1
|
Yang B, Yang Z, Cheng L, Li Y, Zhou T, Han Y, Du H, Xu A. Effects of 10 T static magnetic field on the function of sperms and their offspring in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113671. [PMID: 35653972 DOI: 10.1016/j.ecoenv.2022.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
With the wide application of static magnetic fields (SMFs), the risk of living organisms exposed to man-made magnetic fields that the intensity is much higher than geomagnetic field has gradually increased. Reproductive system is highly sensitive to environmental stress; however, the influence of high SMFs on reproduction system is still largely unknown. Here we explored the biological responses of SMFs exposure at an intensity of 10 T on the sperms and their offspring in him-5 male mutants of Caenorhabditis elegans (C. elegans). The size of unactivated sperms was deceased by 10 T SMF exposure, instead of the morphology. Exposure to 10 T SMF significantly altered the function of sperms in him-5 worms including the activation of sperms and the non-transferred ratio of sperms. In addition, the brood size assay revealed that 10 T SMF exposure eventually diminished the reproductive capacity of him-5 male worms. The lifespan of outcrossed offspring from exposed him-5 male mutants and unexposed fog-2 female mutants was decreased by 10 T SMF in a time dependent manner. Together, our findings provide novel information regarding the adverse effects of high SMFs on the sperms of C. elegans and their offspring, which can improve our understanding of the fundamental aspects of high SMFs on biological system.
Collapse
Affiliation(s)
- Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhen Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yuyan Han
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
2
|
Cheng L, Yang B, Du H, Zhou T, Li Y, Wu J, Cao Z, Xu A. Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43102-43113. [PMID: 35092591 DOI: 10.1007/s11356-022-18898-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Man-made static magnetic fields (SMFs) widely exist in human life as a physical environmental factor. However, the biological responses to moderate SMFs exposure and their underlying mechanisms are largely unknown. The present study was focused on exploring the nervous responses to moderate-intensity SMFs at 0.5 T and 1 T in Caenorhabditis elegans (C. elegans). We found that SMFs at either 0.5 T or 1 T had no statistically significant effects on the locomotor behaviors, while the 1 T magnetic field increased pharyngeal pumping. The avoidance behavior of the pathogenic Pseudomonas aeruginosa was greatly decreased in either 0.5 T or 1 T SMFs exposed nematodes, and the learning index was reducede from 0.52 ± 0.11 to 0.23 ± 0.17 and 0.16 ± 0.11, respectively. The total serotonin level was increased by 17.08% and 16.45% with the treatment of 0.5 T and 1 T SMF, compared to the control group; however, there were minimal effects of SMFs on other three neurotransmitters including choline, γ-aminobutyric acid (GABA), dopamine. RT-qPCR was used to further investigate the expression of serotonin-related genes, including rate-limiting enzymes, transcription factors and transport receptors. The expression levels of tph-1 and unc-86 genes were increased by SMF exposure, while those of ocr-2, osm-9, ser-1 and mod-1 genes were decreased. With the staining of lipid in either wild-type N2 or tph-1 mutants, we found that 0.5 T and 1 T SMFs decreased fat storage in C. elegans via serotonin pathway. Our study demonstrated that moderate-intensity SMFs induced neurobehavioral disorder and the reduction of fat storage by disturbing the secretion of serotonin in C. elegans, which provided new insights into elucidating nervous responses of C. elegans to moderate-intensity SMFs.
Collapse
Affiliation(s)
- Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiajie Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
3
|
Sun Y, Huang X, Wang Y, Shi Z, Liao Y, Cai P. Lipidomic alteration and stress-defense mechanism of soil nematode Caenorhabditis elegans in response to extremely low-frequency electromagnetic field exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:611-619. [PMID: 30579161 DOI: 10.1016/j.ecoenv.2018.11.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/14/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
To assess the impacts of man-made extremely low-frequency electromagnetic field (ELF-EMF) on soil ecosystems, the soil nematode was applied as a biological indicator to characterize ecotoxicity of ELF-EMF. In this paper, a soil-living model organism, Caenorhabditis elegans (C. elegans) was exposed to 50 Hz, 3 mT ELF-EMF. The integrated lipidome, proteome and transcriptome analysis were applied to elucidate physiological acclimations. Lipidomic analysis showed that ELF-EMF exposure induced significant alterations of 64 lipids, including significant elevation of triacylglycerols (TGs). Proteome results implied 157 changed protein expressions under ELF-EMF exposure. By transcriptomic analysis, 456 differently expressed genes were identified. Gene Ontology (GO) function and pathway analyses showed lipidomic alteration, mitochondrial dysfunction and the stress defense responses following ELF-EMF exposure in C. elegans. Conjoint analysis of proteome and transcriptome data showed that a higher expression of genes (sip-1, mtl-1 and rpl-11.1, etc.) were involved in stress defense responses to ELF-EMF exposure. These results indicated that ELF-EMF can induce effects on soil nematodes, mainly through disturbing lipid metabolism such as increasing TGs content, and eliciting stress defense responses. This study provided a new understanding in ELF-EMF exposure effects on soil nematodes and suggested a potential way of interpreting ELF-EMF influences on soil ecosystems.
Collapse
Affiliation(s)
- Yongyan Sun
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, PR China
| | - Xiaomei Huang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, PR China
| | - Yahong Wang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, PR China
| | - Zhenhua Shi
- University of Chinese Academy of Sciences, Beijing, PR China; Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanyan Liao
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, PR China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; Xiamen Key Laboratory of Physical Environment, Xiamen, PR China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
4
|
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field. Int J Radiat Biol 2018; 94:1159-1166. [DOI: 10.1080/09553002.2019.1524943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongyan Sun
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Zhenhua Shi
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yahong Wang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Yanyan Liao
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| |
Collapse
|
5
|
Shi Z, Yu H, Sun Y, Yang C, Lian H, Cai P. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure. Sci Rep 2015; 5:8471. [PMID: 25683579 PMCID: PMC4329544 DOI: 10.1038/srep08471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.
Collapse
Affiliation(s)
- Zhenhua Shi
- 1] Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China [2] University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Hui Yu
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Yongyan Sun
- 1] Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China [2] University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Huiyong Lian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| |
Collapse
|
6
|
Fasseas MK, Fragopoulou AF, Manta AK, Skouroliakou A, Vekrellis K, Margaritis LH, Syntichaki P. Response of Caenorhabditis elegans to wireless devices radiation exposure. Int J Radiat Biol 2015; 91:286-93. [PMID: 25488006 DOI: 10.3109/09553002.2014.995384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. MATERIALS AND METHODS We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). RESULTS No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. CONCLUSIONS The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.
Collapse
Affiliation(s)
- Michael K Fasseas
- Basic Research II, Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | | | | | | | | | | | | |
Collapse
|
7
|
Njus Z, Feldmann D, Brien R, Kong T, Kalwa U, Pandey S. Characterizing the Effect of Static Magnetic Fields on <i>C. elegans</i> Using Microfluidics. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.69061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Bakhtina NA, Korvink JG. Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv 2014. [DOI: 10.1039/c3ra43758b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Magnetic and electric fields induce directional responses in Steinernema carpocapsae. Int J Parasitol 2013; 43:781-4. [DOI: 10.1016/j.ijpara.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 11/16/2022]
|
10
|
Rezai P, Salam S, Selvaganapathy PR, Gupta BP. Effect of pulse direct current signals on electrotactic movement of nematodes Caenorhabditis elegans and Caenorhabditis briggsae. BIOMICROFLUIDICS 2011; 5:44116-441169. [PMID: 22232698 PMCID: PMC3253587 DOI: 10.1063/1.3665224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/11/2011] [Indexed: 05/22/2023]
Abstract
The nematodes (worms) Caenorhabditiselegans and Caenorhabditisbriggsae are well-known model organisms to study the basis of animal development and behaviour. Their sinusoidal pattern of movement is highly stereotypic and serves as a tool to monitor defects in neurons and muscles that control movement. Until recently, a simple yet robust method to initiate movement response on-demand did not exist. We have found that the electrical stimulation in a microfluidic channel, using constant DC electric field, induces movement (termed electrotaxis) that is instantaneous, precise, sensitive, and fully penetrant. We have further characterized this behaviour and, in this paper, demonstrate that electrotaxis can also be induced using a pulse DC electric signal. Worms responded to pulse DC signals with as low as 30% duty cycle by moving towards the negative electrode at the same speed as constant DC fields (average speed of C. elegans = 296 ± 43 μm/s and C. briggsae = 356 ± 20 μm/s, for both constant and pulse DC electric fields with various frequencies). C. briggsae was found to be more sensitive to electric signals compared to C. elegans. We also investigated the turning response of worms to a change in the direction of constant and pulse DC signals. The response for constant DC signal was found to be instantaneous and similar for most worms. However, in the case of pulse DC signal, alterations in duty cycle affected the turning response time as well as the number of responding worms. Our findings show that pulse DC method allows quantitative measurement of response behaviour of worms and suggest that it could be used as a tool to study the neuronal basis of such a behaviour that is not observed under constant DC conditions.
Collapse
|
11
|
Miyakawa T, Yamada S, Harada S, Ishimori T, Yamamoto H, Hosono R. Exposure of Caenorhabditis elegans to extremely low frequency high magnetic fields induces stress responses. Bioelectromagnetics 2001; 22:333-9. [PMID: 11424156 DOI: 10.1002/bem.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Responses of the small heat shock protein gene, hsp-16, were examined in transgenic Caenorhabditis elegans exposed to electromagnetic fields. Expression of the hsp-16-lacZ gene was enhanced when transgenic animals were exposed to magnetic fields up to 0.5 T at 60 Hz. The hsp-16 promoter was more efficiently expressed at the embryonic than at the post-embryonic stage irrespective of exposure. Promoter activity was more sensitive to the stimulus in the intestine at the post-embryonic stage. Evidence is presented that the induction occurs at the transcriptional step of hsp-16.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins
- DNA Primers/genetics
- Gene Expression
- Genes, Helminth
- Heat-Shock Proteins/genetics
- Helminth Proteins/genetics
- Lac Operon
- Magnetics/adverse effects
- Promoter Regions, Genetic
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/etiology
- Stress, Physiological/genetics
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- T Miyakawa
- Laboratory of Magnetic Fields Control and Applications, Faculty of Engineering, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Harada S, Yamada S, Kuramata O, Gunji Y, Kawasaki M, Miyakawa T, Yonekura H, Sakurai S, Bessho K, Hosono R, Yamamoto H. Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free DNA mismatch repair. Bioelectromagnetics 2001; 22:260-6. [PMID: 11298387 DOI: 10.1002/bem.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental electromagnetic fields have been implicated in human cancers. We examined whether high extremely low frequency (ELF) AC magnetic fields could affect DNA synthesis, transcription or repair, using in vitro model systems with defined sequences. The rate and fidelity of DNA polymerase catalyzed DNA synthesis, as well as of RNA polymerase catalyzed RNA synthesis, were not statistically significantly affected by 60 Hz 0.25-0.5 Tesla magnetic fields. The efficiency of mutS dependent mismatch repair with human cell extracts was also not affected by the magnetic field exposure. The results suggest that the core processes related to the transmission of genetic information are stable under high ELF magnetic fields.
Collapse
Affiliation(s)
- S Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gutzeit HO. BIOLOGICAL EFFECTS OF ELF-EMF ENHANCED STRESS RESPONSE: NEW INSIGHTS AND NEW QUESTIONS. ACTA ACUST UNITED AC 2001. [DOI: 10.1081/jbc-100103157] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Biswas SN, Murata T, Ebina Y, Okada H, Miki T. A method for motion compensation of a moving nematode Caenorhabditis elegans and its application to frequency analysis of pharyngeal pulsation. J Biotechnol 1998; 61:175-89. [PMID: 9684336 DOI: 10.1016/s0168-1656(98)00031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new sequential image processing method for motion compensation of a moving object with stringy shape has been developed for estimating the pharyngeal pulsation of the nematode Caenorhabditis elegans under several environmental conditions. The method is based on the pixel data transfer on a new image frame while changing the boundary shape and the position but preserving the conformation of the inner structure of an object. All digitized image frames of C. elegans were first converted to motion-compensated images to arrange the pulsation site in the same region of the every transformed frame. The pulsation site was then automatically detected by determining the pixels where the temporal brightness variation was much larger than that of the other pixels. Finally, the pulsation frequency was determined by the Fourier analysis. The validity of our method has been confirmed by analyzing various test data, and the method has been applied for detecting the pharyngeal pulsation frequencies of C. elegans on some environmental conditions, i.e. feed bacteria-free/rich, doping of nerve inactivating ethyl-alcohol and nerve stimulant neurochemical substance of serotonin. The motion compensation method automatically provided reasonable pulsation frequencies which were found to be comparable to those obtained by manual counting. Thus the method is useful for systematic investigations on the variation of pharyngeal pulsation associated with the activity change of the nervous system in environments.
Collapse
Affiliation(s)
- S N Biswas
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Yamaguchi University, Ube, Japan
| | | | | | | | | |
Collapse
|