1
|
Reichert S, Schepkin V, Kleimaier D, Zöllner FG, Schad LR. Comparison of triple quantum (TQ) TPPI and inversion recovery TQ TPPI pulse sequences at 9.4 and 21.1 T. NMR IN BIOMEDICINE 2024; 37:e5106. [PMID: 38263738 DOI: 10.1002/nbm.5106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Both sodium T1 triple quantum (TQ) signal and T1 relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi-exponential T1 relaxation times. METHODS The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of both T1-TQ signal and T1 relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation times T1 and T2 and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths. RESULTS Reliable measurements of the T1-TQ signals and T1 bi-exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalized T1-TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalized T2-TQ signal was in the range 15%-35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for both T1 and T2 relaxation pathways. The bi-exponential T1 relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. The T2 relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T. CONCLUSION The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both the T1-TQ signal and T1 relaxation times. The unique sensitivities of the T1 and T2 relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.
Collapse
Affiliation(s)
- Simon Reichert
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Schepkin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Dennis Kleimaier
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Adlparvar F, Babb JS, Bushnik T, Silver JM, Im BS, Wall SP, Brown R, Baete SH, Kirov II, Madelin G. Global decrease in brain sodium concentration after mild traumatic brain injury. Brain Commun 2021; 3:fcab051. [PMID: 33928248 PMCID: PMC8066885 DOI: 10.1093/braincomms/fcab051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected in vivo and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations: (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function. Given the novelty of sodium imaging in traumatic brain injury, effect sizes from (i), and correlation types and strength from (ii), were compared to those obtained using standard diffusion imaging metrics. Twenty-seven patients (20 female, age 35.9 ± 12.2 years) within 2 months after injury and 19 controls were scanned with proton and sodium MRI at 3 Tesla. Total sodium concentration, fractional anisotropy and apparent diffusion coefficient were obtained with voxel averaging across 12 grey and white matter regions. Linear regression was used to obtain global grey and white matter total sodium concentrations. Patient outcome was assessed with global functioning, symptom profiles and neuropsychological function assessments. In the regional analysis, there were no statistically significant differences between patients and controls in apparent diffusion coefficient, while differences in sodium concentration and fractional anisotropy were found only in single regions. However, for each of the 12 regions, sodium concentration effect sizes were uni-directional, due to lower mean sodium concentration in patients compared to controls. Consequently, linear regression analysis found statistically significant lower global grey and white matter sodium concentrations in patients compared to controls. The strongest correlation with outcome was between global grey matter sodium concentration and the composite z-score from the neuropsychological testing. In conclusion, both sodium concentration and diffusion showed poor utility in differentiating patients from controls, and weak correlations with clinical presentation, when using a region-based approach. In contrast, sodium linear regression, capitalizing on partial volume correction and high sensitivity to global changes, revealed high effect sizes and associations with patient outcome. This suggests that well-recognized sodium imbalances in traumatic brain injury are (i) detectable non-invasively; (ii) non-focal; (iii) occur even when the antecedent injury is clinically mild. Finally, in contrast to our principle hypothesis, patients' sodium concentrations were lower than controls, indicating that the biological effect of traumatic brain injury on the sodium homeostasis may differ from that in other neurological disorders. Note: This figure has been annotated.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fatemeh Adlparvar
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - James S Babb
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan Brown
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Steven H Baete
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Benkhedah N, Bachert P, Nagel AM. Two-pulse biexponential-weighted 23Na imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:67-76. [PMID: 24530955 DOI: 10.1016/j.jmr.2014.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/23/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
A new method is proposed for acquiring 3D biexponential-weighted sodium images with two instead of three RF pulses to allow for shorter repetition time at high magnetic fields (B0≥7 T) and reduced SAR. The second pulse converts single- into triple-quantum coherences in regions containing sodium ions which are restricted in mobility. Since only single-quantum coherences can be detected, an image acquired after the second pulse is intrinsically single-quantum-filtered and can be used to generate a biexponential-weighted sodium image by a weighted subtraction with the spin-density-weighted image acquired between the pulses. The proposed sequence generates biexponential-weighted sodium images of in vivo human brain with 140% higher SNR than triple-quantum-filtered sodium images and 4% higher SNR than a biexponential-weighted sequence with three RF pulses at equal acquisition time and with 1/3 lower SAR. As SAR is reduced, accordingly repetition time can be spared to obtain even higher SNR-time efficiency. In comparison to a difference image generated from two images of a double-readout sequence, the proposed two-pulse sequence yields about 14% higher SNR. Our new two-pulse biexponential-weighted sequence allows for acquisition of full 3D data sets of the human brain in vivo with a nominal resolution of (5 mm)(3) in about 10 min.
Collapse
Affiliation(s)
- Nadia Benkhedah
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Heidelberg, Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Heidelberg, Germany
| | - Armin M Nagel
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Heidelberg, Germany.
| |
Collapse
|