1
|
Byrne L, Murphy RA. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals (Basel) 2022; 12:1981. [PMID: 35953970 PMCID: PMC9367456 DOI: 10.3390/ani12151981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of dietary supplementation of animal feeds with trace minerals is irrefutable, with various forms of both organic and inorganic products commercially available. With advances in research techniques, and data obtained from both in-vitro and in-vivo studies in recent years, differences between inorganic and organic trace minerals have become more apparent. Furthermore, differences between specific organic mineral types can now be identified. Adhering to PRISMA guidelines for systematic reviews, we carried out an extensive literature search on previously published studies detailing performance responses to trace minerals, in addition to their corresponding relative bioavailability values. This review covers four of the main trace minerals included in feed: copper, iron, manganese and zinc, and encompasses the different types of organic and inorganic products commercially available. Their impact from environmental, economic, and nutritional perspectives are discussed, along with the biological availability of various mineral forms in production animals. Species-specific sections cover ruminants, poultry, and swine. Extensive relative bioavailability tables cover values for all trace mineral products commercially available, including those not previously reviewed in earlier studies, thereby providing a comprehensive industry reference guide. Additionally, we examine reasons for variance in reported relative bioavailability values, with an emphasis on accounting for data misinterpretation.
Collapse
Affiliation(s)
- Laurann Byrne
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| | | |
Collapse
|
2
|
Chiaravalloti A, Cimini A, Ricci M, Quartuccio N, Arnone G, Filippi L, Calabria F, Leporace M, Bagnato A, Schillaci O. Positron emission tomography imaging in primary brain tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
4
|
Ali JS, Ain NU, Naz S, Zia M. Biomarker selection and imaging design in cancer: A link with biochemical pathways for imminent engineering. Heliyon 2020; 6:e03340. [PMID: 32055737 PMCID: PMC7005466 DOI: 10.1016/j.heliyon.2020.e03340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/27/2019] [Accepted: 01/29/2020] [Indexed: 01/15/2023] Open
Abstract
Malignant cells reprogram metabolic pathways to meet the demands of growth and proliferation. These altered manners of metabolism are now identified as hallmarks of cancer. Studies have revealed tumor cells alter specific pathways such as glycolysis, fatty acid synthesis and amino acid synthesis to support their proliferation. In this review, we provide a theoretical framework to understand metabolic reprogramming and the mechanisms accompanying distorted metabolism to tumor progression. How these alterations will be assisting in cancer diagnostics and advances in standard techniques in marker identification and imagining are also discussed.
Collapse
Affiliation(s)
| | | | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
5
|
Chiaravalloti A, Filippi L, Ricci M, Cimini A, Schillaci O. Molecular Imaging in Pediatric Brain Tumors. Cancers (Basel) 2019; 11:cancers11121853. [PMID: 31771237 PMCID: PMC6966547 DOI: 10.3390/cancers11121853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
In the last decade, several radiopharmaceuticals have been developed and investigated for imaging in vivo of pediatric brain tumors with the aim of exploring peculiar metabolic processes as glucose consumption, amino-acid metabolism, and protein synthesis with nuclear medicine techniques. Although the clinical shreds of evidence are limited, preliminary results are encouraging. In this review, we performed web-based and desktop research summarizing the most relevant findings of the literature published to date on this topic. Particular attention was given to the wide spectrum of nuclear medicine advances and trends in pediatric neurooncology and neurosurgery. Furthermore, the role of somatostatin receptor imaging through single-photon emission computed tomography (SPECT) and positron emission tomography (PET) probes, with reference to their potential therapeutic implications, was examined in the peculiar context. Preliminary results show that functional imaging in pediatric brain tumors might lead to significant improvements in terms of diagnostic accuracy and it could be of help in the management of the disease.
Collapse
Affiliation(s)
- Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
- Correspondence: or ; Tel.: +39-062-090-2457
| | - Luca Filippi
- Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy;
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Faculty of Medicine and Surgery, La Sapienza University, 00161 Rome, Italy;
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy (O.S.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
6
|
Hou W, Huang ZX, Xu HG, Lin J, Zhang DM, Peng QL, Lin H, Chang YQ, Wang LH, Yao Z, Sun PH, Chen WM. Hybrids of arenobufagin and benzoisoselenazol reducing the cardiotoxicity of arenobufagin. Bioorg Med Chem Lett 2018; 28:3391-3394. [DOI: 10.1016/j.bmcl.2018.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
|
7
|
Sharma S, Singh B, Mishra AK, Rathod D, Hazari PP, Chuttani K, Chopra S, Singh PM, Abrar ML, Mittal BR, Singh G. LAT-1 based primary breast cancer detection by [99m]Tc-labeled DTPA-bis-methionine scintimammography: first results using indigenously developed single vial kit preparation. Cancer Biother Radiopharm 2015; 29:283-8. [PMID: 25203145 DOI: 10.1089/cbr.2014.1655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate the diagnostic utility of a single vial ready to label with [99m]Tc kit preparation of DTPA-bis-methionine (DTPA-bis-MET) for the detection of primary breast cancer. METHODS The conjugate (DTPA-bis-MET) was synthesized by covalently conjugating two molecules of methionine to DTPA and formulated as a single vial ready to label with [99m]Tc lyophilized kit preparations. Thirty female patients (mean age=47.5±11.8 years; range=21-69 years) with radiological/clinical evidence of having primary breast carcinoma were subjected to [99m]Tc-methionine scintigraphy. The whole body (anterior and posterior) imaging was performed on all the patients at 5 minutes, 10 minutes, 1 hour, 2 hours, and 4 hours following an intravenous administration of 555-740 MBq radioactivity of [99m]Tc-methionine. In addition, scintimammography (static images; 256×256 matrix) at 1, 2, and 4 hours was also performed on all the patients. RESULTS The resultant radiolabel, that is, [99m]Tc-DTPA-bis-MET, yielded high radiolabeling efficiency (>97.0%), radiochemical purity (166-296 MBq/μmol), and shelf life (>3 months). The radiotracer primarily gets excreted through the kidneys and localizes in the breast cancer lesions with high target-to-nontarget ratios. The mean±SD ratios on the scan-positive lesions acquired at 1, 2, and 4 hours postinjection were 3.6±0.48, 3.10±0.24, and 2.5±0.4, respectively. [99m]Tc-methionine scintimammography demonstrated an excellent sensitivity and positive predictive value of 96.0% each for the detection of primary breast cancer. CONCLUSION Ready to label single vial kit formulations of DTPA-bis-MET can be easily synthesized as in-house production and conveniently used for the scintigraphic detection of breast cancer and other methionine-dependent tumors expressing the L-type amino acid transporter-1 receptor. The imaging technique thus could be a potential substitute for the conventional single-photon emission computed tomography (SPECT)-based tumor imaging agents, especially for tracers with nonspecific mitochondrial uptake. However, the diagnostic efficacy of [99m]Tc-methionine needs to be evaluated in a large cohort of patients through further multicentric trials.
Collapse
Affiliation(s)
- Sarika Sharma
- 1 Department of Nuclear Medicine & PET, PGIMER , Chandigarh, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kadiyala KG, Datta A, Tanwar J, Adhikari A, Kumar BSH, Chuttani K, Thirumal M, Mishra AK. Metal Based Imaging Probes of DO3A-Act-Met for LAT1 Mediated Methionine Specific Tumors : Synthesis and Preclinical Evaluation. Pharm Res 2014; 32:955-67. [DOI: 10.1007/s11095-014-1509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
9
|
Chiotellis A, Müller A, Weyermann K, Leutwiler DS, Schibli R, Ametamey SM, Krämer SD, Mu L. Synthesis and preliminary biological evaluation of O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET) as a potential cationic amino acid PET tracer for tumor imaging. Amino Acids 2014; 46:1947-59. [DOI: 10.1007/s00726-014-1754-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
|
10
|
Long-term osmotic regulation of amino acid transport systems in mammalian cells. Amino Acids 2013; 11:135-51. [PMID: 24178684 DOI: 10.1007/bf00813857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1995] [Accepted: 01/10/1996] [Indexed: 01/05/2023]
Abstract
Mammalian cells accumulate organic osmolytes, either to adapt to permanent osmotic changes or to mediate cell volume increase in cell cycle progression. Amino acids may serve as osmolytes in a great variety of cells. System A, a transport system for neutral amino acids, is induced after hypertonic shock by a mechanism which requires protein synthesis and gene transcription. Indirect evidence supports the view that system A activity increases due to the interaction of pre-existing A carriers with putative activating proteins. The intracellular accumulation of most neutral amino acids after hypertonic shock depends, exclusively, on the increase in system A activity. Long-term activation of system A is dependent on the integrity of cytoskeletal structures, but in a different way depending on whether cells are polarized or not.
Collapse
|
11
|
Rivera-Correa M, Altieri PI, Escobales N. Parallel regulation of arginine transport and nitric oxide synthesis by angiotensin II in vascular smooth muscle cells role of protein kinase C. Amino Acids 2013; 11:153-70. [PMID: 24178685 DOI: 10.1007/bf00813858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1996] [Accepted: 03/01/1996] [Indexed: 11/27/2022]
Abstract
Experiments were performed to characterize arginine transport in vascular smooth muscle cells (SMCs) and the effect of angiotensin II (Ang II) on this process. In addition, the role of arginine transport in the cytokineinduced nitric oxide (NO) production was assessed. Arginine transport takes place through Na(+)-independent (≈60%) and Na(+)-dependent pathways (≈40%). The Na(+)-independent arginine uptake appears to be mediated by system y(+) because of its sensitivity to cationic amino acids such as lysine, ornithine and homoarginine. The transport system was relatively insensitive to acidification of the extracellular medium. By contrast, the Na(+)-dependent pathway is consistent with system B(0,+) since it was inhibited by both cationic and neutral amino acids (i.e., glutamine, phenylalanine, and asparagine), and did not accept Li(+) as a Na(+) replacement. Treatment of SMCs with 100nM Ang II significantly inhibited the Na(+)-dependent arginine transport without affecting systems y(+), A, and L. This effect occurred in a dose-dependent manner (IC50 of 8.9 ± 0.9nM) and is mediated by the AT-1 receptor subtype because it was blocked by DUP 753, a non-peptide antagonist of this receptor. The inhibition of system B(0,+) by Ang II is mediated by protein kinase C (PKC) because it was mimicked by phorbol esters (phorbol 12-myristate 13-acetate) and was inhibited by staurosporine. Ang II also inhibited the IL-1β induced nitrite accumulation by SMCs. This action was also inhibited by staurosporine and reproduced with phorbol esters, suggesting a coupling between arginine uptake and NO synthesis through a PKC-dependent mechanism. However, arginine supplementation in the medium (10mM) failed to prevent the inhibitory action of Ang II on NO synthesis. These findings suggest that although Ang II inhibits concomitantly arginine transport and NO synthesis in SMCs, the reduction of NO synthesis is not associated with alterations in the cellular transport of arginine.
Collapse
Affiliation(s)
- M Rivera-Correa
- Department of Physiology, University of Puerto Rico-School of Medicine, GPO Box 365067, 00936-5067, San Juan, PR, USA
| | | | | |
Collapse
|
12
|
L-Leucine and L-isoleucine enhance growth of BBN-induced urothelial tumors in the rat bladder by modulating expression of amino acid transporters and tumorigenesis-associated genes. Food Chem Toxicol 2013; 59:137-44. [PMID: 23747718 DOI: 10.1016/j.fct.2013.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/09/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
We investigated the underlying mechanisms of L-leucine and L-isoleucine mediated promotion of bladder carcinogenesis using an initiation-promotion model. Rats were administered N-butyl-N-(4-hydroxybutyl) nitrosamine for 4 weeks and then fed AIN-93G basal diet or diet supplemented with L-leucine or L-isoleucine for 8 weeks followed by the basal diet for another 8 weeks. At the end of the experiment, week 20, there was a significant elevation of papillary and nodular (PN) hyperplasia multiplicity in the amino acid groups. L-Leucine and L-isoleucine transporters were up-regulated in PN hyperplasias and/or bladder tumors compared with concomitant normal-appearing bladder urothelium at weeks 12 and/or 20 in all groups. In addition, in normal-appearing bladder urothelium, significantly increased mRNA levels of y+LAT1, LAT2, LAT4, and 4F2hc were observed in the amino acid groups compared with the BBN control group at both weeks 12 and 20, and increased mRNA levels of LAT1 were observed at week 20. Furthermore, up-regulation of TNF-α, c-fos, β-catenin, p53, p21(Cip1/WAF1), cdk4, cyclin D1 and caspase 3 in the amino acid groups was detected in normal-appearing bladder urothelium. Overall, our results indicate that supplementation with l-leucine or l-isoleucine enhanced growth of bladder urothelial tumors by triggering expression of amino acid transporters and tumorigenesis-associated genes.
Collapse
|
13
|
McConathy J, Martarello L, Goodman MM. Introduction of 18F at neopentyl positions via cyclic sulfamidates: Synthesis of 18F-labeled α, α-dialkyl amino acids as potential tumor imaging agents. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.25804401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
He YF, Nan ML, Sun JM, Meng ZJ, Yue FG, Zhao QC, Yang XH, Wang H. Synthesis, characterization and cytotoxicity of new rotundic acid derivatives. Molecules 2012; 17:1278-91. [PMID: 22293846 PMCID: PMC6268532 DOI: 10.3390/molecules17021278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022] Open
Abstract
Rotundic acid (RA, 1), a natural compound, exhibits potent tumor cell growth inhibiting properties. To date there are no reports on derivatives of RA. Furthermore, the 28-COOH position of RA might make it unstable and induced serious gastrointestinal side effects when it was applied in vivo. Therefore, in order to explore and make use of this compound, eight new amino acid derivatives of RA at the 28-COOH position were synthesized and evaluated for their cytotoxicities in vitro on three tumor cell lines including A375, HepG2 and NCI-H446. As a result, a few of these new amino acid derivatives showed stronger cytotoxicity. Compound 5a was found to have the best inhibition activity on the three tested human tumor cell lines with IC50 values of less than 10 μM compared with RA treatment. Meanwhile, the cytotoxicity of compound 6b was significantly higher than that of RA on the A375 cell line and almost the same as RA on the HepG2 and NCI-H446 cell lines. Hence, compounds 5a and 6b may serve as potential lead compounds for the development of new anti-tumor drugs.
Collapse
Affiliation(s)
- Yu-Fang He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Y.-F.H.); (F.-G.Y.)
- Jilin Academy of Chinese Medicine Sciences, Changchun 130012, China; (M.-L.N.); (Q.-C.Z.)
| | - Min-Lun Nan
- Jilin Academy of Chinese Medicine Sciences, Changchun 130012, China; (M.-L.N.); (Q.-C.Z.)
| | - Jia-Ming Sun
- Development Center of Traditional Chinese Medicine and Bioengineering, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Zhao-Jie Meng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China;
| | - Fa-Gui Yue
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Y.-F.H.); (F.-G.Y.)
| | - Quan-Cheng Zhao
- Jilin Academy of Chinese Medicine Sciences, Changchun 130012, China; (M.-L.N.); (Q.-C.Z.)
| | - Xiao-Hong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Y.-F.H.); (F.-G.Y.)
- Authors to whom correspondence should be addressed; (X.-H.Y.); (H.W.); Tel.: +86-431-8605-8683 (X.-H.Y.); Fax: +86-431-8605-8672 (X.-H.Y.)
| | - Hui Wang
- China-Japan Union Hospital, Jilin University, Changchun 130033, China
- Authors to whom correspondence should be addressed; (X.-H.Y.); (H.W.); Tel.: +86-431-8605-8683 (X.-H.Y.); Fax: +86-431-8605-8672 (X.-H.Y.)
| |
Collapse
|
15
|
McConathy J, Yu W, Jarkas N, Seo W, Schuster DM, Goodman MM. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 2011; 32:868-905. [DOI: 10.1002/med.20250] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology; Washington University School of Medicine; St. Louis Missouri
| | - Weiping Yu
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Nachwa Jarkas
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - David M. Schuster
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| |
Collapse
|
16
|
Boron neutron capture in prostate cancer cells. Appl Radiat Isot 2011; 70:6-12. [PMID: 21784649 DOI: 10.1016/j.apradiso.2011.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/21/2011] [Accepted: 07/04/2011] [Indexed: 11/20/2022]
Abstract
A modified enhanced thermal neutron beam (METNB) assembly at Fermilab was used to irradiate borylphenylalanine (BPA) treated human prostate cancer cells, DU 145. Acceptable cellular uptake levels of BPA and no BPA cytotoxicity were observed. In the absence of BPA, the relative biological effectiveness (RBE) of the METNB was determined to be 2.3-4.8 times greater than gamma rays. An additional 1.2 or 1.4 fold relative enhancement from boron neutron capture (RE(BNC)) was observed for METNB irradiated DU 145 cells treated with 4.9 or 12mM BPA, respectively. The additional cell killing of the BPA loaded DU 145 cells by the METNB at Fermilab is evidence for a BNC enhanced cell killing.
Collapse
|
17
|
Rodríguez A, Berumen LC, Francisco Z, Giménez C, García-Alcocer MG. Expression of the SNAT2 amino acid transporter during the development of rat cerebral cortex. Int J Dev Neurosci 2011; 29:743-8. [PMID: 21718781 DOI: 10.1016/j.ijdevneu.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022] Open
Abstract
The sodium-coupled neutral amino acid transporter 2 (SNAT2) is a protein that is expressed ubiquitously in mammalian tissues and that displays Na(+), voltage and pH dependent activity. This transporter mediates the passage of small zwitterionic amino acids across the cell membrane and regulates the cell homeostasis and its volume. We have examined the expression of SNAT2 mRNA and protein during the development of the rat cerebral cortex, from gestation through the postnatal stages to adulthood. Our data reveal that SNAT2 mRNA and protein expression is higher during embryogenesis, while it subsequently diminishes during postnatal development. Moreover, during embryonic period SNAT2 colocalizes with the radial glial cells marker GLAST, while in postnatal period it is mainly detected in neuronal dendrites. These findings suggest a relevant role for amino acid transport through SNAT2 in the developing embryonic brain.
Collapse
|
18
|
Haberkorn U, Markert A, Mier W, Askoxylakis V, Altmann A. Molecular imaging of tumor metabolism and apoptosis. Oncogene 2011; 30:4141-51. [DOI: 10.1038/onc.2011.169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K. Putative Transport Mechanism and Intracellular Fate of Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human Prostate Cancer. J Nucl Med 2011; 52:822-9. [DOI: 10.2967/jnumed.110.086074] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Wang L, Qu W, Lieberman BP, Plössl K, Kung HF. Synthesis, uptake mechanism characterization and biological evaluation of (18)F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents. Nucl Med Biol 2011; 38:53-62. [PMID: 21220129 DOI: 10.1016/j.nucmedbio.2010.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Amino acids based tracers represent a promising class of tumor metabolic imaging agents with successful clinical applications. Two new phenylalanine derivatives, p-(2-[(18)F]fluoroethyl)-L-phenylalanine (FEP, [(18)F]2) and p-(3-[(18)F]fluoropropyl)-L-phenylalanine (FPP, [(18)F]3) were synthesized and evaluated in comparison to clinically utilized O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET, [(18)F]1). METHODS FEP ([(18)F]2) and FPP ([(18)F]3) were successfully synthesized by a rapid and efficient two-step nucleophilic fluorination of tosylate precursors and deprotection reaction. In vitro cell uptake studies were carried out in 9L glioma cells. In vivo studies, 9L tumor xenografts were implanted in Fisher 344 rats. RESULTS FEP ([(18)F]2) and FPP ([(18)F]3) could be efficiently labeled within 90 min with good enantiomeric purity (>95%), good yield (11-37%) and high specific activity (21-69 GBq/μmol). Cell uptake studies showed FEP had higher uptake than FPP as well as reference ligand FET ([(18)F]1). Uptake mechanism studies suggested that FEP is a selective substrate for system L and prefers its subtype LAT1. In vivo biodistribution studies demonstrated FEP had specific accumulation in tumor cells and tumor to background ratio reached 1.45 at 60 min. Small animal positron emission tomography (PET) imaging studies showed FEP was comparable to FET for imaging rats bearing 9L tumor model. FEP had high uptake in 9L tumor compared to surrounding tissue and was quickly excreted through urinary tract. CONCLUSION Biological evaluations indicate that FEP ([(18)F]2) is a potential useful tracer for tumor imaging with PET.
Collapse
Affiliation(s)
- Limin Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Wang L, Lieberman BP, Plössl K, Qu W, Kung HF. Synthesis and comparative biological evaluation of l- and d-isomers of 18F-labeled fluoroalkyl phenylalanine derivatives as tumor imaging agents. Nucl Med Biol 2011; 38:301-12. [DOI: 10.1016/j.nucmedbio.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|
22
|
Yu W, Williams L, Camp VM, Olson JJ, Goodman MM. Synthesis and biological evaluation of anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid (anti-2-[18F]FACBC) in rat 9L gliosarcoma. Bioorg Med Chem Lett 2010; 20:2140-3. [DOI: 10.1016/j.bmcl.2010.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
23
|
Yu W, McConathy J, Williams L, Camp VM, Malveaux EJ, Zhang Z, Olson JJ, Goodman MM. Synthesis, radiolabeling, and biological evaluation of (R)- and (S)-2-amino-3-[(18)F]fluoro-2-methylpropanoic acid (FAMP) and (R)- and (S)-3-[(18)F]fluoro-2-methyl-2-N-(methylamino)propanoic acid (NMeFAMP) as potential PET radioligands for imaging brain tumors. J Med Chem 2010; 53:876-86. [PMID: 20028004 DOI: 10.1021/jm900556s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-natural amino acids (R)- and (S)-2-amino-3-fluoro-2-methylpropanoic acid 5 and (R)- and (S)-3-fluoro-2-methyl-2-N-(methylamino)propanoic acid 8 were synthesized in shorter reaction sequences than in the original report starting from enantiomerically pure (S)- and (R)-alpha-methyl-serine, respectively. The reaction sequence provided the cyclic sulfamidate precursors for radiosynthesis of (R)- and (S)-[(18)F]5 and (R)- and (S)-[(18)F]8 in fewer steps than in the original report. (R)- and (S)-[(18)F]5 and(R)- and (S)-[(18)F]8 were synthesized by no-carrier-added nucleophilic [(18)F]fluorination in 52-66% decay-corrected yields with radiochemical purity over 99%. The cell assays showed that all four compounds were substrates for amino acid transport and enter 9L rat gliosarcoma cells in vitro at least in part by system A amino acid transport. The biodistribution studies demonstrated that in vivo tumor to normal brain ratios for all compounds were high with ratios of 20:1 to115:1 in rats with intracranial 9L tumors. The (R)-enantiomers of [(18)F]5 and [(18)F]8 demonstrated higher tumor uptake in vivo compared to the (S)-enantiomers.
Collapse
Affiliation(s)
- Weiping Yu
- Department of Radiology, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol 2010; 73:461-9. [PMID: 20181453 DOI: 10.1016/j.ejrad.2009.12.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
Abstract
The presented review provides general background on PET radiopharmaceuticals for oncological applications. Special emphasis is put on radiopharmacological, radiochemical and regulatory aspects. This review is not meant to give details on all different PET tracers in depth but to provide insights into the general principles coming along with their preparation and use. The PET tracer plays a pivotal role because it provides the basis both for image quality and clinical interpretation. It is composed of the radionuclide (signaller) and the molecular vehicle which determines the (bio-)chemical properties (e.g. binding characteristics, metabolism, elimination rate).
Collapse
Affiliation(s)
- W Wadsak
- Department of Nuclear Medicine, Medical University of Vienna, Austria
| | | |
Collapse
|
25
|
Yu W, Williams L, Camp VM, Malveaux E, Olson JJ, Goodman MM. Stereoselective synthesis and biological evaluation of syn-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid as a potential positron emission tomography brain tumor imaging agent. Bioorg Med Chem 2009; 17:1982-90. [PMID: 19216081 DOI: 10.1016/j.bmc.2009.01.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [(18)F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [(18)F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 x 10(5) cells. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratio of 12:1 at 30 min post injection. In this model, amino acid syn-[(18)F]FACBC 12 is a promising metabolically based radiotracer for positron emission tomography brain tumor imaging.
Collapse
Affiliation(s)
- Weiping Yu
- Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
26
|
McConathy J, Goodman MM. Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 2008; 27:555-73. [PMID: 18648909 DOI: 10.1007/s10555-008-9154-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amino acids are required nutrients for proliferating tumor cells, and amino acid transport is upregulated in many tumor types. Studies of radiolabeled amino acids in animals and humans demonstrate that amino acid based tracers have advantageous characteristics relative to 2-[(18)F]fluoro-2-deoxyglucose in certain tumors, particularly brain gliomas. Non-natural amino acids for tumor imaging generally have greater metabolic stability and can be labeled with longer-lived radionuclides for positron emission tomography and single photon emission computed tomography such as fluorine-18 and iodine-123. Amino acids enter cells via amino acid transport with varying selectivity based on their chemical structure. This review focuses on the rationale, biological basis, current status and future prospects of radiolabeled non-natural amino acids for tumor imaging and discusses various classes of these compounds including aromatic, alicyclic and alpha,alpha-dialkyl amino acids.
Collapse
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
27
|
cis-4-[(18)F]-Fluoro-l-proline fails to detect peripheral tumors in humans. Nucl Med Biol 2008; 35:895-900. [PMID: 19026951 DOI: 10.1016/j.nucmedbio.2008.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/11/2008] [Accepted: 08/26/2008] [Indexed: 11/21/2022]
Abstract
UNLABELLED System A amino acid transport is increased in transformed and malignant cells. The amino acid 4-cis[(18)F]fluoro-l-proline (cis-[(18)F]FPro) has been shown to be a substrate of the System A amino acid carrier. In this pilot study, we investigated the diagnostic potential of cis-[(18)F]FPro in patients with various tumors in comparison with [(18)F]fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS Eight patients (seven females, one male, age range 43-77 years) with large primary, recurrent or metastatic tumors of different histologies were included in this study. One patient had a recurrent non-Hodgkin lymphoma; two patients, metastatic colon or rectal cancer; one, a metastatic endometrial cancer; one, a multiple myeloma; one, an Ewing sarcoma; one, a metastatic breast cancer and one, a gastrointestinal stromal tumor. PET scans of the trunk were acquired at 1 h after intravenous injection of 400 MBq cis-[(18)F]FPro and compared to PET scans with [(18)F]FDG. RESULTS None of the tumors or metastatic lesions in this series of patients demonstrated relevant uptake of cis-[(18)F]FPro. In contrast, all tumors with exception of the multiple myeloma showed an intensive uptake of [(18)F]FDG. The mean standardized uptake value of cis-[(18)F]FPro in the tumor or metastases was significantly lower than that of [(18)F]FDG uptake (1.7+/-0.6 vs. 5.7+/-3.0; n=8; P<.01). CONCLUSION Although other System A-specific tracers have shown relevant tumor uptake, cis-[(18)F]FPro fails to detect most types of human tumors. Based on these results, we cannot recommend a further evaluation of this tracer as a tumor-seeking agent.
Collapse
|
28
|
Comparison of 11C-methionine PET and 18F-fluorodeoxyglucose PET in differentiated thyroid cancer. Nucl Med Commun 2008; 29:711-6. [PMID: 18753824 DOI: 10.1097/mnm.0b013e328301835c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this prospective study is to evaluate the possibility of 11C-methionine (Met) PET compared with 18F-fluorodeoxyglucose (FDG) PET for the detection of recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). MATERIALS AND METHODS Twenty patients with clinical suspicion of recurrent DTC but negative posttreatment 131I-whole body scans were included in the study. Both 11C-Met PET and 18F-FDG PET were performed within 1 week. PET images were analyzed by two independent and blinded physicians using visual and standardized uptake value analysis. PET results were also correlated with radiologic and/or cytological investigations. RESULTS Thirteen patients showed concordant findings on both PET scans: six patients showed uptake and in seven no uptake was observed. In six of the seven patients without Met and FDG uptake, additional MRI and ultrasound-guided fine needle aspiration cytology of the lymph nodes revealed inconclusive or negative results. Six patients showed discordant findings on the PET scans: in three patients uptake was only observed on the Met PET, confirmed by MRI in one. In three patients lesions were seen on the FDG PET, confirmed by computed tomography or ultrasound-guided fine needle aspiration cytology. However, those lesions were not compatible with the lesions seen on the Met PET. In general, FDG uptake appeared to be higher than Met uptake, but was not significant (P=0.075). CONCLUSION This study shows that imaging using radiolabeled amino acids is feasible in DTC. For now, 11C-Met PET has not proven to be superior to 18F-FDG PET in the detection of recurrent disease in DTC. Complementary uptake of Met and FDG has, however, been observed, which has to be further clarified and long-term follow-up is needed to define the true clinical value of the 11C-Met PET, and possible other amino acids tracers.
Collapse
|
29
|
Gjymishka A, Palii SS, Shan J, Kilberg MS. Despite increased ATF4 binding at the C/EBP-ATF composite site following activation of the unfolded protein response, system A transporter 2 (SNAT2) transcription activity is repressed in HepG2 cells. J Biol Chem 2008; 283:27736-27747. [PMID: 18697751 PMCID: PMC2562058 DOI: 10.1074/jbc.m803781200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Indexed: 12/20/2022] Open
Abstract
The activated amino acid response (AAR) and unfolded protein response (UPR) stress signaling pathways converge at the phosphorylation of translation initiation factor eIF2alpha. This eIF2alpha modification suppresses global protein synthesis but enhances translation of selected mRNAs such as that for activating transcription factor 4 (ATF4). An ATF4 target gene, SNAT2 (system A sodium-dependent neutral amino acid transporter 2), contains a C/EBP-ATF site that binds ATF4 and triggers increased transcription during the AAR. However, the present studies show that despite increased ATF4 binding to the SNAT2 gene during UPR activation in HepG2 human hepatoma cells, transcription activity was not enhanced. Hyperacetylation of histone H3 and recruitment of the general transcription factors at the HepG2 SNAT2 promoter occurred in response to the AAR but not the UPR. In contrast, the UPR did enhance transcription from a plasmid-based reporter gene driven by a SNAT2 genomic fragment containing the C/EBP-ATF site. Simultaneous activation of the AAR and the UPR pathways revealed that the UPR actually suppressed the increased SNAT2 transcription by the AAR pathway, demonstrating that the UPR pathway generates a repressive signal that acts downstream of ATF4 binding.
Collapse
Affiliation(s)
- Altin Gjymishka
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Stela S Palii
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, Florida 32610.
| |
Collapse
|
30
|
Vallabhajosula S. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2008; 37:400-19. [PMID: 17920348 DOI: 10.1053/j.semnuclmed.2007.08.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.
Collapse
Affiliation(s)
- Shankar Vallabhajosula
- Division of Nuclear Medicine, Department of Radiology,New York Presbyterian Hospital, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
31
|
Samnick S, Menges M. Pancreatic Cancer. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Yu W, McConathy J, Olson J, Camp VM, Goodman MM. Facile Stereospecific Synthesis and Biological Evaluation of (S)- and (R)-2-Amino-2-methyl-4-[123I]iodo-3-(E)-butenoic Acid for Brain Tumor Imaging with Single Photon Emission Computerized Tomography. J Med Chem 2007; 50:6718-21. [DOI: 10.1021/jm070476u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiping Yu
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, Georgia 30322
| | - Jonathan McConathy
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, Georgia 30322
| | - Jeffrey Olson
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, Georgia 30322
| | - Vernon M. Camp
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, Georgia 30322
| | - Mark M. Goodman
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
33
|
Karacalioglu AO, Yang DJ, Azhdarinia A, Mendez R, Oh C, Kohanim S, Chanda M, Greenwell AC, Yu DF, Kim EE. Radiolabeled L-lysine for tumor imaging. Acad Radiol 2006; 13:1327-37. [PMID: 17070450 DOI: 10.1016/j.acra.2006.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/07/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE AND OBJECTIVES The aims of this study were to label the versatile amino acid l-lysine with (99m)Tc using 2,3-dimercapto-succinic acid (DMSA) as a chelator, and to assess its tumor imaging feasibility under in vivo and in vitro conditions, and finally to determine the subcellular biodistribution of this radiopharmaceutical. MATERIALS AND METHODS DMSA-l-lysine was chemically synthesized and labeled with sodium pertechnetate. Nuclear magnetic resonance (NMR) and mass spectral analysis of DMSA-l-lysine were conducted. Radiochemical purity was determined by thin-layer chromatography (TLC) and paper chromatography. Cellular uptake, competition and subcellular localization studies were performed in rat breast cancer cells (13762). In vivo studies of planar imaging and biodistribution studies were performed on female Fischer 344 rats. Medical Internal Radiation Dose (MIRD) dosimetry estimates were calculated. RESULTS Radiochemical purity (determined by radio-TLC and high-performance liquid chromatography) of these compounds was >95%. (99m)Tc-DMSA-l-lysine showed good uptake in in vitro cell culture assays and uptake was reduced in competition studies. (99m)Tc-DMSA-l-lysine accumulates in the nucleus as much as in the cytoplasm and it was also shown that accumulation of the (99m)Tc-DMSA-l-lysine in the nucleus increases as a function of a time. There was an increase in tumor-to-blood and tumor-to-muscle count density ratios. Tumor/background ratios were 5.75 at 1 hour and 6.87 at 2 hours. In vivo tissue distribution studies revealed that radiation dosimetry of blood-forming organs were within radiation dose limits. CONCLUSION DMSA-l-lysine kits can be labeled with (99m)Tc easily and efficiently, with high radiochemical purity and cost-effectiveness. In vitro cellular uptake and scintigraphic imaging studies demonstrated the pharmacokinetic distribution and feasibility of using (99m)Tc-DMSA-l-lysine for tumor imaging.
Collapse
Affiliation(s)
- Alper O Karacalioglu
- Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 57, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oberdorfer F, Zobeley A, Weber K, Prenant C, Haberkorn U, Maier-Borst W. Preparation of α-[3-11C]aminoisobutyric acid from an azadisilolidine derivative of alanine. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580330412] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Prenant C, Theobald A, Siegel T, Joachim J, Weber K, Haberkorn U, Oberdorfer F. Carbon-11 labelled analogs of alanine by the strecker synthesis. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580360609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 2006; 281:17929-40. [PMID: 16621798 DOI: 10.1074/jbc.m600341200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume. Both a starvation-dependent and a hypertonic increase of system A transport activity are due to the induction of SNAT2, the ubiquitous member of SLC38 family. The molecular mechanisms underlying SNAT2 induction were investigated in tissue culture cells. We show that the increase in system A transport activity and SNAT2 mRNA levels upon amino acid starvation were blunted in cells with a mutant eIF2alpha that cannot be phosphorylated. In contrast, the induction of system A activity and SNAT2 mRNA levels by hypertonic stress were independent of eIF2alpha phosphorylation. The translational control of the SNAT2 mRNA during amino acid starvation was also investigated. It is shown that the 5'-untranslated region contains an internal ribosome entry site that is constitutively active in amino acid-fed and -deficient cells and in a cell-free system. We also show that amino acid starvation caused a 2.5-fold increase in mRNA and protein expression from a reporter construct containing both the SNAT2 intronic amino acid response element and the SNAT2-untranslated region. We conclude that the adaptive response of system A activity to amino acid starvation requires eukaryotic initiation factor 2alpha phosphorylation, increased gene transcription, and internal ribosome entry site-mediated translation. In contrast, the response to hypertonic stress does not involve eukaryotic initiation factor 2alpha phosphorylation, suggesting that SNAT2 expression can be modulated by specific signaling pathways in response to different stresses.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Departments of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stöber B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 2006; 33:932-9. [PMID: 16604346 DOI: 10.1007/s00259-005-0047-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 11/22/2005] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous studies suggest that radiolabelled amino acids could be superior to FDG in differentiating tumour and inflammation. Therefore the aim of this study was to investigate the uptake of FET and MET in human tumour and inflammatory cells and to investigate their uptake kinetics. METHODS For uptake studies, cells were incubated with 370 kBq FET or 3.7 kBq MET for 15 min. Kinetic studies were performed at variable concentrations of FET and MET. Competitive inhibition studies were done with BCH, MeAIB and L: -serine. RESULTS All inflammatory cells incorporated more MET than the tumour cells. The uptake of FET, in contrast, was significantly lower in all inflammatory cells than in the tumour cells. In tumour cells the uptake of MET was about five times the uptake of FET. The competitive inhibitors reduced uptake of both tracers to 20-40% in tumour cells and to 70% in inflammatory cells. Kinetic studies showed that MET and FET transport was saturable in all cells except macrophages and followed a Michaelis-Menten kinetic. Highest capacity (V (max)) and affinity (K (m)) for the uptake of MET was observed in granulocytes. Capacity and affinity for FET uptake were highest in the DHL-4 cells. CONCLUSION In contrast to MET, FET accumulated to a significantly greater extent in tumour cells than in inflammatory cells. The marked differences between tumour and inflammatory cells concerning FET and MET uptake suggest that FET and MET are substrates of different subtypes of the L system.
Collapse
Affiliation(s)
- Barbara Stöber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Langen KJ, Jarosch M, Hamacher K, Mühlensiepen H, Weber F, Floeth F, Pauleit D, Herzog H, Coenen HH. Imaging of gliomas with Cis-4-[18F]fluoro-L-proline. Nucl Med Biol 2004; 31:67-75. [PMID: 14741571 DOI: 10.1016/s0969-8051(03)00121-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor imaging with cis-4-[18F]fluoro-L-proline (cis-FPro) was compared to that of L-[3H]proline and L-[3H]methionine in F98 rat gliomas by dual-tracer autoradiography. All tracers exhibited high accumulation in the tumors but in the normal brain significant uptake was observed for L-[3H]methionine only. Tumor extent on autoradiograms with L-[3H]proline and L-[3H]methionine was identical to that of histological staining while autoradiograms of cis-FPro showed diffuse uptake in the penumbra of some tumors. First PET studies in 7 patients with cerebral gliomas demonstrated accumulation of cis-FPro in tumor areas with enhancement of Gd-DTPA on MR scans. Uptake of cis-FPro in normal brain tissue was negligible. In one patient with a glioblastoma accumulation of cis-FPro was also found in two brain areas without enhancement of Gd-DTPA on MR scans. Control of MRI suggested tumor growth in these areas at further follow up. Our results indicate that in most gliomas increased cis-FPro uptake is restricted to areas with disruption of the BBB which limits its clinical utility.
Collapse
Affiliation(s)
- Karl J Langen
- Institute of Medicine, Research Centre Jülich, Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2004; 447:784-95. [PMID: 12845534 DOI: 10.1007/s00424-003-1117-9] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 05/16/2003] [Accepted: 05/16/2003] [Indexed: 01/04/2023]
Abstract
The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.
Collapse
Affiliation(s)
- Bryan Mackenzie
- Membrane Biology Program and Renal Division, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Samnick S, Romeike BFM, Kubuschok B, Hellwig D, Amon M, Feiden W, Menger MD, Kirsch CM. p-[123I]iodo-L-phenylalanine for detection of pancreatic cancer: basic investigations of the uptake characteristics in primary human pancreatic tumour cells and evaluation in in vivo models of human pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 2004; 31:532-41. [PMID: 14722685 DOI: 10.1007/s00259-003-1445-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Accepted: 12/09/2003] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is associated with the worst 5-year survival rate of any human cancer. This high mortality is due, in part, to difficulties in establishing early and accurate diagnosis. Because most tumours share the ability to accumulate amino acids more effectively than normal tissues and any other pathology, assessment of amino acid transport in tumour cells using radiolabelled amino acids has become one of the most promising tools for tumour imaging. This study investigated the potential of p-[(123)I]iodo-L-phenylalanine (IPA) for detection of pancreatic cancer by single-photon emission tomography. IPA affinity for pancreatic tumour was investigated in human pancreatic adenocarcinoma PaCa44 and PanC1 cells, followed by analysis of the underlying mechanisms of tracer accumulation in neoplastic cells. Thereafter, IPA was evaluated for targeting of pancreatic tumours using SCID mice engrafted with primary human pancreatic adenocarcinoma cells, as well as in acute inflammation models in immunocompetent mice and rats. IPA accumulated intensively in human pancreatic tumour cells. Radioactivity accumulation in tumour cells following a 30-min incubation at 37 degrees C/pH 7.4 varied from 41% to 58% of the total loaded activity per 10(6) cells. The cellular uptake was temperature and pH dependent and predominantly mediated by specific carriers for neutral amino acids, namely the sodium-independent and L-leucine-preferring (L-system) transporter and the alanine-, serine- and cysteine-preferring (ASC-system) transporter. Protein incorporation was less than 8%. Biodistribution studies showed rapid localization of the tracer to tumours, reaching 10%+/-2.5% to 15%+/-3% of the injected dose per gram (I.D./g) in heterotopic tumours compared with 17%+/-3.5% to 22%+/-4.3% I.D./g in the orthotopic tumours, at 60 and 240 min post injection of IPA, respectively. In contrast, IPA uptake in the gastrointestinal tract and areas of inflammation remained moderate and decreased with time. Excellent tumour detection was obtained by gamma camera imaging. The specific and high-level targeting of IPA to tumour and the negligible uptake in the gastrointestinal tract and areas of inflammation indicate that p-[(123)I]iodo-L-phenylalanine is a promising tracer for differential diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Samuel Samnick
- Department of Nuclear Medicine, Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Palii SS, Chen H, Kilberg MS. Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element. J Biol Chem 2003; 279:3463-71. [PMID: 14623874 DOI: 10.1074/jbc.m310483200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
System A amino acid transporter (SNAT2) gene expression is up-regulated at the transcriptional level in response to amino acid deprivation. Functional analysis of genomic fragments 5' upstream of the transcription start site, for both human and mouse SNAT2 genes showed that these regions exhibit promoter activity, but were amino acid unresponsive. However, when the human and mouse constructs were extended to include intron 1, it was observed that the rate of transcription was increased following amino acid deprivation. Deletion analysis of the human gene identified an intron 1 sequence spanning 54 nucleotides that was sufficient for conferring amino acid-dependent regulation to a minimal SNAT2 promoter. Alignment of the corresponding region from the human, mouse, and rat genomes revealed three highly conserved sequences. From site-directed mutagenesis, it was concluded that one of these sites functions as an amino acid response element (AARE) to regulate transcription. The core sequence of this site is identical to the AARE in the human CHOP gene. The SNAT2 AARE, along with a nearby conserved CAAT box, has enhancer activity in that it functions in an orientation and position independent manner, and it confers regulated transcription to a heterologous promoter.
Collapse
Affiliation(s)
- Stela S Palii
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
42
|
Weiss MD, Derazi S, Rossignol C, Varoqui H, Erickson JD, Kilberg MS, Anderson KJ. Ontogeny of the neutral amino acid transporter SAT1/ATA1 in rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:151-9. [PMID: 12855186 DOI: 10.1016/s0165-3806(03)00107-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The glutamine-glutamate/GABA cycle is critical for the developing brain as glutamatergic neurotransmission is important for neuronal survival and drives synaptogenesis and activity-dependent synaptic plasticity. GABAergic transmission may be essential for the formation of neural circuits. Recently a cDNA encoding a brain-enriched System A transporter (SAT1/ATA1), has been identified which may provide glutamine to neurons for the biosynthesis of neurotransmitters glutamate and gamma-aminobutyric acid (GABA). In this study, we have examined the developmental expression pattern of SAT1/ATA1 protein in rat brain by immunohistochemistry. We find that SAT1/ATA1 was present in the developing rat brain at all gestational ages examined including prenatal days 17 and 19 and postnatal days 2, 10, 14, and adult. SAT1/ATA1 immunoreactivity was seen in the neocortex, hippocampus, and neuroepithelium at the earliest time point examined, prenatal day 17. SAT1/ATA1 was prominent in the striatum, the hippocampus and the cortex in the postnatal animals. In adults, SAT1/ATA1 was limited to the cell body region while in developing animals SAT1/ATA1 protein was found in neuronal processes. These results contribute to our understanding of the relationship between the cycling of glutamate and glutamine between astrocytes and glia and the pathophysiological conditions that occur in hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Michael D Weiss
- Department of Pediatrics, PO Box 100296, University of Florida, Gainesville, FL 32610-0296, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
McConathy J, Martarello L, Malveaux EJ, Camp VM, Simpson NE, Simpson CP, Bowers GD, Zhang Z, Olson JJ, Goodman MM. Synthesis and evaluation of 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB): relationship of amino acid transport to tumor imaging properties of branched fluorinated amino acids. Nucl Med Biol 2003; 30:477-90. [PMID: 12831985 DOI: 10.1016/s0969-8051(03)00025-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiolabeled amino acids represent a promising class of tumor imaging agents, and the determination of the optimal characteristics of these tracers remains an area of active investigation. A new (18)F-labeled branched amino acid, 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB), has been prepared in 36% decay-corrected yield using no-carrier-added [(18)F]fluoride. In vitro uptake assays with rat 9L gliosarcoma cells suggest that [(18)F]FAMB was transported primarily via the L type amino acid transport system. In vivo studies with [(18)F]FAMB demonstrated tumor to normal brain ratios of 14:1 in rats with intracranial 9L gliosarcoma tumors at 60 minutes after injection. Comparison of [(18)F]FAMB with structurally related (18)F-labeled branched amino acids demonstrated that A type transport in vitro was positively correlated with the tumor to brain ratios observed in vivo.
Collapse
|
44
|
Langen KJ, Mühlensiepen H, Schmieder S, Hamacher K, Bröer S, Börner AR, Schneeweiss FHA, Coenen HH. Transport of cis- and trans-4-[(18)F]fluoro-L-proline in F98 glioma cells. Nucl Med Biol 2002; 29:685-92. [PMID: 12234594 DOI: 10.1016/s0969-8051(02)00327-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transport mechanisms of cis-4-[(18)F]fluoro-L-proline (cis-FPro) and trans-4-[(18)F]fluoro-L-proline (trans-FPro) were studied in F98 rat glioma cells in comparison to the natural parent [(3)H]-L-proline. Uptake rates of cis-FPro and trans-FPro in F98 glioma cells were 50-70% lower than those of [(3)H]-L-proline. The amino transport system A inhibitor MeAIB reduced the uptake of [(3)H]-L-proline by 30% and uptake of cis-FPro by 46% while uptake of trans-FPro was not significantly changed. BCH inhibited the uptake of all tracers by 35-44%, serine by 70-90% and L-proline by 60 -80%. Absence of Na(+) reduced uptake of all tracers significantly but no further inhibitory effect could be observed which suggests a component of unspecific uptake. Radioactivity of cis- and trans-FPro in the acid precipitable fraction was < 1% after 120 min incubation time while [(3)H]-L-proline exhibited a 20% incorporation into protein. Whole body PET scans in humans demonstrated a retention of cis-FPro in the renal cortex, liver and the pancreas while trans-FPro was retained particularly in muscles. We conclude that system A amino acid transport appears to be selectively relevant for cis-FPro which may contribute to the observed differences in whole body distribution of cis-FPro and trans-FPro in humans.
Collapse
Affiliation(s)
- Karl-J Langen
- Institute of Medicine, Research Centre Jülich, Jülich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McConathy J, Martarello L, Malveaux EJ, Camp VM, Simpson NE, Simpson CP, Bowers GD, Olson JJ, Goodman MM. Radiolabeled amino acids for tumor imaging with PET: radiosynthesis and biological evaluation of 2-amino-3-[18F]fluoro-2-methylpropanoic acid and 3-[18F]fluoro-2-methyl-2-(methylamino)propanoic acid. J Med Chem 2002; 45:2240-9. [PMID: 12014962 DOI: 10.1021/jm010241x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel radiopharmaceuticals, including amino acids, that target neoplasms through their altered metabolic states have shown promising results in preclinical and clinical studies. Two fluorinated analogues of alpha-aminoisobutyric acid, 2-amino-3-fluoro-2-methylpropanoic acid (FAMP) and 3-fluoro-2-methyl-2-(methylamino)propanoic acid (N-MeFAMP), have been radiolabeled with fluorine-18, characterized in amino acid uptake assays, and evaluated in vivo in normal rats and a rodent tumor model. The key steps in the syntheses of both radiotracers involved the preparation of cyclic sulfamidate precursors. Radiosyntheses of both [18F]FAMP and [18F]N-MeFAMP via no-carrier-added nucleophilic substitution provided high yields (>78% decay-corrected) in high radiochemical purity (>99%). Amino acid transport assays using 9L gliosarcoma cells demonstrated that both compounds are substrates for the A type amino acid transport system, with [18F]N-MeFAMP showing higher specificity than [18F]FAMP for A type transport. Tissue distribution studies in normal Fischer rats and Fischer rats implanted intracranially with 9L gliosarcoma tumor cells were also performed. At 60 min postinjection, the tumor vs normal brain ratio of radioactivity was 36:1 in animals receiving [18F]FAMP and 104:1 in animals receiving [18F]N-MeFAMP. On the basis of these studies, both [18F]FAMP and [18F]N-MeFAMP are promising imaging agents for the detection of intracranial neoplasms via positron emission tomography.
Collapse
Affiliation(s)
- Jonathan McConathy
- Department of Radiology at Emory University Hospital, School of Medicine, 1364 Clifton Road Northeast, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Incerpi S, De Vito P, Luly P, Spagnuolo S, Leoni S. Short-term effects of thyroid hormones and 3,5-diiodothyronine on membrane transport systems in chick embryo hepatocytes. Endocrinology 2002; 143:1660-8. [PMID: 11956147 DOI: 10.1210/endo.143.5.8767] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid nongenomic effects of thyroid hormones L-T(3) and L-T(4) on two plasma membrane transport systems were investigated in 14-d-old and 19-d-old chick embryo hepatocytes. The Na(+)/H(+) exchanger activity was measured using the intracellular pH-sensitive fluorescent probe 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester, whereas the amino acid transport was estimated by [1-(14)C]-2-aminoisobutyric acid uptake. System A amino acid transport activation was linear to hormone concentration, whereas the Na/H exchanger gave a bell-shaped dose-response curve, with a maximum at the physiological hormone concentration of 1 nM. The specificity of the effect was verified by the use of inhibitors and analogues. The thyroid hormone analog 3,5-diiodo-L-thyronine was able to mimic some of the hormone effects, but with a lower efficiency. The effect on the Na(+)/H(+) exchanger was identified for 14-d-old and 19-d-old cells, whereas the amino acid transport could only be activated at the late stage of embryo development. Both transport systems were activated through a signal transduction pathway involving PKC, MAPK pathway, and PI3K, even though the differences in response behavior indicate a differential modulation of the two transport systems by L-T(3) and L-T(4). These results clearly demonstrate the existence of rapid nongenomic action of thyroid hormones also in avian cells, and show that activation of System A amino acid transport is not directly correlated to changes in intracellular pH. For the first time, evidence is presented which suggests that short-term effects of thyroid hormones may play a role during fetal development and cell differentiation.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Biology, University of Rome Roma Tre, Viale Marconi 446, 00146 Rome, Italy.
| | | | | | | | | |
Collapse
|
47
|
Freeman TL, Thiele GM, Tuma DJ, Machu TK, Mailliard ME. ATA2-mediated amino acid uptake following partial hepatectomy is regulated by redistribution to the plasma membrane. Arch Biochem Biophys 2002; 400:215-22. [PMID: 12054432 DOI: 10.1016/s0003-9861(02)00006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
System A, the Na(+)-dependent amino acid transport activity, is encoded by the ATA2 gene and up-regulated following partial hepatectomy (PH), and its competitive inhibition interferes with liver regeneration. Rabbit polyclonal antibody was raised against a portion of the ATA2 gene product followed by immunodetection of ATA2 in isolated liver plasma membrane and lysate. The level of ATA2 increased in the plasma membrane following PH, while the relatively high quantity of ATA2 found in liver lysate remained constant. We also have shown that Northern analysis of steady-state ATA2 mRNA revealed no significant change following PH. These data show that ATA2-mediated transport is not regulated by the steady-state level of ATA2 mRNA but is regulated by the amount of ATA2 and redistribution to the plasma membrane. We hypothesize that ATA2 activity is regulated by recruitment of ATA2 protein from an intracellular compartment. In addition, the pattern of expression of System A activity in oocytes, transport kinetics, and sensitivity to chemical modification indicate the presence of a second System A isoform in liver that differs substantially from ATA2.
Collapse
Affiliation(s)
- Thomas L Freeman
- Department of Internal Medicine, University of Nebraska Medical Center and Veterans Administration Medical Center, Alcohol Study Unit, Omaha, NE 68105, USA
| | | | | | | | | |
Collapse
|
48
|
Aslanian AM, Kilberg MS. Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells. Biochem J 2001; 358:59-67. [PMID: 11485552 PMCID: PMC1222032 DOI: 10.1042/0264-6021:3580059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Childhood acute lymphoblastic leukaemia is treated by combination chemotherapy with a number of drugs, almost always including the enzyme L-asparaginase (ASNase). Although the initial remission rate is quite high, relapse and associated drug resistance remain a problem. In vitro studies have demonstrated an adaptive increase in asparagine synthetase (AS) expression in ASNase-resistant cells, which is believed to permit ASNase-resistant human leukaemia cells to survive in vivo. The present results, obtained with ASNase-sensitive and -resistant human MOLT-4 leukaemia cell lines, illustrate that several other adaptive processes occur to provide sufficient amounts of the AS substrates, aspartate and glutamine, required to support this increased enzymic activity. In both cell populations, aspartate is derived almost exclusively from intracellular sources, whereas the necessary glutamine arises from both intracellular and extracellular sources. Transport of glutamine into ASNase-resistant cells is significantly enhanced compared with the parental cells, whereas amino acid efflux (e.g. asparagine) is reduced. Most of the adaptive change for the amino acid transporters, Systems A, ASC and L, is rapidly (12 h) reversed following ASNase removal. The enzymic activity of glutamine synthetase is also enhanced in ASNase-resistant cells by a post-transcriptional mechanism. The results demonstrate that there are several sites of metabolic adaptation in ASNase-treated leukaemia cells that serve to promote the replenishment of both glutamine and asparagine.
Collapse
Affiliation(s)
- A M Aslanian
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610-0245, USA
| | | |
Collapse
|
49
|
Kopka K, Riemann B, Friedrich M, Winters S, Halfter H, Weckesser M, Stögbauer F, Ringelstein EB, Schober O. Characterization of 3-[(123)I]iodo-L-alpha-methyl tyrosine transport in astrocytes of neonatal rats. J Neurochem 2001; 76:97-104. [PMID: 11145982 DOI: 10.1046/j.1471-4159.2001.00048.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3-[(123)I]Iodo-L-alpha-methyl tyrosine ((123)I-IMT) is used for diagnosis and monitoring of brain tumours by means of single-photon emission tomography. As recently shown, (123)I-IMT is predominantly mediated into rat C6 glioma cells by sodium-independent system L for large neutral amino acids. Until now, (123)I-IMT transport in non-neoplastic glial cells has not been examined. Therefore, the aim of this study was to examine the cellular pathways and precise transport kinetics of (123)I-IMT uptake into astrocytes of neonatal rats. In particular sodium-independent (123)I-IMT transport into neonatal astrocytes was compared with sodium-independent (123)I-IMT uptake into neoplastic rat C6 glioma cells. Competitive inhibition experiments showed that (123)I-IMT is exclusively transported via sodium-independent system L into the neonatal astrocytes (92%). Kinetic analysis of sodium-independent (123)I-IMT uptake into neonatal astrocytes and into C6 glioma cells revealed apparent Michaelis constants K(M) = 13.9 +/- 0.5 microM and K(M) = 33.9 +/- 4.1 microM, respectively, which are in the same range of K(M) values as those recently determined for amino acid transport into neoplastic and non-neoplastic glial cells. Indeed, the K(M) values in the micromolar range correspond to the expression of the LAT-1 subunit of system L both in the neonatal astrocytes and in C6 glioma cells. However, sodium-independent maximum transport velocities (V(max)) differed significantly between neonatal astrocytes and C6 glioma cells (11.1 +/- 0.3 and 39.9 +/- 3.3 nmol/mg protein/10 min, respectively).
Collapse
Affiliation(s)
- K Kopka
- Department of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Samnick S, Schaefer A, Siebert S, Richter S, Vollmar B, Kirsch CM. Preparation and investigation of tumor affinity, uptake kinetic and transport mechanism of iodine-123-labelled amino acid derivatives in human pancreatic carcinoma and glioblastoma cells. Nucl Med Biol 2001; 28:13-23. [PMID: 11182560 DOI: 10.1016/s0969-8051(00)00176-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing radioiodinated agents for pancreatic and brain tumor imaging by single photon emission tomography (SPET), we prepared p-amino-3-[123I]iodo-l-phenylalanine (IAPA), p-[123I]iodo-l-phenylalanine (IPA), L-8-[123I]iodo-1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (ITIC) and L-3-[123I]iodo-alpha-methyl-tyrosine (IMT) in radiochemical yields up to 95%, and we investigated their uptake in human pancreatic carcinoma and glioblastoma cells as well as the mechanisms promoting the tumor uptake. The radiopharmaceutical uptake into tumor cells was rapid (t(1/2) < or = 5 min) and temperature- and pH-dependent. The radioactivity concentration in tumor cells varied from 10 to 33% of the total activity (105-310 cpm/1000 cells) following a 30-min incubation at 37 degrees C (pH 7.4). In comparison, accumulation of the radiopharmaceuticals into normal brain and pancreatic tissue remained relatively low. Depolarizing the plasma membrane potential in high K+ buffer significantly altered the radioactivity concentration in the tumor cells, suggesting that membrane potential plays a certain role in the cellular uptake. Competitive inhibition experiments with specific amino acid transport inhibitors indicated that the uptake of IAPA, IPA and IMT into human pancreatic carcinoma and glioblastoma cells is predominantly mediated by the L and ASC transport systems, while no substantial involvement of the transport system A in their tumor uptake could be demonstrated. In contrast, results of the present investigation indicated that ITIC is not taken up into tumor cells via the common neutral amino acid carrier systems, including the A, L and ASC system. Furthermore, preloading with naturally occurring L-amino acids failed to stimulate the cellular uptake of the radiopharmaceuticals. These data indicate that the investigated radiopharmaceuticals exhibit interesting characteristics with promise for in vivo tumor investigations to ascertain their potential as radioligands for glioma and pancreatic carcinoma imaging by SPET.
Collapse
Affiliation(s)
- S Samnick
- Department of Nuclear Medicine, Institute of Clinical and Experimental Surgery, Saarland University Hospital Center, D-66421, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|