1
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
2
|
Sun W, Olinzock J, Wang S, Sanapala S, Curtiss R. Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague. Pathog Dis 2013; 70:119-31. [PMID: 23913628 DOI: 10.1111/2049-632x.12076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/30/2022] Open
Abstract
Yersinia pestis YadB and YadC are two new outer membrane proteins related to its pathogenicity. Here, codon-optimized yadC, yadC810 (aa 32-551), or yadBC antigen genes delivered by live attenuated Salmonella strains are evaluated in mice for induction of protective immune responses against Y. pestis CO92 through subcutaneous or intranasal challenge. Our findings indicate that mice immunized with Salmonella synthesizing YadC, YadC810, or YadBC develop significant serum IgG responses to purified recombinant YadC protein. For subcutaneous challenge (approximately 230 LD50 of Y. pestis CO92), mice immunized with Salmonella synthesizing YadC or YadC810 are afforded 50% protection, but no protection by immunization with the Salmonella strain synthesizing YadBC. None of these antigens provided protection against intranasal challenge (approximately 31 LD50 of Y. pestis CO92). In addition, subcutaneous immunization with purified YadC810 protein emulsified with alum adjuvant does not elicit a protective response against Y. pestis administered by either challenge route.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | | |
Collapse
|
3
|
Sun W, Roland KL, Curtiss R. Developing live vaccines against plague. J Infect Dev Ctries 2011; 5:614-27. [PMID: 21918302 PMCID: PMC3932668 DOI: 10.3855/jidc.2030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/13/2022] Open
Abstract
Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and United Kingdom. However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague. This vaccine has not gained general acceptance because of safety concerns. In recent years, modern molecular biological techniques have been applied to Y. pestis to construct strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines to reduce the load of Y. pestis in the environment. In addition, a number of live, vectored vaccines have been reported using attenuated viral vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against plagu.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 , USA
| | | | | |
Collapse
|
4
|
Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol 2011; 49:1708-15. [PMID: 21367990 DOI: 10.1128/jcm.00064-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.
Collapse
|
5
|
The dependence of the Yersinia pestis capsule on pathogenesis is influenced by the mouse background. Infect Immun 2010; 79:644-52. [PMID: 21115720 DOI: 10.1128/iai.00981-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is a highly pathogenic Gram-negative organism and the causative agent of bubonic and pneumonic plague. Y. pestis is capable of causing major epidemics; thus, there is a need for vaccine targets and a greater understanding of the role of these targets in pathogenesis. Two prime Y. pestis vaccine candidates are the usher-chaperone fimbriae Psa and Caf. Herein we report that Y. pestis requires, in a nonredundant manner, both PsaA and Caf1 to achieve its full pathogenic ability in both pneumonic and bubonic plague in C57BL/6J mice. Deletion of psaA leads to a decrease in the organ bacterial burden and to a significant increase in the 50% lethal dose (LD₅₀) after subcutaneous infection. Deletion of caf1 also leads to a significant decrease in the organ bacterial burden but more importantly leads to a significantly greater increase in the LD₅₀ than was observed for the ΔpsaA mutant strain after subcutaneous infection of C57BL/6J mice. Furthermore, the degree of attenuation of the Δcaf1 mutant strain is mouse background dependent, as the Δcaf1 mutant strain was attenuated to a lesser degree in BALB/cJ mice by the subcutaneous route than in C57BL/6J mice. This observation that the degree of requirement for Caf1 is dependent on the mouse background indicates that the virulence of Y. pestis is dependent on the genetic makeup of its host and provides further support for the hypothesis that PsaA and Caf1 have different targets.
Collapse
|
6
|
The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 2008; 77:1222-9. [PMID: 19103769 DOI: 10.1128/iai.00950-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plague is a zoonosis transmitted by fleas and caused by the gram-negative bacterium Yersinia pestis. During infection, the plasmidic caf1M1A1 operon that encodes the Y. pestis F1 protein capsule is highly expressed, and anti-F1 antibodies are protective. Surprisingly, the capsule is not required for virulence after injection of cultured bacteria, even though it is an antiphagocytic factor and capsule-deficient Y. pestis strains are rarely isolated. We found that a caf-negative Y. pestis mutant was not impaired in either flea colonization or virulence in mice after intradermal inoculation of cultured bacteria. In contrast, absence of the caf operon decreased bubonic plague incidence after a flea bite. Successful development of plague in mice infected by flea bite with the caf-negative mutant required a higher number of infective bites per challenge. In addition, the mutant displayed a highly autoaggregative phenotype in infected liver and spleen. The results suggest that acquisition of the caf locus via horizontal transfer by an ancestral Y. pestis strain increased transmissibility and the potential for epidemic spread. In addition, our data support a model in which atypical caf-negative strains could emerge during climatic conditions that favor a high flea burden. Human infection with such strains would not be diagnosed by the standard clinical tests that detect F1 antibody or antigen, suggesting that more comprehensive surveillance for atypical Y. pestis strains in plague foci may be necessary. The results also highlight the importance of studying Y. pestis pathogenesis in the natural context of arthropod-borne transmission.
Collapse
|
7
|
Yang X, Hinnebusch BJ, Trunkle T, Bosio CM, Suo Z, Tighe M, Harmsen A, Becker T, Crist K, Walters N, Avci R, Pascual DW. Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:1059-67. [PMID: 17202369 PMCID: PMC9809976 DOI: 10.4049/jimmunol.178.2.1059] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The gut provides a large area for immunization enabling the development of mucosal and systemic Ab responses. To test whether the protective Ags to Yersinia pestis can be orally delivered, the Y. pestis caf1 operon, encoding the F1-Ag and virulence Ag (V-Ag) were cloned into attenuated Salmonella vaccine vectors. F1-Ag expression was controlled under a promoter from the caf1 operon; two different promoters (P), PtetA in pV3, PphoP in pV4, as well as a chimera of the two in pV55 were tested. F1-Ag was amply expressed; the chimera in the pV55 showed the best V-Ag expression. Oral immunization with Salmonella-F1 elicited elevated secretory (S)-IgA and serum IgG titers, and Salmonella-V-Ag(pV55) elicited much greater S-IgA and serum IgG Ab titers than Salmonella-V-Ag(pV3) or Salmonella-V-Ag(pV4). Hence, a new Salmonella vaccine, Salmonella-(F1+V)Ags, made with a single plasmid containing the caf1 operon and the chimeric promoter for V-Ag allowed the simultaneous expression of F1 capsule and V-Ag. Salmonella-(F1+V)Ags elicited elevated Ab titers similar to their monotypic derivatives. For bubonic plague, mice dosed with Salmonella-(F1+V)Ags and Salmonella-F1-Ag showed similar efficacy (>83% survival) against approximately 1000 LD(50) Y. pestis. For pneumonic plague, immunized mice required immunity to both F1- and V-Ags because the mice vaccinated with Salmonella-(F1+V)Ags protected against 100 LD(50) Y. pestis. These results show that a single Salmonella vaccine can deliver both F1- and V-Ags to effect both systemic and mucosal immune protection against Y. pestis.
Collapse
Affiliation(s)
- Xinghong Yang
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - B. Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Theresa Trunkle
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Catharine M. Bosio
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521
| | - Zhiyong Suo
- Physics Department, Montana State University, Bozeman, MT 59717
| | - Mike Tighe
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Ann Harmsen
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Todd Becker
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Kathryn Crist
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Nancy Walters
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Recep Avci
- Physics Department, Montana State University, Bozeman, MT 59717
| | - David W. Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
- Address correspondence and reprint requests to Dr. David W. Pascual, Veterinary Molecular Biology, Montana State University, P.O. Box 173610, Bozeman, MT 59717-3610.
| |
Collapse
|
8
|
Abstract
Increased interest in the pathogenic potential of Yersinia pestis has emerged because of the potential threats from bioterrorism. Pathogenic potential is based on genetic factors present in a population of microbes, yet most studies evaluating the role of specific genes in virulence have used a limited number of strains. For Y. pestis this issue is complicated by the fact that most strains available for study in the Americas are clonally derived and thus genetically restricted, emanating from a strain of Y. pestis introduced into the United States in 1902 via marine shipping and subsequent spread of this strain throughout North and South America. In countries from the former Soviet Union (FSU), Mongolia, and China there are large areas of enzootic foci of Y. pestis infection containing genetically diverse strains that have been intensely studied by scientists in these countries. However, the results of these investigations are not generally known outside of these countries. Here we describe the variety of methods used in the FSU to classify Y. pestis strains based on genetic and phenotypic variation and show that there is a high level of diversity in these strains not reflected by ones obtained from sylvatic areas and patients in the Americas.
Collapse
Affiliation(s)
- Andrey P Anisimov
- Department of Infectious Diseases, State Research Center for Applied Microbiology, 142279 Obolensk, Serpukhov District, Moscow Region, Russia
| | | | | |
Collapse
|
9
|
Welkos SL, Andrews GP, Lindler LE, Snellings NJ, Strachan SD. Mu dI1(Ap lac) mutagenesis of Yersinia pestis plasmid pFra and identification of temperature-regulated loci associated with virulence. Plasmid 2004; 51:1-11. [PMID: 14711524 DOI: 10.1016/j.plasmid.2003.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The F1 capsule of Yersinia pestis, encoded by the 100 kb plasmid pFra, is often assumed to be essential for full virulence of Y. pestis. However, virulent strains of Y. pestis that are F1- and either pFra+ or pFra- have been reported. To assess the role of pFra-encoded factors in virulence, mutants in pFra with insertions of the defective transposing bacteriophage Mu dl(Ap lac) were obtained, by using the wild type (wt) and the pLcr-cured derivative of strain C092. Mutants that exhibited temperature regulation of lactose fermentation and retarded electrophoretic mobility of pFra were selected. A total of 15 insertion mutants were isolated in the wt strain (12 of which had a single insertion in the genome, in pFra); and 24 mutants in the isogenic pLcr- derivative. Four of the pLcr+ mutants, and none of the pLcr- mutants, were F1-. All F1- mutants were decreased in virulence for mice compared to the wt parent; and five of the F1+ mutants also were significantly attenuated in mice. Fusion end-joints of insert DNA were cloned into Escherichia coli by using pMLB524, a vector for rescuing operon fusions of lacZ. Recombinants were obtained which contained pFra inserts ranging from < 2kb to approximately 36 kb, and the insertions occurred at several sites on pFra. All of the four F1- mutants tested mapped within the F1 capsule operon (caf1). The remaining five attenuated mutants sequenced were F1+ and mapped outside of but near the operon. Sequencing and complete analysis of the pFra insertions mutants could facilitate identification of new potential virulence factors.
Collapse
Affiliation(s)
- S L Welkos
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
Collapse
Affiliation(s)
- R D Perry
- Department of Microbiology and Immunology, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|
11
|
Phillips AP, Morris BC, Hall D, Glenister M, Williams JE. Identification of encapsulated and non-encapsulated Yersinia pestis by immunofluorescence tests using polyclonal and monoclonal antibodies. Epidemiol Infect 1988; 101:59-73. [PMID: 3042439 PMCID: PMC2249332 DOI: 10.1017/s0950268800029228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rabbit polyclonal hyperimmune antibodies to Yersinia pestis, and a mouse monoclonal antibody against the capsular antigen fraction 1 (F1) were compared in immunofluorescence (IF) tests. Fluorescent antibody conjugates were prepared from polyclonal antisera to four F1 positive Y. pestis strains; the conjugated antibody to strain A1122 gave the strongest IF staining of F1 positive and F1 negative Y. pestis strains. Indirect assays were rejected in favour of direct assays utilizing polyclonal and monoclonal reagents because the increased background staining reduced the effective contrast of bacterial visualisation. Polyclonal conjugates gave fairly homogeneous staining of Y. pestis bacterial populations, but in monoclonal assays a skew distribution of fluorescence intensity was observed, the majority of bacteria being poorly stained. The proportion of cells stained well by the monoclonal sufficed for easy identification of Y. pestis of the F1 positive phenotype however, and staining was not affected by washing the bacteria or treating them with formaldehyde. Y. pestis strains of the F1 positive genotype reacted with the monoclonal if bacteria were grown at 37 degrees C but not if the growth temperature was reduced to 25 degrees C thus preventing capsule production. The polyclonal conjugate reacted with bacteria of these strains that had been grown at either temperature. Strains of F1 negative genotype grown at either temperature reacted with the polyclonal conjugate but not with the monoclonal. Cross reactions between the polyclonal reagents and Y. enterocolitica biovar 2, serovar O 8 could not be removed by selective absorption; however, the monoclonal antibody gave no cross reaction. The F1 phenotypic status of bacterial preparations was verified by ELISA measurement of the fraction 1 antigen concentration. Antigen levels for F1 positive and F1 negative phenotypes differed by about three logs for suspensions of Y. pestis harvested from solid media. The polyclonal and monoclonal direct IF tests applied to spleen and blood smears of laboratory mice infected with Y. pestis were able to differentiate between lethal infection with an F1 positive strain carrying all four classical virulence determinants, an F1 positive vaccine strain, and an F1 negative strain.
Collapse
Affiliation(s)
- A P Phillips
- Chemical Defence Establishment, Porton Down, Salisbury, Wiltshire, UK
| | | | | | | | | |
Collapse
|