sTn antigen by modification of its sialic acid residue for development of glycoconjugate cancer vaccines. Bioconjug Chem 2006; 17:1537-44. [PMID: 17105234 PMCID: PMC2532825 DOI: 10.1021/bc060103s] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Sialyl Tn (sTn) antigen is a sialylated disaccharide abundantly expressed by many tumors. To search for effective cancer immunotherapies based on sTn antigen, we designed and synthesized a series of unnatural N-acyl derivatives of sTn and studied their immunological properties. For this purpose, an efficient method was developed to synthesize the natural and unnatural forms of sTn antigen and their protein conjugates. The resultant glycoconjugates were used to immunize C57BL/6 mice, and the immune response was assessed by enzyme-linked immunosorbent assay (ELISA). Whereas the keyhole limpet hemocyanin (KLH) conjugate of sTn elicited low levels of IgM antibodies, the KLH conjugates of N-iso-butanoyl sTn and N-phenylacetyl sTn, especially the latter, induced high titers of antigen-specific IgG antibodies, showing a T-cell-dependent response that is critical for the antitumor activity. The results suggest that the modified forms of sTn, especially N-phenylacetyl sTn, have improved antigenicity and promising immunological properties for use as cancer vaccines.
Collapse
Affiliation(s)
- Jian Wu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | |
Collapse
|
49
|
Pérez SF, Lio RG, Santana VF, Bencomo VV. Synthesis of LeX and LeY Oligosaccharides with Azido-Type Spacer-Arms. Comparison of 3- and 4-Methoxybenzyl Groups as Key Temporary Protective Groups. J Carbohydr Chem 2006. [DOI: 10.1080/07328309808007459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Affiliation(s)
- Santiago Figueroa Pérez
- a Laboratory of Synthetic Antigens, Facultad de Química , Universidad de La Habana , Ciudad Habana , CUBA , 10400
| | - Raul González Lio
- a Laboratory of Synthetic Antigens, Facultad de Química , Universidad de La Habana , Ciudad Habana , CUBA , 10400
| | - Violeta Fernández Santana
- a Laboratory of Synthetic Antigens, Facultad de Química , Universidad de La Habana , Ciudad Habana , CUBA , 10400
| | - Vicente Verez Bencomo
- a Laboratory of Synthetic Antigens, Facultad de Química , Universidad de La Habana , Ciudad Habana , CUBA , 10400
| |
Collapse
|
50
|
Awad L, Demange R, Zhu YH, Vogel P. The use of levoglucosenone and isolevoglucosenone as templates for the construction of C-linked disaccharides. Carbohydr Res 2006; 341:1235-52. [PMID: 16678805 DOI: 10.1016/j.carres.2006.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022]
Abstract
Because of their functionalities (enone, ketone, and acetal) and their bicyclic structure (steric factors), levoglucosenone (1,6-anhydro-3,4-dideoxy-beta-D-glycero-hex-3-enopyran-2-ulose) and isolevoglucosenone (1,6-anhydro-2,3-dideoxy-beta-D-glycero-hex-3-enopyran-4-ulose) are useful templates for the convergent and combinatorial synthesis of (1-->2), (1-->3), and (1-->4)-linked C-disaccharides in reactions combining them with sugar-derived carbaldehydes. Synthetic methods relying on conjugate nucleophilic additions of these enones, their combination with aluminum reagents and aldehydes (Baylis-Hillman reaction) and modified Takai-Hiyama-Nozaki-Kishi couplings of enol triflates derived from them with sugar-derived aldehydes are reviewed. Highly stereoselective methods have thus been developed. These allow the generation of disaccharide mimetics with a high molecular diversity.
Collapse
Affiliation(s)
- Loay Awad
- Laboratoire de Glycochimie et de Synthèse Asymétrique, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|