1
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
2
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
4
|
Oosterheert W, Klink BU, Belyy A, Pospich S, Raunser S. Structural basis of actin filament assembly and aging. Nature 2022; 611:374-379. [DOI: 10.1038/s41586-022-05241-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe dynamic turnover of actin filaments (F-actin) controls cellular motility in eukaryotes and is coupled to changes in the F-actin nucleotide state1–3. It remains unclear how F-actin hydrolyses ATP and subsequently undergoes subtle conformational rearrangements that ultimately lead to filament depolymerization by actin-binding proteins. Here we present cryo-electron microscopy structures of F-actin in all nucleotide states, polymerized in the presence of Mg2+ or Ca2+ at approximately 2.2 Å resolution. The structures show that actin polymerization induces the relocation of water molecules in the nucleotide-binding pocket, activating one of them for the nucleophilic attack of ATP. Unexpectedly, the back door for the subsequent release of inorganic phosphate (Pi) is closed in all structures, indicating that Pi release occurs transiently. The small changes in the nucleotide-binding pocket after ATP hydrolysis and Pi release are sensed by a key amino acid, amplified and transmitted to the filament periphery. Furthermore, differences in the positions of water molecules in the nucleotide-binding pocket explain why Ca2+-actin shows slower polymerization rates than Mg2+-actin. Our work elucidates the solvent-driven rearrangements that govern actin filament assembly and aging and lays the foundation for the rational design of drugs and small molecules for imaging and therapeutic applications.
Collapse
|
5
|
Galińska-Rakoczy A, Wawro B, Strzelecka-Gołaszewska H. New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol 2009; 387:869-82. [PMID: 19340945 DOI: 10.1016/j.jmb.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin. Here we have used 90 degrees light scattering, electron microscopy, and N, N'-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of "proper" interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.
Collapse
|
6
|
Shikinaka K, Kakugo A, Osada Y, Gong JP. Mechanism on polarity sorting of actin bundles formed with polycations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1554-1557. [PMID: 19115926 DOI: 10.1021/la803103k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper we explored factors that determine the polarity of an Actin bundle formed with polycation through electrostatic interaction. We found that the polarity decreases with an increase in the polycation concentration while it hardly depends on the KCl salt concentration. Additionally, the polarity of the Actin bundle increases with an increase in the degree of polymerization of the polycation at a constant polymer concentration. From these results we proposed that the kinetics of nuclei formation determines the polarity of the Actin bundle.
Collapse
Affiliation(s)
- Kazuhiro Shikinaka
- Department of Life Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
7
|
Kakugo A, Shikinaka K, Takekawa N, Sugimoto S, Osada Y, Gong JP. Polarity and motility of large polymer-actin complexes. Biomacromolecules 2005; 6:845-9. [PMID: 15762650 DOI: 10.1021/bm0494038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polarity of polymer-actin complexes obtained by mixing F-actin with synthetic polymers carrying positive charges such as poly(L-lysine), x,y-ionene bromide polymers, and poly(N-[3-(dimethylamino)propyl]acrylamide) (PDMAPAA-Q) have been investigated. Actin complexes formed with poly(L-lysine) and PDMAPAA-Q, which carry charges on their side chains, show a higher polarity than those formed with x,y-ionene bromide polymers, which have charges on their chain backbones. All these polymer-actin complex gels show motility on the surfaces coated with myosin by coupling to adenosine 5'-triphosphate hydrolysis. A linear correlation between the polarity of polymer-actin complex gels and the motility is observed.
Collapse
Affiliation(s)
- Akira Kakugo
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kinosian HJ, Selden LA, Gershman LC, Estes JE. Non-muscle actin filament elongation from complexes of profilin with nucleotide-free actin and divalent cation-free ATP-actin. Biochemistry 2004; 43:6253-60. [PMID: 15147209 DOI: 10.1021/bi036117s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using vertebrate cytoplasmic actin consisting of a mixture of beta and gamma isoforms, we previously characterized profilin and nucleotide binding to monomeric actin (Kinosian, H. J., et al. (2000) Biochemistry 39, 13176-13188) and F-actin barbed end elongation from profilin-actin (PA) (Kinosian, H. J., et al. (2002) Biochemistry 41, 6734-6743). Our initial calculations indicated that elongation of F-actin from PA was more energetically favorable than elongation of F-actin from monomeric actin; therefore, the overall actin elongation reaction scheme described by these two linked reactions appeared to be thermodynamically unbalanced. However, we hypothesized that the profilin-induced weakening of MgATP binding by actin reduces the negative free energy change for the formation of profilin-MgATP-actin from MgATP-actin. When this was taken into account, the overall reaction scheme was calculated to be thermodynamically balanced. In our present work, we test this hypothesis by measuring actin filament barbed end elongation of nucleotide-free actin (NF-A) and nucleotide-free profilin-actin (NF-PA). We find that the free energy change for elongation of F-actin by NF-PA is equal to that for elongation of F-actin from NF-A, indicating energetic balance of the linked reactions. In the absence of actin-bound divalent cation, profilin has very little effect on ATP binding to actin; analysis of elongation experiments with divalent cation-free ATP-actin and profilin yielded an approximately energetically balanced reaction scheme. Thus, the data in this present report support our earlier hypothesis.
Collapse
Affiliation(s)
- Henry J Kinosian
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
9
|
Schüler H, Nyåkern M, Schutt CE, Lindberg U, Karlsson R. Mutational analysis of arginine 177 in the nucleotide binding site of β-actin. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1033.2000.01466.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Affiliation(s)
- H Strzelecka-Gołaszewska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Abstract
Actin, one of the main proteins of muscle and cytoskeleton, exists as a variety of highly conserved isoforms whose distribution in vertebrates is tissue-specific. Synthesis of specific actin isoforms is accompanied by their subcellular compartmentalization, with both processes being regulated by factors of cell proliferation and differentiation. Actin isoforms cannot substitute for each other, and the high-level synthesis of exogenous actins leads to alterations in cell organization and morphology. This indicates that the highly conserved actins are functionally specialized for the tissues in which they predominate. The first goal of this review is to analyze the data on the polymerizability of actin isoforms to show that cytoskeleton isoactins form less stable polymers than skeletal muscle actin. This difference correlates with the dynamics of actin microfilaments versus the stability of myofibrillar systems. The three-dimensional actin structure as well as progress in the analysis of conformational changes in both the actin monomer and the filament allows us to view the data on the structure and polymerization of isoactins in terms of structure-function relationships within the actin molecule. Most of the amino acid substitutions that distinguish actin isoforms are located apart from actin-actin contact sites in the polymer. We suggest that these substitutions can modulate the ability of actin monomers to form more or less stable polymers by long-range (allosteric) regulation of the contact sites.
Collapse
Affiliation(s)
- S Y Khaitlina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| |
Collapse
|
12
|
Wohnsland F, Schmitz AA, Steinmetz MO, Aebi U, Vergéres G. Interaction between actin and the effector peptide of MARCKS-related protein. Identification of functional amino acid segments. J Biol Chem 2000; 275:20873-9. [PMID: 10748210 DOI: 10.1074/jbc.m910298199] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is widely assumed that the members of the MARCKS protein family, MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP), interact with actin via their effector domain, a highly basic segment composed of 24-25 amino acid residues. To clarify the mechanisms by which this interaction takes place, we have examined the effect of a peptide corresponding to the effector domain of MRP, the so-called effector peptide, on both the dynamic and the structural properties of actin. We show that in the absence of cations the effector peptide polymerizes monomeric actin and causes the alignment of the formed filaments into bundle-like structures. Moreover, we document that binding of calmodulin or phosphorylation by protein kinase C both inhibit the actin polymerizing activity of the MRP effector peptide. Finally, several effector peptides were synthesized in which positively charged or hydrophobic segments were deleted or replaced by alanines. Our data suggest that a group of six positively charged amino acid residues at the N-terminus of the peptide is crucial for its interaction with actin. While its actin polymerizing activity critically depends on the presence of all three positively charged segments of the peptide, hydrophobic amino acid residues rather modulate the polymerization velocity.
Collapse
Affiliation(s)
- F Wohnsland
- Department of Biophysical Chemistry and M.-E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Kimura S, Ichikawa A, Ishizuka J, Ohkouchi S, Kake T, Maruyama K. Tropomodulin isolated from rabbit skeletal muscle inhibits filament formation of actin in the presence of tropomyosin and troponin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:396-401. [PMID: 10406947 DOI: 10.1046/j.1432-1327.1999.00505.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tropomodulin is a tropomyosin-binding protein, originally isolated from human erythrocytes. Tropomodulin is currently regarded as the sole actin pointed-end capping protein [Weber, A., Pennise, C.R., Babcock, G.G. & Fowler, V.M. (1994) J. Cell Biol. 127, 1627-1635]. This work first describes a procedure for the purification of tropomodulin from rabbit skeletal muscle. Tropomodulin almost completely inhibited filament formation of actin in the presence of tropomyosin and troponin. For the maximal inhibition of actin polymerization, approximately 0.10, 0.12 and 0.003 mol of tropomyosin, troponin and tropomodulin per mol of actin were required, respectively. Fluorescence-intensity measurements, electron-microscopy and sedimentation experiments revealed that only very short fragments and amorphous aggregates, but not filaments, were formed when actin was copolymerized with tropomyosin, troponin and tropomodulin by the addition of 50 mM KCl at pH 8.0. The effects of tropomyosin, troponin and tropomodulin were more remarkable on Ca-actin than on Mg-actin. It appears that tropomodulin caps both the pointed and barbed ends of tropomyosin- and troponin-bound actin filaments.
Collapse
Affiliation(s)
- S Kimura
- Department of Biology, Faculty of Science, Chiba University, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Gerson JH, Bobkova E, Homsher E, Reisler E. Role of residues 311/312 in actin-tropomyosin interaction. In vitro motility study using yeast actin mutant e311a/r312a. J Biol Chem 1999; 274:17545-50. [PMID: 10364188 DOI: 10.1074/jbc.274.25.17545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the Lorenz et al. (Lorenz, M., Poole, K. J., Popp, D., Rosenbaum, G., and Holmes, K. C. (1995) J. Mol. Biol. 246, 108-119) atomic model of the actin-tropomyosin complex, actin residue Asp-311 (Glu-311 in yeast) is predicted to have a high binding energy contribution to actin-tropomyosin binding. Using the yeast actin mutant E311A/R312A in the in vitro motility assays, we have investigated the role of these residues in such interactions. Wild type (wt) yeast actin, like skeletal alpha-actin, is fully regulated when complexed with tropomyosin (Tm) and troponin (Tn). Structure-function comparisons of the wt and E311A/R312A actins show no significant differences between them, and the unregulated F-actins slide at similar speeds in the in vitro motility assay. However, in the presence of Tm and Tn, the mutation increases both the sliding speed and the number of moving filaments at high pCa values, shifting the speed-pCa curve nearly 0.5 pCa units to the left. Tm alone (no Tn) inhibits the motilities of both actins at low heavy meromyosin densities but potentiates only the motility of the mutant actin at high heavy meromyosin densities. Actin-Tm binding measurements indicate no significant difference between wt and E311A/R312A actin in Tm binding. These results implicate allosteric effects in the regulation of actomyosin function by tropomyosin.
Collapse
Affiliation(s)
- J H Gerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
15
|
DalleDonne I, Milzani A, Ciapparelli C, Comazzi M, Gioria MR, Colombo R. The assembly of Ni2+-actin: some peculiarities. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:32-42. [PMID: 9878683 DOI: 10.1016/s0304-4165(98)00120-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel alters the organisation of highly dynamic cytoskeletal elements. In cultured cells Ni2+ causes microtubule aggregation and bundling as well as microfilament aggregation and redistribution. Here, we have analysed the effect(s) of Ni2+ on in vitro actin polymerisation. Using limited proteolysis by trypsin we have suggested that the regions around Arg-62 and Lys-68 change their conformation following Ni2+ binding to the single high-affinity site for divalent cations in the G-actin molecule. We have found that Ni2+ shortens the lag phase of actin polymerisation and increases the rate of assembly mainly because of an increased elongation rate. Ni2+ has no significant effect on the final plateau of actin polymerisation nor on the actin critical concentration. Electron microscopy revealed that actin filaments polymerised by 2 mM Ni2+ showed some tendency to lateral aggregation, being frequently formed by the cohesion of two or three filaments. Furthermore, they often appeared shorter than those of control as also confirmed by the larger amount of free filament ends as well as the faster depolymerisation rate than control.
Collapse
Affiliation(s)
- I DalleDonne
- University of Milan, Department of Biology, Laboratory of Biochemistry and Biophysics of Cytoskeleton Structures, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Rebello CA, Ludescher RD. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin. Biochemistry 1998; 37:14529-38. [PMID: 9772181 DOI: 10.1021/bi981240i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand the relationship between structure and molecular dynamics in F-actin, we have monitored the torsional flexibility of actin filaments as a function of the type of tightly bound divalent cation (Ca2+ or Mg2+) or nucleotide (ATP or ADP), the level of inorganic phosphate and analogues, KCl concentration, and the level of phalloidin. Torsional flexibility on the microsecond time scale was monitored by measuring the steady-state phosphorescence emission anisotropy (rFA) of the triplet probe erythrosin-5-iodoacetamide covalently bound to Cys-374 of skeletal muscle actin; extrapolations to an infinite actin concentration corrected the measured anisotropy values for the influence of variable amounts of rotationally mobile G-actin in solution. The type of tightly bound divalent cation modulated the torsional flexibility of F-actin polymerized in the presence of ATP; filaments with Mg2+ bound (rFA = 0.066) at the active site cleft were more flexible than those with Ca2+ bound (rFA = 0.083). Filaments prepared from G-actin in the presence of MgADP were more flexible (rFA = 0.051) than those polymerized with MgATP; the addition of exogenous inorganic phosphate or beryllium trifluoride to ADP filaments, however, decreased the filament flexibility (increased the anisotropy) to that seen in the presence of MgATP. While variations in KCl concentration from 0 to 150 mM did not modulate the torsional flexibility of the filament, the binding of phalloidin decreased the torsional flexibility of all filaments regardless of the type of cation or nucleotide bound at the active site. These results emphasize the dynamic malleability of the actin filament, the role of the cation-nucleotide complex in modulating the torsional flexibility, and suggest that the structural differences that have previously been seen in electron micrographs of actin filaments manifest themselves as differences in torsional flexibility of the filament.
Collapse
Affiliation(s)
- C A Rebello
- Department of Food Science, Rutgers, The State University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
17
|
DalleDonne I, Milzani A, Colombo R. Effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization. Arch Biochem Biophys 1998; 351:141-8. [PMID: 9514647 DOI: 10.1006/abbi.1997.0545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-actin has a single tight-binding (high-affinity) site for divalent cations per mole of protein, whose occupancy is important for the stability of the molecule. Different tightly bound divalent cations differently influence the polymerization properties of actin. The tightly bound metal ion easily exchanges for free exogenous cations. Moreover, biochemical and structural evidence demonstrates that actin, in both the G- and F-forms, assumes different conformations depending on the metal ion bound with high affinity in the cleft between two main domains of the molecule. In this work, we used proteolytic susceptibility to detect possible local conformational alterations of the actin molecule following a brief incubation of Ca-G-actin with barium chloride and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We found that substitution of Ba2+ for the tightly bound Ca2+ affects the regions around Arg-62 and Lys-68 in subdomain 2 of G-actin, as judged from inhibition of tryptic cleavage at these residues. Using the fluorescent chelator Quin-2, we observed that about 0.95 mol of Ba2+ is released per 1 mol of actin. We also examined the effect of replacement of the tightly bound Ca2+ by Ba2+ on actin polymerization. With respect to Ca-actin, Ba-actin shows an increased polymerization rate, mainly due to its enhanced nucleation and a higher critical concentration.
Collapse
Affiliation(s)
- I DalleDonne
- Laboratory of Biochemistry & Biophysics of Cytoskeletal Structures, University of Milan, Via Celoria, 26, Milan, 20133, Italy
| | | | | |
Collapse
|
18
|
Steinmetz MO, Goldie KN, Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. J Biophys Biochem Cytol 1997; 138:559-74. [PMID: 9245786 PMCID: PMC2141646 DOI: 10.1083/jcb.138.3.559] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation- condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The "ragged" and "branched" filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg-F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.
Collapse
Affiliation(s)
- M O Steinmetz
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
19
|
Abstract
Cadmium is a highly toxic metal entering cells by a variety of mechanisms. Its toxic action is far from being completely understood, although specific interaction with the cellular calcium metabolism has been indicated. Metal ions that influence intracellular Ca2+ concentrations or compete with Ca2+ for protein binding sites may exert an effect on actin filaments, whose assembly and disassembly are both regulated by a number of calcium-dependent factors. Cadmium is such a metal. Much evidence demonstrates that cadmium interferes with the dynamics of actin filaments in various types of cells. Here we show that, at high (0.8-1.0 mM) concentrations, CdCl2 causes actin denaturation. At such Cd2+ concentrations, actin precipitates (really actin, as shown by SDS-PAGE, see Fig. 1B) in the form of irregular, disordered clots, clearly appreciable by electron microscopy. Denaturation seems to be reversible since, after Cd2+ removal by dialysis, the polymerizability of sedimented actin is restored almost completely. On the other hand, at concentrations ranging from 0.25 to 0.6 mM, CdCl2 is more effective as an actin polymerizing agent than both MgCl2 and CaCl2. The Cd-related increase in the actin assembly rate is ascribable to an enhanced nucleation rather than to an increased monomer addition to filament growing ends. The latter, in contrast, appears quite slow. Critical concentration measurements revealed that the extent of polymerization of both Mg- and Cd-assembled actin are very close (C(c) ranges from 0.25 to 0.5 microM), while Ca-polymerized actin shows a polymerization extent markedly lower (C(c) = 4.0 microM). By both the fluorescent Ca2+ chelator Quin-2 assay and limited proteolysis of actin by trypsin and alpha-chymotrypsin, the real substitution of G-actin-bound Ca2+ by Cd2+ has been appreciated. The increase in Quin-2 fluorescence after addition of excess CdCl2 indicates that, in our experimental conditions, Ca2+ tightly-bound to actin is partially (60-70%) replaced by Cd2+, forming Cd-actin. Electrophoretic patterns after limited proteolysis reveal that the trypsin cleavage sites in the segment 61-69 of the actin polypeptide chain are less accessible in Cd-actin than in Ca-actin, although the cation-dependent effect is less pronounced in Cd-actin than in Mg-actin. Our results are consistent with some of the consequences on microfilament organization observed in Cd2(+)-treated cells; however, considering the positive effect of Cd2+ on actin polymerization in solution we have noticed that this was never observed in vivo. A different indirect effect of Cd2+ on some cellular event(s) influencing cytoplasmic actin polymerization appears to be reasonable.
Collapse
Affiliation(s)
- I DalleDonne
- University of Milan, Department of Biology, Italy
| | | | | |
Collapse
|
20
|
Kinosian HJ, Selden LA, Estes JE, Gershman LC. Kinetics of gelsolin interaction with phalloidin-stabilized F-actin. Rate constants for binding and severing. Biochemistry 1996; 35:16550-6. [PMID: 8987989 DOI: 10.1021/bi961891j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The kinetics of gelsolin interaction with actin filaments have been investigated using two fluorescent probes, tetramethylrhodamine isothiocyanate-labeled phalloidin bound to F-actin and N-(1-pyrenyl)iodoacetamide-labeled actin. We have also analyzed the F-actin severing by gelsolin using an assay for actin filaments which measures the polymerization rate of monomeric actin added to the gelsolin-severed filaments. Phalloidin-stabilized actin filaments were used in order to minimize the depolymerization reaction and thus simplify the kinetic analysis. Because gelsolin activity is Ca(2+)-activated, experiments were conducted in the presence of 0.5 mM CaCl2 to ensure maximal activity. We show that the interaction of gelsolin with F-actin may be separated into two distinct kinetic phases which correspond to binding and severing events. Using a two-step model of gelsolin activity, we have determined that gelsolin binds to F-actin with an association rate constant of 2 x 10(7) M-1 s-1, dissociates with a rate constant in the range 0.4-1.2 s-1, and subsequently severs phalloidin-stabilized F-actin with a first-order rate constant of 0.25 s-1. Characterization of the binding and severing reactions will facilitate further investigation of gelsolin activity and its regulation.
Collapse
Affiliation(s)
- H J Kinosian
- Department of Physiology & Cell Biology, Albany Medical College, New York 12208, USA
| | | | | | | |
Collapse
|
21
|
Strzelecka-Golaszewska H, Wozniak A, Hult T, Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J 1996; 316 ( Pt 3):713-21. [PMID: 8670143 PMCID: PMC1217409 DOI: 10.1042/bj3160713] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
F-actins containing either Ca2+ or Mg2+ at the single high-affinity site for a divalent cation differ in their dynamic properties [Carlier (1991) J. Biol. Chem. 266, 1-4]. In an attempt to obtain information on the structural basis of this difference, we probed the conformation of specific sites in the subunits of Mg- and Ca-F-actin with limited proteolysis by subtilisin and trypsin. The influence of the kind of polymerizing salt was also investigated. At high proteinase concentrations required for digestion of actin in the polymer form, subtilisin gives a complex fragmentation pattern. In addition to the earlier known cleavage between Met47 and Gly48 in the DNAse-I-binding loop, cleavage of F-actin between Ser234 and Ser235 in subdomain 4 has recently been reported [Vahdat, Miller, Phillips, Muhlrad and Reisler (1995) FEBS Lett. 365, 149-151]. Here we show that actually a larger segment, comprising residues 227-235, is removed and the bond between Leu67 and Lys68 in subdomain 2 is split in both G- and F-actin, and that the differences in the fragmentation patterns of the G- and F-forms are accounted for by the protection of the bond 47-48 in F-actin. The subtilisin and trypsin cleavage sites in segment 61-69, subtilisin sites in segment 227-235 and trypsin sites between Lys373 and Cys374 were less accessible in Mg-F-actin than in Ca-F-actin. These are intramolecular effects, as similar changes were observed on Ca2+/Mg2+ replacement in G-actin. The cation-dependent effects, in particular those on segment 61-69, were however less pronounced in F-actin than in G-actin. The results suggest that substitution of Mg2+ for Ca2+, and KCl-induced polymerization of CaATP-G-actin, bring about a similar change in the conformation of subdomain 2 of the monomer. The presence of Mg2+ at the high-affinity site also resulted in an increased protection of the bond 47-48. This latter appears to be an intermolecular effect because it is specific for F-actin. The susceptibility to subtilisin and trypsin was also strongly influenced by the kind and concentration of polymerizing salt. The digestion patterns suggest that the exposure and/or flexibility of the regions containing the cleavage sites diminish with enhancement of the ionic strength of the solution. The results are discussed in terms of the current models of F-actin.
Collapse
|
22
|
Scharf RE, Newman J. Mg- and Ca-actin filaments appear virtually identical in steady-state as determined by dynamic light scattering. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1253:129-32. [PMID: 8519791 DOI: 10.1016/0167-4838(95)00186-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dynamic light scattering measurements show that although Mg-actin polymerizes more rapidly than Ca-actin (actin at 0.04-0.4 mg/ml polymerized with 0.1 M KCl +/- 2 mM MgCl2 or CaCl2, at room temperature or at 10 degrees C), steady-state filaments exhibit nearly identical intensity autocorrelation functions and similar mean scattered intensities. The dynamic data are used to measure the persistence length of the filaments which is found to be 4.2 microns independent of the bound cation and of the actin concentration.
Collapse
Affiliation(s)
- R E Scharf
- Physics Department, Union College, Schenectady, NY 12308, USA
| | | |
Collapse
|
23
|
DalleDonne I, Milzani A, Colombo R. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins. Biophys J 1995; 69:2710-9. [PMID: 8599677 PMCID: PMC1236508 DOI: 10.1016/s0006-3495(95)80142-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin.
Collapse
Affiliation(s)
- I DalleDonne
- Department of Biology, University of Milan, Italy
| | | | | |
Collapse
|
24
|
Gershman LC, Selden LA, Kinosian HJ, Estes JE. Actin-bound nucleotide/divalent cation interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 358:35-49. [PMID: 7801810 DOI: 10.1007/978-1-4615-2578-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
At this point, it may be worthwhile to list, in summary form, the important aspects of divalent cation and nucleotide binding to actin that have been reviewed here: 1) High affinity divalent cation binding to actin is very tight, with equilibrium dissociation constant KCa approximately 1 nM and KMg approximately 5 nM at pH 7.0. 2) The binding kinetics of Ca++ are diffusion limited. Dissociation is slow, with k-Ca approximately 0.015 sec at pH 7.0 (and low ionic strength). 3) The binding kinetics of Mg++ are limited by the characteristics of the Mg++ aquo-ion and are much slower than for Ca++; k-Mg approximately 0.0012 at pH 7.0. 4) Increase in pH or ionic strength weakens divalent cation binding at the high affinity site, primarily by increasing k-Ca and k-Mg. 5) Exchange of Mg++ for Ca++ (or vice versa) at the high affinity site is by a competitive pseudo-first order process with an apparent rate constant (kapp) intermediate between k-Ca and k-Mg and dependent upon the cation concentration ratio [Ca]/[Mg] present. 6) High affinity ATP binding is modulated by the high affinity divalent cation. The cation concentration range over which this modulation occurs is about 100-fold higher for Mg++ than for Ca++, again because of the different characteristics of the Mg++ and Ca++ aquo-ions. 7) At low divalent cation concentrations, ATP dissociation from actin is limited by dissociation of the tightly-bound divalent cation. 8) At high divalent cation concentrations, ATP dissociation probably occurs via dissociation of the divalent cation-nucleotide complex and is quite slow, with dissociation rate constant approximately 0.0005 sec-1. 9) Competitive nucleotide exchange on actin may be described by a pseudo-first order model analogous to that for divalent cation exchange. The pseudo-first order rate constants depend upon the divalent cation concentration. The overall nucleotide exchange rate constant kex depends upon these constants and the solution nucleotide concentration ratio, e.g. [ATP]/[ADP]. The following circumstances develop from the characteristics of the high affinity binding of divalent cation and nucleotide to actin: 1) The standard methods for actin preparation convert in vivo Mg-actin into Ca-actin. 2) Converting Ca-actin back to Mg-actin is not easy. A very low ratio of [Ca]/[Mg] is necessary, which usually requires the use of Ca-cheltors, and a long time (5-10 min) must be allowed for complete exchange.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L C Gershman
- Research Service, Stratton VA Medical Center, Albany, New York 12208
| | | | | | | |
Collapse
|
25
|
Selden LA, Kinosian HJ, Estes JE, Gershman LC. Influence of the high affinity divalent cation on actin tryptophan fluorescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 358:51-7. [PMID: 7801811 DOI: 10.1007/978-1-4615-2578-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study demonstrates that the intrinsic tryptophan fluorescence of actin provides an effective and convenient way of measuring divalent cation exchange and polymerization of native actin. In the measurement of divalent cation exchange, this method is as sensitive as those previously used (8) and provides further evidence of the importance of the tightly bound divalent cation to the properties of actin. In monitoring polymerization, this method cannot compete with the sensitivity of the commonly used pyrene-actin fluorescence. However, some proteins (e.g., profilin) and other agents (e.g., cytochalasin D) that bind to actin are affected by the presence of fluorescent labels, making actin intrinsic fluorescence potentially useful in investigating the interaction of these agents with actin, and in validating data obtained using labeled actin. Our laboratory routinely checks the quality of our native actin preparations using this technique and, more recently, we have used actin tryptophan fluorescence to monitor the nucleating and severing effects of gelsolin on actin. The simplicity of the technique is most appealing, and we expect that a variety of innovative and routine uses will be developed.
Collapse
Affiliation(s)
- L A Selden
- Research Service, Stratton VA Medical Center, Albany, New York 12208
| | | | | | | |
Collapse
|
26
|
Khaitlina SY, Moraczewska J, Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:911-20. [PMID: 8281943 DOI: 10.1111/j.1432-1033.1993.tb18447.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Actin can be specifically cleaved between residues 42 and 43 with a novel protease from Escherichia coli A2 strain (ECP) [Khaitlina, S. Y., Collins, J. H., Kuznetsova, I.M., Pershina, V.P., Synakevich, I.G., Turoverov, K.K. & Usmanova, A.M. (1991) FEBS Lett. 279, 49-51]. The resulting C-terminal and N-terminal fragments remained associated to one another in the presence of either Ca2+ or Mg2+. The protease-treated actin was, however, neither able to spontaneously assemble into filaments nor to copolymerize with intact actin unless its tightly bound Ca2+ was replaced with Mg2+. Substitution of Mg2+ for the bound Ca2+ was also necessary to partially restore the ability of the protease-treated actin to inhibit the DNase I activity. The critical concentration for KCl-induced polymerization of ECP-treated ATP-Mg-G-actin, determined by measuring the fluorescence of pyrenyl label, was approximately threefold higher than that for actin cleaved between residues 47 and 48 using subtilisin, and 36-fold higher than the critical concentration for polymerization of intact actin under the same conditions. Morphologically, the filaments of ECP-treated actin were indistinguishable from those of intact actin. Comparison of the fluorescence spectra of pyrenyl-labelled actins and chemical cross-linking with N,N'-1,2-phenylenebismaleimide have, however, revealed structural differences between the filaments assembled from ECP-treated actin and those of intact as well as subtilisin-treated actin. Moreover, the filaments of ECP-treated actin were easily disrupted by centrifugal forces or shearing stress unless they were stabilized by phalloidin. The results are consistent with the direct participation of the region around residues 42 and 43 in the monomer/monomer interactions as predicted from the atomic model of F-actin [Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature 347, 44-49] and suggest that the interactions involving this region are of primary importance for stabilization of the actin filament. The mechanism of the regulation of actin polymerization by the tightly bound divalent cation is also discussed.
Collapse
Affiliation(s)
- S Y Khaitlina
- Department of Cell Culture, Institute of Cytology, Saint Petersburg, Russia
| | | | | |
Collapse
|
27
|
Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange rates. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52929-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Mossakowska M, Moraczewska J, Khaitlina S, Strzelecka-Golaszewska H. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem J 1993; 289 ( Pt 3):897-902. [PMID: 8435084 PMCID: PMC1132260 DOI: 10.1042/bj2890897] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Homogeneous preparations of actin devoid of the three C-terminal residues were obtained by digestion of G-actin with trypsin after blocking proteolysis at other sites by substitution of Mg2+ for the tightly bound Ca2+. Removal of the C-terminal residues resulted in the following: an enhancement of the Mg(2+)-induced hydrolysis of ATP in low-ionic-strength solutions of actin; an increase in the critical concentration for polymerization; a decrease in the initial rate of polymerization; and an enhancement of the steady-state exchange of subunits in the polymer. Electron microscopy indicated an increased fragility of the filaments assembled from truncated actin. The results suggest that removal of the C-terminal residues increases the rate constants for monomer dissociation from the polymer ends and from the oligomeric species.
Collapse
Affiliation(s)
- M Mossakowska
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
29
|
Estes JE, Selden LA, Kinosian HJ, Gershman LC. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil 1992; 13:272-84. [PMID: 1527214 DOI: 10.1007/bf01766455] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Actin is known to undergo reversible monomer-polymer transitions that coincide with various cell activities such as cell shape changes, locomotion, endocytosis and exocytosis. This dynamic state of actin filament self-assembly and disassembly is thought to be regulated by the properties of the monomeric actin molecule and in vivo by the influence of actin-associated proteins. Of major importance to the properties of the monomeric actin molecule are the presence of one tightly-bound ATP and one tightly-bound divalent cation per molecule. In vivo the divalent cation is thought to be Mg2+ (Mg-actin) but in vitro standard purification procedures result in the preparation of Ca-actin. The affinity of actin for a divalent cation at the tight binding site is in the nanomolar range, much higher than earlier thought. The binding kinetics of Mg2+ and Ca2+ at the high affinity site on actin are considered in terms of a simple competitive binding mechanism. This model adequately describes the published observations regarding divalent cation exchange on actin. The effects of the tightly-bound cation, Mg2+ or Ca2+, on nucleotide binding and exchange on actin, actin ATP hydrolysis activity and nucleation and polymerization of actin are discussed. From the characteristics that are reviewed, it is apparent that the nature of the bound divalent cation has a significant effect on the properties of actin.
Collapse
Affiliation(s)
- J E Estes
- Research Service, Veterans Administration Medical Centre, Albany, New York 12208
| | | | | | | |
Collapse
|
30
|
Abstract
Globular actin (G-actin) will polymerize to form filamentous actin (F-actin) under physiological ionic conditions, and is known to be regulated by univalent and bivalent cations, such as K+ and Mg2+. The current concept of this process involves four steps: activation, nucleation, elongation and annealing. Evidence for the existence of activated G-protein has been suggested by changes in the resistance to proteolysis [Rich & Estes (1976) J. Mol. Biol. 104, 777-792] and u.v.-light absorption [Rouayrenc & Travers (1981) Eur. J. Biochem. 116, 73-77]. More recently we [Liu et al. (1990) Biochem. J. 266, 453-459] have provided direct chemical evidence for extensive conformational changes during the transformation of G-actin into F-actin. In this study we now present direct chemical evidence for the existence of a short-lived species, an activated form of G-actin, which can be detected by changes in the accessibility of the free thiol groups on the G-actin molecule when modified by a specific thiol-group-targeted reagent, 7-dimethylamino-4-methyl-3-N-maleimidylcoumarin (DACM). The presence of K+ and/or Mg2+ ions caused a large increase in the accessibility of the thiol groups of Cys-217 and Cys-374, but not those of Cys-10 and Cys-257. Mg2+ effected relatively faster changes than did K+ ions. The results suggest that the function of these ions is to convert G-actin into an activated form, and further suggest that the change in conformation is mainly confined to the large domain. Such changes at least involve certain portions of the G-actin molecule that contain Cys-217 and Cys-374. On the other hand, little or no significant change could be observed in the small domain of G-actin as reflected by the accessibility of Cys-10. The bound nucleotide remained as ATP during the activation of G-actin and was hydrolysed to ADP on polymerization. The activated G-actin had a life-time of about 8 min or less depending on the concentration of G-actin. At higher protein concentration, its life-time was much shorter, probably owing to the earlier onset of polymerization, which apparently is governed by the concentration of the activated form. The life-time of this new species can be extended by lowering the temperature and is less affected by actin concentration. This new species is considered to be an activated form of G-actin, since polymerization renders all the thiol groups on actin inaccessible to the reagent DACM.
Collapse
Affiliation(s)
- W P Shu
- Department of Biochemistry, SUNY Health Science Center, Brooklyn 11203
| | | | | |
Collapse
|
31
|
Kinosian HJ, Selden LA, Estes JE, Gershman LC. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1077:151-8. [PMID: 2015289 DOI: 10.1016/0167-4838(91)90052-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work by this laboratory has shown that the tightly bound divalent cation of actin affects the enthalpy of the polymerization reaction for ATP-actin (Selden et al. (1986) J. Muscle Res. Cell Motil. 7, 215-224). In the present study, we have measured the temperature dependence of polymerization for actin containing ATP or ADP as the bound nucleotide and Mg2+ or Ca2+ (Mg-actin or Ca-actin) as the tightly bound divalent cation. In contrast to the marked effect of the tightly bound divalent cation on enthalpy and entropy changes for the polymerization of ATP-actin, ADP-actin polymerization is affected very little by the tightly bound divalent cation. The Arrhenius and van't Hoff plots for polymerization of Ca-ATP-, Mg-ADP- and Ca-ADP-actin were found to be non-linear. The free energy data for actin polymerization have been analyzed as a second order function of absolute temperature (Osborne et al. (1976) Biochemistry 15, 317-320). The values of the enthalpy change and activation enthalpy change for Ca-ATP-, Mg-ADP- and Ca-ADP-actin polymerization were found to be temperature-dependent, in contrast to those for Mg-ATP-actin, which were nearly constant over the temperature range studied. These results suggest that (1) polymerization of actin which does not contain both Mg2+ and ATP may be a multi-step reaction including a rate-limiting step and (2) Mg-ATP-actin has a unique conformation which enhances its ability to polymerize.
Collapse
Affiliation(s)
- H J Kinosian
- Department of Physiology and Cell Biology, Albany Medical College, NY
| | | | | | | |
Collapse
|
32
|
|
33
|
High affinity divalent cation exchange on actin. Association rate measurements support the simple competitive model. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52404-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
|
35
|
Gershman LC, Selden LA, Kinosian HJ, Estes JE. Preparation and polymerization properties of monomeric ADP-actin. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 995:109-15. [PMID: 2930792 DOI: 10.1016/0167-4838(89)90068-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An improved method for the preparation of Mg-ADP-actin and Ca-ADP-actin which minimizes denaturation of the protein has been developed. Using ADP-actin prepared by this method, we have measured the polymerization characteristics of Mg-ADP-actin and Ca-ADP-actin. In contrast to the significant difference in Mg-ATP-actin and Ca-ATP-actin polymerization characteristics that we reported previously (J. Muscle Res. Cell Motility 7 (1986) 215-224), we show here that values for the critical concentration, the relative rate constant of elongation (mk+) and the relative rate constant of depolymerization (mk-) for Mg-ADP-actin are similar to those for Ca-ADP-actin. The value of mk+ for Mg-ATP-actin is about 8-fold higher than that for Mg-ADP-actin and the value of mk- for Mg-ADP-actin is 3-4-fold higher than that for Mg-ATP-actin. These factors may help explain the observation that the spontaneous nucleation rates of both types of ADP-actin are low in contrast to the rapid nucleation of Mg-ATP-actin.
Collapse
Affiliation(s)
- L C Gershman
- Medical Service, Veterans Administration Medical Center, NY, Albany 12208
| | | | | | | |
Collapse
|
36
|
Abstract
Fluorescence enhancement and fluorescence photobleaching recovery have been utilized to examine actin self-assembly over the pH range 6.6-8.0. The kinetics of assembly are faster and the critical concentrations are lower at lower pH. Filament diffusion coefficients are not a function of pH, indicating that average filament lengths are not pH dependent. Although critical actin concentrations are a sensitive function of the concentrations of various cations in the medium, the relative pH dependences of critical concentrations are similar for all combinations of cations employed. The pH dependence of actin self-assembly is sufficiently great that it should be taken into account when comparing data from different reports and when relating in vitro measurements to cytoplasmic mechanisms.
Collapse
Affiliation(s)
- F Wang
- Department of Chemistry, Syracuse University, New York 13244
| | | | | |
Collapse
|
37
|
Newman J, Mroczka N, Schick KL. Dynamic light scattering measurements of the diffusion of probes in filamentous actin solutions. Biopolymers 1989; 28:655-66. [PMID: 2713456 DOI: 10.1002/bip.360280209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diffusion coefficients of monodisperse polystyrene latex spheres in solutions of polymerized actin were measured using dynamic light scattering. Four different probes with radii R, ranging from 50 to 500 nm, were separately used in actin solutions with concentrations c, ranging from 1.5 to 21 microM, which had been polymerized with either 1 mM MgCl2, 1 mM CaCl2, or 100 mM KCl. Under all conditions, and at four different scattering angles in the range of 30 degrees-90 degrees, the measured average diffusion coefficients D of the probes were systematically smaller for samples of increased actin concentration or of increased probe radius. Control experiments indicated that the probes did not bind to the actin. These data for Mg2+- and Ca2+-polymerized actin agree and were found to be quite well summarized by the scaling relation D/D0 = exp[-alpha R delta c nu], where D0 is the measured diffusion coefficient of the probes in water (and, as also measured, in the starting actin solutions prior to polymerization with added salt), with values of delta = 0.73 +/- 0.05, nu = 1.08 +/- 0.09, and alpha = (1.1 +/- 0.6) x 10(-3) (with c in microM and R in nm). Data for KCl-polymerized actin show much more restricted diffusivities of the probes at comparable actin concentrations. Inhomogeneities in the solution are reflected in the "effective polydispersity" of the probe diffusion coefficients, which depend on local microviscosity differences.
Collapse
|
38
|
GERSHMAN LEWISC, ESTES JAMESE, SELDEN LYNNA. Polymerization Characteristics of Divalent Cation-Free Actin. Ann N Y Acad Sci 1988. [DOI: 10.1111/j.1749-6632.1988.tb51477.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Méjean C, Hué HK, Pons F, Roustan C, Benyamin Y. Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange. Biochem Biophys Res Commun 1988; 152:368-75. [PMID: 2451916 DOI: 10.1016/s0006-291x(88)80723-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Divalent cations such as Mg2+ and Ca2+, which bind specifically to actin, induce conformational changes that affect its antigenic structure. The distribution of antigenic epitopes on the sequence shows that these structural modifications involve epitopes related to monomer-monomer interfaces. In the N-terminal part, the 1-7 acidic extremity is not affected, in contrast with sequence 18-28. The ability of polycations such as diamine to modify the actin structure at concentrations below 0.1 microM strengthens the hypothesis that in vivo these compounds act locally and specifically on actin polymerization.
Collapse
Affiliation(s)
- C Méjean
- LP 8402, Centre de Recherches de Biochimie Macromoléculaire, U.249 (INSERM), Montpellier, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
By cosedimentation, spectrofluorimetry, and electron microscopy, we have established that actin is induced to polymerize at low salt concentrations by positively charged liposomes. This polymerization occurs only at the surface of the liposomes, and thus monomers not in direct contact with the liposome remain monomeric. The integrity of the liposome membrane is necessary to maintain actin in its polymerized state since disruption of the liposome depolymerizes actin. Actin polymerized at the surface of the liposome is organized into two filamentous structures: sheets of parallel filaments in register and a netlike organization. Spectrofluorimetric analysis with the probe N-pyrenyl-iodoacetamide shows that actin is in the F conformation, at least in the environment of the probe. However, actin assembly induced by the liposome is not accompanied by full ATP hydrolysis as observed in vitro upon addition of salts.
Collapse
Affiliation(s)
- A Laliberte
- Departement de Chimie-Biologie, Université du Québec à Trois-Rivières, Canada
| | | |
Collapse
|
41
|
Barden JA, dos Remedios CG. Fluorescence resonance energy transfer between sites in G-actin. The spatial relationship between Cys-10, Tyr-69, Cys-374, the high-affinity metal and the nucleotide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:103-9. [PMID: 3665911 DOI: 10.1111/j.1432-1033.1987.tb13393.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intramonomer fluorescence resonance energy transfer spectroscopy was employed to investigate the spatial relationship between labels attached to the residues Cys-10, Tyr-69, Cys-374, the high-affinity metal binding site and the nucleotide binding site in G-actin. The separation between the fluorescence donor 5-(dimethylamino)naphthalene-1-sulphonyl (Dns) chloride (dansyl chloride) used to label Tyr-69 and the acceptor 4-dimethylaminophenylazophenyl-4'-maleimide (DABM) used to label Cys-374 was found to be 3.6 nm. The distance separating Dns on Tyr-69 from DABM on Cys-10 was found to be 2.7 nm. The distance separating the acceptor DABM bound to Cys-374 from the fluorescence donor formycin A 5'-triphosphate (FTP) occupying the nucleotide binding site was determined to be 3.0 nm. A slightly larger separation was determined between the FTP site and DABM attached to Cys-10. In this case a value of 3.2 nm was obtained. The distance separating Dns on Tyr-69 from Co2+ in the high-affinity metal binding site was determined to be 1.1 nm. Finally, the separation of FTP, now acting as donor, from the Dns molecule attached to Tyr-69 and acting as the acceptor was determined to be 2.1 nm. The likely relationship between these label sites on actin is represented by a model which is used to assist in the determination of the actin structure, with particular reference to the environment of the metal and nucleotide binding sites.
Collapse
Affiliation(s)
- J A Barden
- Department of Anatomy, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
42
|
Selden LA, Gershman LC, Kinosian HJ, Estes JE. Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca2+ vs Mg2+. FEBS Lett 1987; 217:89-93. [PMID: 3595846 DOI: 10.1016/0014-5793(87)81249-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monomeric ATP-actin binds Ca2+ 3-4-times more strongly than Mg2+ at pH 8. On conversion of G-ATP-actin to G-ADP-actin, the relative affinity of actin for the divalent cations is reversed, so that Mg2+ is bound 6-times more strongly than Ca2+. The dissociation rate constant of Ca2+ from Ca-ADP-actin is 50-fold higher than that for Ca2+ from Ca-ATP-actin, suggesting that this reversal of divalent cation affinities is due primarily to a higher equilibrium dissociation constant for Ca-ADP-actin. These results demonstrate an interaction between the actin-bound nucleotide and divalent cation or their binding sites.
Collapse
|
43
|
Fechheimer M. The Dictyostelium discoideum 30,000-dalton protein is an actin filament-bundling protein that is selectively present in filopodia. J Biophys Biochem Cytol 1987; 104:1539-51. [PMID: 3294856 PMCID: PMC2114503 DOI: 10.1083/jcb.104.6.1539] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interaction with actin and intracellular localization of the 30,000-D actin-binding protein from the cellular slime mold Dictyostelium discoideum have been investigated to analyze the potential contributions of this protein to cell structure and movement. The formation of anisotropic cross-linked filament networks (bundles) containing actin and the 30,000-D protein has been observed by electron microscopy, light scattering, viscometry, and polarization microscopy. Cosedimentation experiments indicate that a maximum of one molecule of the 30,000-D protein can bind to 10 actin monomers in filaments with an apparent association constant of 1 X 10(7) liters/mol. Inhibition of the interaction of the 30,000-D protein with actin by either magnesium or calcium was observed by viscometry, light scattering, polarization microscopy, and direct binding assays. However, the concentration of magnesium required to diminish the interaction is greater than 100 times greater than that of calcium. The association constant of the 30,000-D protein for actin is 4.2 X 10(6) liters/mol, or less than 1 X 10(5) liters/mol in the presence of increased concentrations of either Mg2+ or Ca2+, respectively. Enzyme-linked immunoassays indicate that the 30,000-D protein comprises 0.04% of the protein in D. discoideum. Extensive interaction of the 30,000-D protein with actin in cytoplasm is predicted from these measurements of the concentration of this protein and its affinity for actin. The distribution of the 30,000-D protein was analyzed by immunofluorescence microscopy using mono-specific affinity-purified polyclonal antibody. The 30,000-D protein exhibits a diffuse distribution in cytoplasm, is excluded from prominent organelles, and is quite prominent in fine extensions protruding from the cell surface. The number, length, and distribution of these extensions containing the 30,000-D protein are similar to those of filopodia observed by scanning electron microscopy. To analyze the effects of cell thickness and the distribution of organelles on the immunofluorescence localization, fluorescein-labeled BSA was incorporated into the cytoplasm of living cells before fixation and staining using a sonication loading technique. The results indicate that the 30,000-D protein is selectively incorporated into filopodia. These results provide a clear distinction between the multiple actin-cross-linking proteins present in D. discoideum, and suggest that the 30,000-D protein contributes to organization of bundles of actin filaments in filopodia.
Collapse
|
44
|
Estes J, Selden L, Gershman L. Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61137-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|