1
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
2
|
Huang X, Cavalcante DP, Townley HE. Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:23. [PMID: 32435151 PMCID: PMC7223038 DOI: 10.1007/s11051-019-4720-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Nanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200-400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen. Graphical abstract.
Collapse
Affiliation(s)
- Xinyue Huang
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | - Helen E Townley
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
- Department of Engineering Science, Oxford University, Park’s Road, Oxford, UK
| |
Collapse
|
3
|
The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus In Vivo. mBio 2019; 10:mBio.01289-19. [PMID: 31239384 PMCID: PMC6593410 DOI: 10.1128/mbio.01289-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An adequate in vivo analysis of HCMV’s viral chemokine vCXCL-1 has been lacking. Here we generate recombinant MCMVs expressing vCXCL-1 to study vCXCL-1 function in vivo using MCMV as a surrogate. We demonstrate that vCXCL-1 increases MCMV dissemination kinetics for both primary and secondary dissemination. Additionally, we provide evidence, that the murine neutrophil is largely a bystander in the mouse’s response to vCXCL-1. We confirm the hypothesis that vCXCL-1 is a HCMV virulence factor. Infection of severely immunocompromised mice with MCMVs expressing vCXCL-1 was lethal in more than 50% of infected animals, while all animals infected with parental virus survived during a 12-day period. This work provides needed insights into vCXCL-1 function in vivo. Human cytomegalovirus (HCMV) is a betaherpesvirus that is a significant pathogen within newborn and immunocompromised populations. Morbidity associated with HCMV infection is the consequence of viral dissemination. HCMV has evolved to manipulate the host immune system to enhance viral dissemination and ensure long-term survival within the host. The immunomodulatory protein vCXCL-1, a viral chemokine functioning primarily through the CXCR2 chemokine receptor, is hypothesized to attract CXCR2+ neutrophils to infection sites, aiding viral dissemination. Neutrophils harbor HCMV in vivo; however, the interaction between vCXCL-1 and the neutrophil has not been evaluated in vivo. Using the mouse model and mouse cytomegalovirus (MCMV) infection, we show that murine neutrophils harbor and transfer infectious MCMV and that virus replication initiates within this cell type. Utilizing recombinant MCMVs expressing vCXCL-1 from the HCMV strain (Toledo), we demonstrated that vCXCL-1 significantly enhances MCMV dissemination kinetics. Through cellular depletion experiments, we observe that neutrophils impact dissemination but that overall dissemination is largely neutrophil independent. This work adds neutrophils to the list of innate cells (i.e., dendritic and macrophages/monocytes) that contribute to MCMV dissemination but refutes the hypothesis that neutrophils are the primary cell responding to vCXCL-1.
Collapse
|
4
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
5
|
Lachmandas E, Boutens L, Ratter JM, Hijmans A, Hooiveld GJ, Joosten LAB, Rodenburg RJ, Fransen JAM, Houtkooper RH, van Crevel R, Netea MG, Stienstra R. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat Microbiol 2016; 2:16246. [PMID: 27991883 DOI: 10.1038/nmicrobiol.2016.246] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/04/2016] [Indexed: 01/16/2023]
Abstract
Microbial stimuli such as lipopolysaccharide (LPS) induce robust metabolic rewiring in immune cells known as the Warburg effect. It is unknown whether this increase in glycolysis and decrease in oxidative phosphorylation (OXPHOS) is a general characteristic of monocytes that have encountered a pathogen. Using CD14+ monocytes from healthy donors, we demonstrated that most microbial stimuli increased glycolysis, but that only stimulation of Toll-like receptor (TLR) 4 with LPS led to a decrease in OXPHOS. Instead, activation of other TLRs, such as TLR2 activation by Pam3CysSK4 (P3C), increased oxygen consumption and mitochondrial enzyme activity. Transcriptome and metabolome analysis of monocytes stimulated with P3C versus LPS confirmed the divergent metabolic responses between both stimuli, and revealed significant differences in the tricarboxylic acid cycle, OXPHOS and lipid metabolism pathways following stimulation of monocytes with P3C versus LPS. At a functional level, pharmacological inhibition of complex I of the mitochondrial electron transport chain diminished cytokine production and phagocytosis in P3C- but not LPS-stimulated monocytes. Thus, unlike LPS, complex microbial stimuli and the TLR2 ligand P3C induce a specific pattern of metabolic rewiring that involves upregulation of both glycolysis and OXPHOS, which enables activation of host defence mechanisms such as cytokine production and phagocytosis.
Collapse
Affiliation(s)
- Ekta Lachmandas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Lily Boutens
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jacqueline M Ratter
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Anneke Hijmans
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Guido J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, 774 Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Jack A M Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 1105 AZ, Nijmegen, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
6
|
Laopajon W, Takheaw N, Kasinrerk W, Pata S. Simultaneous flow cytometric measurement of antigen attachment to phagocytes and phagocytosis. J Immunoassay Immunochem 2016; 37:527-39. [PMID: 27019400 DOI: 10.1080/15321819.2016.1171780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current available assays cannot differentiate the stages of phagocytosis. We, therefore, established methods for concurrent detection of antigen attachment and engulfment by phagocyte using latex beads coated with lipopolysaccharide, rabbit IgG, and carboxyfluorescein diacetate succinimidyl ester. The generated beads were incubated with whole blood at 37°C for 1 hr and stained with PE-Cy5.5 anti-rabbit IgG antibody. By flow cytometry, attachment and phagocytic processes could be detected, simultaneously. The established method is a valuable tool for diagnosis of phagocytic disorder and study of molecules involved in phagocytosis.
Collapse
Affiliation(s)
- Witida Laopajon
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Nuchjira Takheaw
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand
| | - Watchara Kasinrerk
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| | - Supansa Pata
- a Division of Clinical Immunology, Department of Medical Technology , Chiang Mai University , Chiang Mai , Thailand.,b Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
7
|
Venter G, Oerlemans FTJJ, Willemse M, Wijers M, Fransen JAM, Wieringa B. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages. PLoS One 2014; 9:e97378. [PMID: 24824795 PMCID: PMC4019579 DOI: 10.1371/journal.pone.0097378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Venter G, Oerlemans FTJJ, Wijers M, Willemse M, Fransen JAM, Wieringa B. Glucose controls morphodynamics of LPS-stimulated macrophages. PLoS One 2014; 9:e96786. [PMID: 24796786 PMCID: PMC4010488 DOI: 10.1371/journal.pone.0096786] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.7 and Maf-DKO macrophages as models to study whether there is a specific association between aspects of carbohydrate metabolism and actin-based processes in LPS-stimulated macrophages. We demonstrate that the capacity to undergo LPS-induced cell shape changes and to phagocytose complement-opsonized zymosan (COZ) particles does not depend on oxidative phosphorylation activity but is fueled by glycolysis. Different macrophage activities like spreading, formation of cell protrusions, as well as phagocytosis of COZ, were thereby strongly reliant on the presence of low levels of extracellular glucose. Since global ATP production was not affected by rewiring of glucose catabolism and inhibition of glycolysis by 2-deoxy-D-glucose and glucose deprivation had differential effects, our observations suggest a non-metabolic role for glucose in actin cytoskeletal remodeling in macrophages, e.g. via posttranslational modification of receptors or signaling molecules, or other effects on the machinery that drives actin cytoskeletal changes. Our findings impute a decisive role for the nutrient state of the tissue microenvironment in macrophage morphodynamics.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Al-Hallak MHDK, Sarfraz MK, Azarmi S, Kohan MHG, Roa WH, Löbenberg R. Microcalorimetric method to assess phagocytosis: macrophage-nanoparticle interactions. AAPS JOURNAL 2010; 13:20-9. [PMID: 21057907 DOI: 10.1208/s12248-010-9240-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 10/12/2010] [Indexed: 11/30/2022]
Abstract
This study evaluated the use of isothermal microcalorimetry (ITMC) to detect macrophage-nanoparticle interactions. Four different nanoparticle (NP) formulations were prepared: uncoated poly(isobutyl cyanoacrylate) (PIBCA), polysorbate-80-coated PIBCA, gelatin, and mannosylated gelatin NPs. Changes in NP formulations were aimed to either enhance or decrease macrophage-NP interactions via phagocytosis. Alveolar macrophages were cultured on glass slabs and inserted in the ITMC instrument. Thermal activities of the macrophages alone and after titration of 100 μL of NP suspensions were compared. The relative interactive coefficients of macrophage-NP interactions were calculated using the heat exchange observed after NP titration. Control experiments were performed using cytochalasin B (Cyto B), a known phagocytosis inhibitor. The results of NP titration showed that the total thermal activity produced by macrophages changed according to the NP formulation. Mannosylated gelatin NPs were associated with the highest heat exchange, 75.4 ± 7.5 J, and thus the highest relative interactive coefficient, 9,269 ± 630 M-1. Polysorbate-80-coated NPs were associated with the lowest heat exchange, 15.2 ± 3.4 J, and the lowest interactive coefficient, 890 ± 120 M-1. Cyto B inhibited macrophage response to NPs, indicating a connection between the thermal activity recorded and NP phagocytosis. These results are in agreement with flow cytometry results. ITMC is a valuable tool to monitor the biological responses to nano-sized dosage forms such as NPs. Since the thermal activity of macrophage-NP interactions differed according to the type of NPs used, ITMC may provide a method to better understand phagocytosis and further the development of colloidal dosage forms.
Collapse
Affiliation(s)
- M H D Kamal Al-Hallak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 3126 Dentistry/Pharmacy Centre, Edmonton, Alberta, Canada T6G 2N8
| | | | | | | | | | | |
Collapse
|
10
|
Filipiak M, Bilska E, Tylko G, Pyza E. Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:383-390. [PMID: 19941868 DOI: 10.1016/j.jinsphys.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn(2+), an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn(2+), and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn(2+) increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn(2+) also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.
Collapse
Affiliation(s)
- Marta Filipiak
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | |
Collapse
|
11
|
Goncharov NV, Jenkins RO, Radilov AS. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 2006; 26:148-61. [PMID: 16252258 DOI: 10.1002/jat.1118] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluoroacetate (FA; CH2FCOOR) is highly toxic towards humans and other mammals through inhibition of the enzyme aconitase in the tricarboxylic acid cycle, caused by 'lethal synthesis' of an isomer of fluorocitrate (FC). FA is found in a range of plant species and their ingestion can cause the death of ruminant animals. Some fluorinated compounds -- used as anticancer agents, narcotic analgesics, pesticides or industrial chemicals -- metabolize to FA as intermediate products. The chemical characteristics of FA and the clinical signs of intoxication warrant the re-evaluation of the toxic danger of FA and renewed efforts in the search for effective therapeutic means. Antidotal therapy for FA intoxication has been aimed at preventing fluorocitrate synthesis and aconitase blockade in mitochondria, and at providing citrate outflow from this organelle. Despite a greatly improved understanding of the biochemical mechanism of FA toxicity, ethanol, if taken immediately after the poisoning, has been the most acceptable antidote for the past six decades. This review deals with the clinical signs and physiological and biochemical mechanisms of FA intoxication to provide an explanation of why, even after decades of investigation, has no effective therapy to FA intoxication been elaborated. An apparent lack of integrated toxicological studies is viewed as a limiter of progress in this regard. Two principal ways of developing effective therapies for FA intoxication are considered. Firstly, competitive inhibition of FA interaction with CoA and of FC interaction with aconitase. Secondly, channeling the alternative metabolic pathways by orienting the fate of citrate via cytosolic aconitase, and by maintaining the flux of reducing equivalents into the TCA cycle via glutamate dehydrogenase.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint-Petersburg, Russia
| | | | | |
Collapse
|
12
|
Darbha S, Marchase RB. Regulation of intracellular calcium is closely linked to glucose metabolism in J774 macrophages. Cell Calcium 1996; 20:361-71. [PMID: 8939356 DOI: 10.1016/s0143-4160(96)90042-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of 2-deoxy-D-glucose (2dGlc) and glucose deprivation were investigated in the J774 murine macrophage-like cell line. 2dGlc addition or glucose deprivation for 4 min led to an inhibition in the transient increase in cytoplasmic free Ca2+ ([Ca2+]i) that otherwise occurs in response to three different agonists: IgG, ATP and platelet activating factor. This inhibition was preceded by a partial release of Ca2+ from intracellular, thapsigargin-sensitive stores. In contrast, the transition from 5 to 30 mM glucose caused a decrease in [Ca2+]i and a corresponding increase in thapsigargin-sensitive sequestered Ca2+. The effects of an alternate glycolytic inhibitor, NaF, and a mitochondrial inhibitor, rotenone, were also tested. These inhibitors caused neither a release of Ca2+ from intracellular stores nor an inhibition in any of the agonist responses. The capacitative influx of extracellular Ca2+ following depletion of intracellular stores was also found to be selectively inhibited by the prior addition of 2dGlc or with glucose deprivation. In addition, when an elevated plateau of [Ca2+]i was established by the irreversible depletion of intracellular Ca2+ stores, the addition of 2dGlc caused a decrease in the on-going capacitative entry of Ca2+.
Collapse
Affiliation(s)
- S Darbha
- Department of Cell Biology, University of Alabama at Birmingham 35294-0005, USA
| | | |
Collapse
|