1
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
3
|
Dreyer I, Li K, Riedelsberger J, Hedrich R, Konrad KR, Michard E. Transporter networks can serve plant cells as nutrient sensors and mimic transceptor-like behavior. iScience 2022; 25:104078. [PMID: 35378857 PMCID: PMC8976136 DOI: 10.1016/j.isci.2022.104078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Sensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H+ and Ca2+ signals, two of the most ubiquitous cellular second messengers. The concept emerging from the computational simulations was confirmed in wet-lab experiments. We document in guard cells that alterations in the external KCl concentration were translated into cytosolic H+ and Ca2+ transients as predicted. We show that transporter networks do not only serve their primary task of transport, but can also take on the role of a receptor without requiring conformational changes of a transporter protein. Such transceptor-like phenomena may be quite common in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Kai R. Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
4
|
Dreyer I. Nutrient cycling is an important mechanism for homeostasis in plant cells. PLANT PHYSIOLOGY 2021; 187:2246-2261. [PMID: 34890457 PMCID: PMC8644529 DOI: 10.1093/plphys/kiab217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 05/02/2023]
Abstract
Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of 'what-if' scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively "futile" cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca CL-3460000, Chile
- Author for communication:
| |
Collapse
|
5
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Hedrich R, Neher E. Venus Flytrap: How an Excitable, Carnivorous Plant Works. TRENDS IN PLANT SCIENCE 2018; 23:220-234. [PMID: 29336976 DOI: 10.1016/j.tplants.2017.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/02/2023]
Abstract
The carnivorous plant Dionaea possesses very sensitive mechanoreceptors. Upon contact with prey an action potential is triggered which, via an electrical network - comparable to the nervous system of vertebrates - rapidly closes its bivalved trap. The 'hunting cycle' comprises a constitutively activated mechanism for the rapid capture of prey, followed by a well-orchestrated sequence of activation of genes responsible for tight trap closure, digestion of the prey, and uptake of nutrients. Decisions on the step-by-step activation are based on 'counting' the number of stimulations of sensory organs. These remarkable animal-like skills in the carnivore are achieved not by taking over genes from its prey but by modifying and rearranging the functions of genes that are ubiquitous in plants.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Erwin Neher
- Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Hansen UP, Rauh O, Schroeder I. A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme. Channels (Austin) 2015; 10:119-38. [PMID: 26646356 DOI: 10.1080/19336950.2015.1120391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.
Collapse
Affiliation(s)
- Ulf-Peter Hansen
- a Department of Structural Biology , University of Kiel , Kiel , Germany
| | - Oliver Rauh
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| | - Indra Schroeder
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| |
Collapse
|
8
|
Blatt MR, Wang Y, Leonhardt N, Hills A. Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:770-8. [PMID: 24268743 PMCID: PMC4030602 DOI: 10.1016/j.jplph.2013.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward 'reverse engineering' of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual 'mindset' of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the 'communication' evident between the plasma membrane and tonoplast of the guard cell.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, UMR 7265, CNRS/CEA/Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Thiel G. p-CMBS Modifies Extrafacial Sulfhydryl Groups at theCharaPlasma Membrane: Activation of Ca2+Influx and Inhibition of Two Different K+Currents. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1991.tb00240.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. PLANT PHYSIOLOGY 2012; 159:1026-42. [PMID: 22635116 PMCID: PMC3387691 DOI: 10.1104/pp.112.197244] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/20/2012] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells play a key role in gas exchange for photosynthesis while minimizing transpirational water loss from plants by opening and closing the stomatal pore. Foliar gas exchange has long been incorporated into mathematical models, several of which are robust enough to recapitulate transpirational characteristics at the whole-plant and community levels. Few models of stomata have been developed from the bottom up, however, and none are sufficiently generalized to be widely applicable in predicting stomatal behavior at a cellular level. We describe here the construction of computational models for the guard cell, building on the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. The OnGuard software was constructed with the HoTSig library to incorporate explicitly all of the fundamental properties for transporters at the plasma membrane and tonoplast, the salient features of osmolite metabolism, and the major controls of cytosolic-free Ca²⁺ concentration and pH. The library engenders a structured approach to tier and interrelate computational elements, and the OnGuard software allows ready access to parameters and equations 'on the fly' while enabling the network of components within each model to interact computationally. We show that an OnGuard model readily achieves stability in a set of physiologically sensible baseline or Reference States; we also show the robustness of these Reference States in adjusting to changes in environmental parameters and the activities of major groups of transporters both at the tonoplast and plasma membrane. The following article addresses the predictive power of the OnGuard model to generate unexpected and counterintuitive outputs.
Collapse
Affiliation(s)
| | | | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (A.H., Z.-H.C., A.A., M.R.B.); and Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | | | | |
Collapse
|
11
|
Chen ZH, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR. Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. PLANT PHYSIOLOGY 2012; 159:1235-51. [PMID: 22635112 PMCID: PMC3404696 DOI: 10.1104/pp.112.197350] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/23/2012] [Indexed: 05/17/2023]
Abstract
The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mal) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H⁺, K⁺, Cl⁻, and Mal concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca²⁺ concentration and an exchange of vacuolar Cl⁻ with Mal, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.
Collapse
Affiliation(s)
| | | | | | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Z.-H.C., A.H., U.B., A.A., M.R.B.); and Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Virgilio L. Lew
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Z.-H.C., A.H., U.B., A.A., M.R.B.); and Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Z.-H.C., A.H., U.B., A.A., M.R.B.); and Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| |
Collapse
|
12
|
Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR. Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis. PLANT METHODS 2012; 8:15. [PMID: 22559714 PMCID: PMC3475070 DOI: 10.1186/1746-4811-8-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 04/10/2012] [Indexed: 05/20/2023]
Abstract
Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Science and Health, University of Western Sydney, Richmond, NSW 2753, Australia
| | - Cornelia Eisenach
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Xin-Qin Xu
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
13
|
Chen Z, Grefen C, Donald N, Hills A, Blatt MR. A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis. PLANT, CELL & ENVIRONMENT 2011; 34:554-64. [PMID: 21251017 DOI: 10.1111/j.1365-3040.2010.02262.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To date the use of fluorescent reporter constructs in analysing membrane transport has been limited primarily to cell lines expressing stably either the tagged transporter protein(s) or markers to identify lineages of interest. Strategies for transient expression have yet to be exploited in transport analysis, despite their wide application in cellular imaging studies. Here we describe a Gateway-compatible, bicistronic vector, incorporating the constitutive Ubiqutin-10 gene promoter of Arabidopsis that gives prolonged expression after transient transformation and enables fluorescence marking of cells without a fusion construct. We show that Arabidopsis root epidermal cells are readily transformed by co-cultivation with Agrobacterium and are tractable for quantitative electrophysiological analysis. As a proof of principle, we transiently transformed Arabidopsis with the bicistronic vector carrying GFP as the fluorescent marker and, separately, the integral plasma membrane protein SYP121 essential for the inward K+ channel current. We demonstrate that transient expression of SYP121 in syp121 mutant plants is sufficient to rescue the K+ current in vivo. The combination of transient expression and use of the bicistronic vector promises significant advantages for studies of membrane transport and nutrient acquisition in roots.
Collapse
Affiliation(s)
- Zhonghua Chen
- Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ, UK
| | | | | | | | | |
Collapse
|
14
|
Blatt MR, Beilby MJ. Mitochondrial sequestration of BCECF after ester loading in the giant alga Chara australis. PROTOPLASMA 2007; 232:131-136. [PMID: 18094931 DOI: 10.1007/s00709-007-0264-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 02/07/2007] [Indexed: 05/25/2023]
Abstract
Ratiometric fluorescent dyes are often used to monitor free ion concentrations in vivo, especially in cells that are recalcitrant to transformation with genetically encoded fluorescent markers. Although intracellular dye distributions are often found to be cytosolic, dye localisation has often not been examined in detail. We began exploring the use of BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) to monitor pH in the giant alga Chara australis and discovered that younger leaf cells could be loaded using the acetoxymethyl ester of BCECF. However, we were puzzled to find in microphotometric measurements that the fluorescence ratio appeared insensitive to manipulations affecting cytosolic pH. Confocal imaging of C. australis cells loaded with BCECF showed an accumulation of the dye in two locations: (1) on the outside of the chloroplasts in irregularly shaped stationary bodies; (2) within 1-1.5 mum structures that moved rapidly with the pericellular cytoplasmic streaming. Together with the streaming cytoplasm, these organelles were rendered stationary with 50 muM cytochalasin D. Rhodamine 123, a mitochondrionspecific dye, highlighted organelles outside of the chloroplasts, similar to those shown by BCECF in location 1. We conclude that in the cytoplasmic compartment, BCECF was sequestered within cytoplasmic mitochondria in immature and fast-growing cells and within the cortical mitochondrial system in older and slowly growing cells. Thus, BCECF-AM is unsuitable for reporting changes in cytosolic pH in C. australis but might be employed in future to study pH changes in the mitochondria.
Collapse
Affiliation(s)
- M R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
15
|
Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:171-84. [PMID: 16330526 DOI: 10.1093/jxb/erj022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Miller AJ, Cookson SJ, Smith SJ, Wells DM. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:541-549. [PMID: 11373303 DOI: 10.1093/jexbot/52.356.541] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microelectrode measurements can be used to investigate both the intracellular pools of ions and membrane transport processes of single living cells. Microelectrodes can report these processes in the surface layers of root and leaf cells of intact plants. By careful manipulation of the plant, a minimum of disruption is produced and therefore the information obtained from these measurements most probably represents the 'in vivo' situation. Microelectrodes can be used to assay for the activity of particular transport systems in the plasma membrane of cells. Compartmental concentrations of inorganic metabolite ions have been measured by several different methods and the results obtained for the cytosol are compared. Ion-selective microelectrodes have been used to measure the activities of ions in the apoplast, cytosol and vacuole of single cells. New sensors for these microelectrodes are being produced which offer lower detection limits and the opportunity to measure other previously unmeasured ions. Measurements can be used to determine the intracellular steady-state activities or report the response of cells to environmental changes.
Collapse
Affiliation(s)
- A J Miller
- Department of Biochemistry and Physiology, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | |
Collapse
|
17
|
Johannes, Crofts, Sanders. Control of Cl- efflux in chara corallina by cytosolic pH, free ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation. PLANT PHYSIOLOGY 1998; 118:173-81. [PMID: 9733536 PMCID: PMC34853 DOI: 10.1104/pp.118.1.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/1998] [Accepted: 05/25/1998] [Indexed: 05/18/2023]
Abstract
Enhanced Cl- efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl- efflux via two mechanisms. The first is a direct effect of pHc on Cl- efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl- efflux. Cl- efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl- efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl- efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.
Collapse
Affiliation(s)
- Johannes
- The Plant Laboratory, Biology Department, University of York, P.O. Box 373, York YO1 5YW, United Kingdom
| | | | | |
Collapse
|
18
|
Zhang WH, Tyerman SD. Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots. JOURNAL OF PLANT PHYSIOLOGY 1997; 150:567-572. [PMID: 11540315 DOI: 10.1016/s0176-1617(97)80320-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Short-term effect of oxygen-deficiency on the membrane potential difference (PD), membrane resistance of cortical cells and electrical coupling between cortical cells was investigated using excised wheat roots. Hypoxia rapidly depolarised the membrane potential of the cortical cells by about 60 mV, while hypoxia had little effect on the membrane resistance of the cells. No significant change in membrane resistance by potassium channel blockers, TEA+ and verapamil, under hypoxia was observed. The electrical coupling ratio, which is a measure of plasmodesmatal resistance, between cortical cells of wheat roots was 5.9 % in aerated solution and was not affected by the low oxygen treatment, suggesting that solute transport through cytoplasmic annulus of plasmodesmata could not be affected. The possible involvement of the endoplasmic reticulum in intercellular transport of solute and water is discussed.
Collapse
Affiliation(s)
- W H Zhang
- School of Biological Sciences, The Flinders University of South Australia, Adelaide
| | | |
Collapse
|
19
|
Venema K, Palmgren MG. Metabolic modulation of transport coupling ratio in yeast plasma membrane H(+)-ATPase. J Biol Chem 1995; 270:19659-67. [PMID: 7642655 DOI: 10.1074/jbc.270.33.19659] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane proton pump (H(+)-ATPase) of yeast energizes solute uptake by secondary transporters and regulates cytoplasmic pH. The addition of glucose to yeast cells stimulates proton efflux mediated by the H(+)- ATPase. A > 50-fold increase in proton extrusion from yeast cells is observed in vivo, whereas the ATPase activity of purified plasma membranes is increased maximally 8-fold after glucose treatment (Serrano, R. (1983) FEBS Lett. 156, 11-14). The low capacity of yeast cells for proton extrusion in the absence of glucose can be explained by the finding that, in H(+)-ATPase isolated from glucose-starved cells, ATP hydrolysis is essentially uncoupled from proton pumping. The number of protons transported per ATP hydrolyzed is significantly increased after glucose activation. We suggest that intrinsic uncoupling is an important mechanism for regulation of pump activity.
Collapse
Affiliation(s)
- K Venema
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Meharg AA, Blatt MR. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J Membr Biol 1995; 145:49-66. [PMID: 7636885 DOI: 10.1007/bf00233306] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3- challenge and to quantify transport activity. The NO3(-)-associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 microM NO3- to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3- from the bath. Voltage clamp measurements carried out immediately before and following NO3- additions showed that the NO3(-)-evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3(-)-evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 +/- 6 and 44 +/- 11 microM, respectively and, for the current, a maximum of 5.1 +/- 0.9 muA cm-2. The NO3- current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3- binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3- anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3- transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3- transport at the plant plasma membrane.
Collapse
Affiliation(s)
- A A Meharg
- Department of Biological Sciences, University of London, Wye College, Kent, UK
| | | |
Collapse
|
21
|
Wang J, Benz R, Zimmermann U. Effects of light and inhibitors of ATP-synthesis on the chloride carrier of the alga Valonia utricularis: is the carrier a chloride pump? BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1233:185-97. [PMID: 7865542 DOI: 10.1016/0005-2736(94)00252-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of metabolic inhibitors, such as cyanide, antimycin A and azide was studied on the chloride transport system of the giant marine alga Valonia utricularis by using the charge pulse relaxation method. Two clearly defined voltage relaxations were resolved. The addition of 10-30 microM cyanide to the artificial sea water (ASW) bathing the algal cells increased the time constants of the slow voltage relaxation, tau 2, significantly when the algal cells were kept in the dark. The cyanide-effect reached a plateau value at 100-300 microM and was fully reversible when cyanide was removed from the ASW. Analysis of the charge pulse data in terms of the Läuger-model demonstrated that the translocation rates of the free, kS, and the charged carrier, kAS, decreased. The decrease of kS was more pronounced than that of kAS. 10 microM antimycin A and 3 mM azide had similar effects on the rate constants when the light was switched off. Upon illumination the cyanide- and antimycin A-, but not the azide-mediated effects disappeared. At concentrations higher than 1 mM cyanide caused a further, dramatic decrease of kS and kAS, while the surface concentration of the carrier molecules, N0, was not affected. This cyanide-effect was also reversible, but not light-dependent. Measurements of the ATP level showed that 3 mM cyanide reduced the ATP level by about 70% both under light and dark conditions. In the presence of 30 microM cyanide (or 10 microM antimycin A) the ATP level decreased by about 50%, but only in the dark. These results suggest two different effects of cyanide on the Cl(-)-carrier system: in the micromolar concentration range cyanide (and antimycin A) reduced predominantly the translocation of the free carrier by inhibition of ATP synthesis by oxidative phosphorylation, whereas in the millimolar concentration range cyanide apparently inhibits the translocation rates of both the free and charged carriers by its binding to the carrier. The results provide some evidence that the chloride transport of V. utricularis could be coupled to metabolic energy but it is an open question whether it is a pump or not.
Collapse
Affiliation(s)
- J Wang
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Germany
| | | | | |
Collapse
|
22
|
Wayne R. The excitability of plant cells: with a special emphasis on characean internodal cells. THE BOTANICAL REVIEW; INTERPRETING BOTANICAL PROGRESS 1994; 60:265-367. [PMID: 11539934 DOI: 10.1007/bf02960261] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.
Collapse
Affiliation(s)
- R Wayne
- Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
23
|
|
24
|
Remis D, Simonis W, Gimmler H. Measurement of the transmembrane electrical potential of Dunaliella acidophila by microelectrodes. Arch Microbiol 1992. [DOI: 10.1007/bf00245364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Nosaka S, Ohkawa T, Okihara K, Yoshikawa K. Effects of local anesthetics on the Chara plasmalemma. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1106:325-34. [PMID: 1596512 DOI: 10.1016/0005-2736(92)90013-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of lidocaine, tetracaine, procaine and bupivacaine (less than 1000 microM) on the Chara corallina internodal cell were studied. These local anesthetics depolarized the membrane at rest, while they affected the rising phase and the peak level of action potential not appreciably. Instead, they prolonged the time course of the falling phase of action potential as slowly as the repolarization was imperfect, even after enough lapse beyond the refractory period. Consequently, an action potential appeared to enhance the degree of depolarization at rest. Such a depolarization with stimulus/excitation was named use-dependent depolarization, while the depolarization without excitation, the resting one. The order of the potency of the use-dependent depolarization almost coincided with that of the nerve-blocking potency. During depolarization the change in membrane conductance was not simple. However, the conductance-voltage (Gm-Vm) relationship curve in the presence of local anesthetic suggested that depolarization was due to, not only the decrease in the electrogenic H(+)-pump, but also the increase in the diffusion conductance.
Collapse
Affiliation(s)
- S Nosaka
- Department of Anesthesiology, Center for Adult Diseases, Osaka, Japan
| | | | | | | |
Collapse
|
26
|
Fisahn J, Hansen UP, Lucas WJ. Reaction kinetic model of a proposed plasma membrane two-cycle H(+)-transport system of Chara corallina. Proc Natl Acad Sci U S A 1992; 89:3261-5. [PMID: 1373492 PMCID: PMC48846 DOI: 10.1073/pnas.89.8.3261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biophysical and numerical analysis methods were used to characterize and model the transport protein that gives rise to the acid and alkaline regions of Chara. A measuring system that permits the detection of area-specific current-voltage curves was used. These current-voltage curves, obtained from the inward current regions of Chara, underwent a parallel shift when the alkaline region was inverted by means of an acid pH treatment. In this situation the reversal potential of this area shifted from -120 mV to -340 mV. Together with data obtained from experiments using a divided chamber system, these results suggest that a common transport protein generates inward and outward current regions of Chara. On the basis of these experimental findings, a reaction kinetic model is proposed that assigns two operational modes to the proposed transport protein. Switching between these modes generates either acid or alkaline behavior. Since the observed pH dependence of the postulated transporter is rather complex, a reaction kinetic saturation mechanism had to be incorporated into the model. This final 10-state reaction kinetic model provides an appropriate set of mathematical relations to fit the measured current-voltage curves by computer.
Collapse
Affiliation(s)
- J Fisahn
- Department of Botany, University of California, Davis 95616
| | | | | |
Collapse
|
27
|
Blatt MR. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. J Gen Physiol 1992; 99:615-44. [PMID: 1534573 PMCID: PMC2219207 DOI: 10.1085/jgp.99.4.615] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated on hyperpolarization with half-times of 100-200 ms, showed no evidence of time- or voltage-dependent inactivation, and deactivated rapidly (tau approximately 10 ms) on clamping to 0 mV. Steady-state conductance-voltage characteristics indicated an apparent gating charge of 1.3-1.6. Current reversal showed a Nernstian dependence on Ko+ over the range 3-30 mM, and the inward rectifier was found to be highly selective for K+ over other monovalent cations (K+ greater than Rb+ greater than Cs+ much greater than Na+). Unlike the inward rectifiers of animal membranes, the current was blocked by charybdotoxin and alpha-dendrotoxin (Kd much less than 50 nM), as well as by tetraethylammonium chloride (K1/2 = 9.1 mM); gating of the guard cell K+ current was fixed to voltages near -120 mV, independent of Ko+, and the current activated only with supramillimolar K+ outside (EK+ greater than -120 mV). Most striking, however, was inward rectifier sensitivity to [H+] with the K+ current activated reversibly by mild acid external pH. Current through the K+ inward rectifier was found to be largely independent of intracellular pH and the current reversal (equilibrium) potential was unaffected by pHo from 7.4 to 5.5. By contrast, current through the K+ outward rectifier previously characterized in these cells (1988. J. Membr. Biol. 102:235) was largely insensitive to pHo, but was blocked reversibly by acid-going intracellular pH. The action of pHo on the K+ inward rectifier could not be mimicked by extracellular Ca2+ for which changes in activation, deactivation, and conductance were consonant with an effect on surface charge ([Ca2+] less than or equal to 1 mM). Rather, extracellular pH affected activation and deactivation kinetics disproportionately, with acid-going pHo raising the K+ conductance and shifting the conductance-voltage profile positive-going along the voltage axis and into the physiological voltage range. Voltage and pH dependencies for gating were consistent with a single, titratable group (pKa approximately 7 at -200 mV) residing deep within the membrane electric field and accessible from the outside.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Blatt
- Botany School, University of Cambridge, United Kingdom
| |
Collapse
|
28
|
Beilby MJ, Bisson MA. Chara plasmalemma at high pH: voltage dependence of the conductance at rest and during excitation. J Membr Biol 1992; 125:25-39. [PMID: 1542105 DOI: 10.1007/bf00235795] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high pH state of Chara plasmalemma (Bisson, M.A., Walker, N.A. 1980. J. Membrane Biol. 56:1-7) was investigated to obtain detailed current-voltage (I/V) and conductance-voltage (G/V) characteristics in the pH range 7.5 to 12. The resting conductance started to increase at a pH as low as 8.5, doubling at pH 9.5, but the most notable increases occurred between pH 10.5 and 11.5, as observed previously (Bisson, M.A., Walker, N.A. 1980. J. Membrane Biol. 56:1-7; Bisson, M.A., Walker, N.A. 1981. J. Exp. Bot. 32:951-971). The slopes (and shapes) of the I/V curves varied even over minutes, suggesting a shifting population of open channels. Possible contributions of the permeabilities to H+ and OH-, PH and POH, respectively, to the increase in membrane conductance were calculated in the pH range 8.5 to 12. If PH is the main cause for the increase in conductance, it would have to rise by three orders of magnitude between pH 8.5 and 11.5, implying an enormous increase in the open-channel population as pH rises. On the other hand, a comparatively constant POH over that pH range would result in an increase in conductance due to the rise of OH- concentration. This indicates unchanging open-channel population. The transient excitation conductances at pH 7.5 and 11.5 were compared at a range of membrane PD (potential difference) levels. At more positive PD levels (near 0) the transient conductances showed little change as pH was increased. However, near the excitation threshold the conductance at high pH was slower to reach peak and its amplitude was diminished compared to that at neutral pH. This effect was found to be partially due to the pH change itself and partially due to less negative membrane PD at high pH. The changes in excitation transients developed gradually as pH of the medium was increased. These findings are discussed with a recent model of excitation in mind (Shiina, T., Tazawa, M. 1988. J. Membrane Biol. 106:135-139).
Collapse
Affiliation(s)
- M J Beilby
- School of Biological Sciences, University of Sydney, NSW, Australia
| | | |
Collapse
|
29
|
Blatt MR. Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 1991; 124:95-112. [PMID: 1662287 DOI: 10.1007/bf01870455] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M R Blatt
- Department of Biochemistry and Biological Sciences, University of London, Wye College, England
| |
Collapse
|