1
|
Shi Y, Wang S, Guo J, Xu Z, Wang S, Sang Y. Effects of arbuscular mycorrhizal inoculation on the phytoremediation of PAH-contaminated soil: A meta-analysis. CHEMOSPHERE 2022; 307:136033. [PMID: 35981621 DOI: 10.1016/j.chemosphere.2022.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal (AM) fungi can accelerate the phytoremediation process by increasing plant biomass and improving soil physicochemical and biological characteristics. However, a quantitative, data-based conclusion is yet to be derived on the roles of AM fungi in remediating soils polluted by polycyclic aromatic hydrocarbons (PAHs), and the impact factors are unclear. To address these issues, we performed a meta-analysis of 45 articles to estimate the effects of AM inoculation on the phytoremediation of soils polluted by PAHs and to examine the influence of experimental conditions on these effects. Our results showed that AM inoculation significantly decreased the residual soil PAHs concentration at all PAHs levels, and the largest effect of AM treatment was 48.5% compared to the non-mycorrhizal treatment. This should be attributed to increased plant growth and PAHs uptake, and soil biological activity in the rhizosphere induced by AM symbionts. Compared to the non-mycorrhizal treatment, the largest AM effects on the total plant biomass, root PAHs concentration, shoot PAHs concentration, soil bacterial biomass, soil catalase activity, and soil polyphenol oxidase activity were 51.7%, 565%, 53.1%, 141%, 100% and 51.9%, respectively. Although these effects on the above mentioned parameters varied with AM fungi (genus, species, and inoculation mode), soil PAHs (source, concentration, and type), plant type (dicots and monocots), and experimental conditions (experimental duration, soil sterilization and additional factors), few negative AM effects were observed. This study confirmed the feasibility of using AM fungi to enhance the phytoremediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Yifan Shi
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Simeng Wang
- Shenyang Research Institute of Chemical Industry, Shenyang, 110021, China
| | - Jianing Guo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
2
|
Gilbert‐Sandoval I, Wesseling S, Rietjens IMCM. Predicting the Acute Liver Toxicity of Aflatoxin B1 in Rats and Humans by an In Vitro-In Silico Testing Strategy. Mol Nutr Food Res 2020; 64:e2000063. [PMID: 32421213 PMCID: PMC7379280 DOI: 10.1002/mnfr.202000063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/01/2020] [Indexed: 11/14/2022]
Abstract
SCOPE High-level exposure to aflatoxin B1 (AFB1) is known to cause acute liver damage and fatality in animals and humans. The intakes actually causing this acute toxicity have so far been estimated based on AFB1 levels in contaminated foods or biomarkers in serum. The aim of the present study is to predict the doses causing acute liver toxicity of AFB1 in rats and humans by an in vitro-in silico testing strategy. METHODS AND RESULTS Physiologically based kinetic (PBK) models for AFB1 in rats and humans are developed. The models are used to translate in vitro concentration-response curves for cytotoxicity in primary rat and human hepatocytes to in vivo dose-response curves using reverse dosimetry. From these data, the dose levels at which toxicity would be expected are obtained and compared to toxic dose levels from available rat and human case studies on AFB1 toxicity. The results show that the in vitro-in silico testing strategy can predict dose levels causing acute toxicity of AFB1 in rats and human. CONCLUSIONS Quantitative in vitro in vivo extrapolation (QIVIVE) using PBK modeling-based reverse dosimetry can predict AFB1 doses that cause acute liver toxicity in rats and human.
Collapse
Affiliation(s)
- Ixchel Gilbert‐Sandoval
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Sebastiaan Wesseling
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
3
|
Cano-Sancho G, Marchand P, Le Bizec B, Antignac JP. The challenging use and interpretation of blood biomarkers of exposure related to lipophilic endocrine disrupting chemicals in environmental health studies. Mol Cell Endocrinol 2020; 499:110606. [PMID: 31585155 DOI: 10.1016/j.mce.2019.110606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/05/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The use of exposure biomarkers has been growing during the last decades, being considered the 'gold-standard' approach for individual exposure assessment to environmental chemicals. However, lipophilic endocrine disrupting chemicals (LEDC) have specific physicochemical and biological properties implying particular analytical challenges and interpretative caveats. The epidemiological literature is therefore afflicted by methodological inconsistencies and results divergences, in part due to recognised sources of exposure measurement error and misinterpretation of results. The aim of the present review is to identify external and endogenous sources of variability and uncertainty associated with the LEDC blood biomarkers in epidemiological studies. The dynamic nature of blood and an overview of the known mechanisms of transport, storage and partition of LEDCs in the organism are first described. The external sources of variability and uncertainty introduced at pre-analytical and analytical level are subsequently presented. Subsequently, we present some specific cases where the dynamics of lipids and LEDCs may be substantially modified and thus, the interpretation of biomarkers can be particularly challenging. The environmental obesogens as source of biomarkers variability is also discussed in the light of the most recent findings. Finally, different modelling approaches (statistical and pharmacokinetic models) proposed to improve the use and interpretation of biomarkers are appraised.
Collapse
|
4
|
Hoque MM, Lee YE, Kim HR, Shin MG. Potential biomarkers and antagonists for fluoranthene-induced cellular toxicity of bone marrow derived mesenchymal stem cells. Blood Res 2019; 54:253-261. [PMID: 31915651 PMCID: PMC6942141 DOI: 10.5045/br.2019.54.4.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/18/2023] Open
Abstract
Background Fluoranthene (FR) is a common environmental pollutant that exists in a complex mixture with other polycyclic aromatic hydrocarbons (PAHs). We identified biomarkers for monitoring FR exposure and investigated the rescue effect of FR-induced cellular toxicity via aryl hydrocarbon receptor (AHR) antagonist activity in bone marrow derived mesenchymal stem cells (BM-MSCs). Methods Morphological changes, viability, and rescue effects of an AHR antagonist (CH223191) were examined in BM-MSCs after exposure to FR. Cytotoxic effects were assayed using the tetrazolium-based colorimetric assay. Apoptosis was measured by annexin V and propidium iodide dye-based flowcytometry assay, mitochondrial membrane potential assay, and nuclear DNA fragmentation assay. Molecular signaling pathways of apoptosis and autophagy were investigated using immunoblotting. Proteomics were performed in order to reveal the spectra of cellular damage and identify biomarkers for FR exposure. Results Exposing BM-MSCs to FR (IC50=50 µM) induced cell death and morphological changes, while the AHR antagonist showed rescue effects. Autophagy was activated and mitochondrial membrane potential was decreased. Proteomic analysis identified 48 deregulated proteins (26 upregulated and 22 downregulated). Among them, annexin A6, pyruvate kinase, UDP-glucose dehydrogenase, and phospholipase A2 could be potential biomarkers for FR exposure. Conclusion The exposure of BM-MSCs to FR induced remarkable alterations in cellular biology and the proteome, allowing for identification of novel biomarkers for FR exposure. Furthermore, AHR antagonists might be able to prevent cellular damage due to FR exposure.
Collapse
Affiliation(s)
- Md Moinul Hoque
- Department of Laboratory Medicine and Mitochondrial Research Laboratory, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Program, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young Eun Lee
- Department of Laboratory Medicine and Mitochondrial Research Laboratory, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Program, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hye Ran Kim
- College of Korean Medicine, Dongshin University, Naju, Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine and Mitochondrial Research Laboratory, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Program, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
5
|
Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. CHEMOSPHERE 2016; 162:105-116. [PMID: 27487095 DOI: 10.1016/j.chemosphere.2016.07.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil.
Collapse
Affiliation(s)
- Monika Rajtor
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska Street 28, 40-032, Katowice, Poland.
| |
Collapse
|
6
|
Peters RE, James K, Cave M, Wickstrom M, Siciliano SD. Is received dose from ingested soil independent of soil PAH concentrations?-Animal model results. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2261-2269. [PMID: 26815007 DOI: 10.1002/etc.3384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) bioavailability from ingested soils will vary between soils; however, the nature of this variation is not well characterized. A juvenile swine model was used to link external exposure to internal benzo[a]pyrene (BaP) and anthracene exposure following oral PAH ingestion of 27 different impacted site soils, soots, or spiked artificial soils. Internal exposure of BaP and anthracene, represented by area under the plasma-time curve, did not relate to soil concentration in impacted site soils, but did relate in spiked artificial soil. Point of departure modeling identified soil PAH concentrations greater than 1900 mg kg(-1) as the point where area under the curve becomes proportional to external dose. A BaP internal exposure below 1900 mg kg(-1) had an upper 95% confidence interval estimate of 33% of external exposure. Weak relationships between soil:simulated gastrointestinal fluid PAH partitioning and area under the curve values suggest that differences in internal PAH exposure between soils may not be dominated by differences in PAH partitioning. The data seem to best support exposure assessment assuming constant internal PAH exposure below soil concentrations of 1900 mg kg(-1) . However, because constant internal exposure would challenge several existing paradigms, a bioavailability estimate of 33% of the external exposure is suggested as a likely workable solution. Environ Toxicol Chem 2016;35:2261-2269. © 2016 SETAC.
Collapse
Affiliation(s)
- Rachel E Peters
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Canada
| | - Kyle James
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Canada
| | - Mark Cave
- British Geological Survey, Nottingham, United Kingdom
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Abstract
Polycyclic aromatic hydrocarbons (PAH) comprise the largest class of cancer-causing chemicals and are ranked ninth among chemical compounds threatening to humans. Although interest in PAH has been mainly due to their carcinogenic property, many of these compounds are genotoxic, mutagenic, teratogenic, and carcinogenic. They tend to bioaccumulate in the soft tissues of living organisms. Interestingly, many are not directly carcinogenic, but act like synergists. PAH carcinogenicity is related to their ability to bind DNA thereby causing a series of disruptive effects that can result in tumor initiation. Thus, any structural attribute or modification of a PAH molecule that enhances DNA cross linking can cause carcinogenicity. In part I, we review exposure to these dangerous chemicals across a spectrum of use in the community and industry.
Collapse
Affiliation(s)
| | - Chimezie Anyakora
- The Centre for Applied Research on Separation Science, Lagos, Nigeria; Department of Pharmaceutical Chemistry, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
8
|
Peters RE, Wickstrom M, Siciliano SD. The bioavailability of polycyclic aromatic hydrocarbons from different dose media after single and sub-chronic exposure in juvenile swine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:308-314. [PMID: 25460964 DOI: 10.1016/j.scitotenv.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Humans are constantly exposed to contaminants in the environment, which may lead to changes in physiological processes by altering enzyme activities that could affect bioavailability. However, bioavailability estimates are typically made from a single exposure to an animal model, which may lead to overestimating bioavailability. This study uses juvenile swine to model human exposure to benzo[a]pyrene (BaP) and anthracene in certified reference material (CRM), spiked soil, spiked food, or spiked corn oil after one and seven days of dosing. Area under the curve (AUC) was calculated after one and seven days of exposure for both BaP and anthracene for each exposure media. Whereas there were significant differences in AUC between different media, there were no significant changes in AUC after sub-chronic exposure to BaP or anthracene. Average BaP bioavailability for CRM, spiked soil, spiked food and corn oil was 71%, 0.72%, 0.03% and 0.97% respectively. Average anthracene bioavailability was 1.7% and 43% for corn oil and CRM respectively. Anthracene was not detected above background in swine exposed to spiked food and spiked soil. Thus, this study indicates that exposure media impacts bioavailability, but there is no statistical evidence that sub-chronic exposure affects systemic exposure.
Collapse
Affiliation(s)
- Rachel E Peters
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5B8, Canada.
| |
Collapse
|
9
|
Rietjens IMCM, Tyrakowska B, van den Berg SJPL, Soffers AEMF, Punt A. Matrix-derived combination effects influencing absorption, distribution, metabolism and excretion (ADME) of food-borne toxic compounds: implications for risk assessment. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00081a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Absorption, distribution, metabolism and excretion (ADME) of food-borne toxic compounds may be influenced by other compounds or constituents present in the food.
Collapse
Affiliation(s)
| | - Bożena Tyrakowska
- Faculty of Commodity Science
- The Poznań University of Economics
- 61-875 Poznań
- Poland
| | | | | | - Ans Punt
- Division of Toxicology
- Wageningen University
- NL-6703 HE Wageningen
- The Netherlands
| |
Collapse
|
10
|
Zhang Y, Lin N, Su S, Shen G, Chen Y, Yang C, Li W, Shen H, Huang Y, Chen H, Wang X, Liu W, Tao S. Freeze drying reduces the extractability of organochlorine pesticides in fish muscle tissue by microwave-assisted method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:250-252. [PMID: 24838024 DOI: 10.1016/j.envpol.2014.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Samples of animal origin are usually dried before solvent extraction for analysis of organic contaminants. The freeze drying technique is preferred for hydrophobic organic compounds in practice. In this study, it was shown that the concentration of organochlorine pesticides (OCPs) extracted from fish muscle tissue significantly decreased after the samples were freeze dried. And the reason for this reduced extractability seemed to be the resistance of OCPs associated with freeze-dried muscle protein to solvent extraction. The extractability can be recovered by adding water prior to extraction. It suggests that the dietary exposure risk of OCPs from fish might be underestimated if freeze-dried samples are used.
Collapse
Affiliation(s)
- Yanyan Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Nan Lin
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shu Su
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Guofeng Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Yuanchen Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Chunli Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wei Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Huizhong Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ye Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Han Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wenxin Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
11
|
Layeghkhavidaki H, Lanhers MC, Akbar S, Gregory-Pauron L, Oster T, Grova N, Appenzeller B, Jasniewski J, Feidt C, Corbier C, Yen FT. Inhibitory action of benzo[α]pyrene on hepatic lipoprotein receptors in vitro and on liver lipid homeostasis in mice. PLoS One 2014; 9:e102991. [PMID: 25054229 PMCID: PMC4108373 DOI: 10.1371/journal.pone.0102991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dyslipidemia associated with obesity often manifests as increased plasma LDL and triglyceride-rich lipoprotein levels suggesting changes in hepatic lipoprotein receptor status. Persistent organic pollutants have been recently postulated to contribute to the obesity etiology by increasing adipogenesis, but little information is available on their potential effect on hepatic lipoprotein metabolism. OBJECTIVE The objective of this study was to investigate the effect of the common environmental pollutant, benzo[α]pyrene (B[α]P) on two lipoprotein receptors, the LDL-receptor and the lipolysis-stimulated lipoprotein receptor (LSR) as well as the ATP-binding cassette transporter A1 (ABCA1) using cell and animal models. RESULTS LSR, LDL-receptor as well as ABCA1 protein levels were significantly decreased by 26-48% in Hepa1-6 cells incubated (<2 h) in the presence of B[α]P (≤1 µM). Real-time PCR analysis and lactacystin studies revealed that this effect was due primarily to increased proteasome, and not lysosomal-mediated degradation rather than decreased transcription. Furthermore, ligand blots revealed that lipoproteins exposed to 1 or 5 µM B[α]P displayed markedly decreased (42-86%) binding to LSR or LDL-receptor. B[α]P-treated (0.5 mg/kg/48 h, i.p. 15 days) C57BL/6J mice displayed higher weight gain, associated with significant increases in plasma cholesterol, triglycerides, and liver cholesterol content, and decreased hepatic LDL-receptor and ABCA1 levels. Furthermore, correlational analysis revealed that B[α]P abolished the positive association observed in control mice between the LSR and LDL-receptor. Interestingly, levels of other proteins involved in liver cholesterol metabolism, ATP-binding cassette transporter G1 and scavenger receptor-BI, were decreased, while those of acyl-CoA:cholesterol acyltransferase 1 and 2 were increased in B[α]P-treated mice. CONCLUSIONS B[α]P demonstrates inhibitory action on LSR and LDL-R, as well as ABCA1, which we propose leads to modified lipid status in B[α]P-treated mice, thus providing new insight into mechanisms underlying the involvement of pollutants in the disruption of lipid homeostasis, potentially contributing to dyslipidemia associated with obesity.
Collapse
Affiliation(s)
- Hamed Layeghkhavidaki
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Marie-Claire Lanhers
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Samina Akbar
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Lynn Gregory-Pauron
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Nathalie Grova
- Laboratory of Analytical Human Biomonitoring, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Brice Appenzeller
- Laboratory of Analytical Human Biomonitoring, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jordane Jasniewski
- Laboratoire d'Ingenérie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Cyril Feidt
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Catherine Corbier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux EA3998, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Institut National de Recherche Agronomique USC 0340, Vandœuvre-lès-Nancy, France
- Institut National de la Santé et de la Recherche Médicale, Vandœuvre-lès-Nancy, France
| |
Collapse
|
12
|
Diggs DL, Myers JN, Banks LD, Niaz MS, Hood DB, Roberts LJ, Ramesh A. Influence of dietary fat type on benzo(a)pyrene [B(a)P] biotransformation in a B(a)P-induced mouse model of colon cancer. J Nutr Biochem 2013; 24:2051-63. [PMID: 24231098 PMCID: PMC3904801 DOI: 10.1016/j.jnutbio.2013.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/06/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
In the US alone, around 60,000 lives/year are lost due to colon cancer. Diet and environment have been implicated in the development of sporadic colon tumors. The objective of this study was to determine how dietary fat potentiates the development of colon tumors through altered B(a)P biotransformation, using the Adenomatous polyposis coli with Multiple intestinal neoplasia mouse model. Benzo(a)pyrene was administered to mice through tricaprylin, and unsaturated (USF; peanut oil) and saturated (SF; coconut oil) fats at doses of 50 and 100 μg/kg via oral gavage over a 60-day period. Blood, colon, and liver were collected at the end of exposure period. The expression of B(a)P biotransformation enzymes [cytochrome P450 (CYP)1A1, CYP1B1 and glutathione-S-transferase] in liver and colon were assayed at the level of protein, mRNA and activities. Plasma and tissue samples were analyzed by reverse phase high-performance liquid chromatography for B(a)P metabolites. Additionally, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the (32)P-postlabeling method using a thin-layer chromatography system. Benzo(a)pyrene exposure through dietary fat altered its metabolic fate in a dose-dependent manner, with 100 μg/kg dose group registering an elevated expression of B(a)P biotransformation enzymes, and greater concentration of B(a)P metabolites, compared to the 50 μg/kg dose group (P<.05). This effect was more pronounced for SF group compared to USF group (P<.05). These findings establish that SF causes sustained induction of B(a)P biotransformation enzymes and extensive metabolism of this toxicant. As a consequence, B(a)P metabolites were generated to a greater extent in colon and liver, whose concentrations also registered a dose-dependent increase. These metabolites were found to bind with DNA and form B(a)P-DNA adducts, which may have contributed to colon tumors in a subchronic exposure regimen.
Collapse
Affiliation(s)
- Deacqunita L. Diggs
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Jeremy N. Myers
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Leah D. Banks
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Mohammad S. Niaz
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Darryl B. Hood
- Department of Neuroscience and Pharmacology, Meharry Medical College,Nashville, TN 37208
| | - L. Jackson Roberts
- Departments of Pharmacology and Medicine, Pathology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
13
|
Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich RM, García-Romera I. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:182-9. [PMID: 23867699 DOI: 10.1016/j.envpol.2013.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most common contaminants in soil. Arbuscular mycorrhizal (AM) fungi make host plants resistant to pollutants. This study aims to evaluate the impact of anthracene, phenanthrene and dibenzothiophene on the AM fungus Rhizophagus custos, isolated from soil contaminated by heavy metals and PAHs, under monoxenic conditions. We found a high level of tolerance in R. custos to the presence of PAHs, especially in the case of anthracene, in which no negative effect on AM-colonized root dry weight (root yield) was observed, and also a decrease in the formation of anthraquinone was detected. Increased PAH dissipation in the mycorrhizal root culture medium was observed; however, dissipation was affected by the level of concentration and the specific PAH, which lead us to a better understanding of the possible contribution of AM fungi, and in particular R. custos, to pollutant removal.
Collapse
Affiliation(s)
- Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda No. 1, 18008 Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Verma N, Pink M, Petrat F, Rettenmeier AW, Schmitz-Spanke S. Exposure of primary porcine urothelial cells to benzo(a)pyrene: in vitro uptake, intracellular concentration, and biological response. Arch Toxicol 2012; 86:1861-71. [PMID: 22790669 DOI: 10.1007/s00204-012-0899-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022]
Abstract
More than 90 % of all bladder cancers are transitional cell carcinomas arising from the cells lining the inside of the hollow organ (uroepithelium). Cell cultures from primary urinary bladder epithelial cells (PUBEC) of pigs were established to assess the uptake, intracellular concentration, and subcellular distribution of the environmental pollutant benzo(a)pyrene (BaP). During treatment of the cells with 0.5 μM BaP for up to 24 h, intracellular concentration of BaP increased without saturation but with marked differences between various PUBEC pools. Analysis of BaP uptake by laser scanning microscopy indicated that BaP is rapidly partitioned into the cell membrane, while only a slight but significant increase in BaP fluorescence intensity was observed in the cytosol and nucleus. Spectrofluorometric quantification of BaP in PUBEC using ex situ calibration revealed a strong accumulation of BaP, leading to intracellular concentrations ranging from 7.28 to 35.70 μM in cells exposed to 0.5 μM BaP and from 29.9 to 406.64 μM in cells exposed to 10 μM BaP. These results were confirmed by gas chromatographic mass spectrometric analysis. Apoptotic cell nuclei were assessed by TUNEL analysis to see whether BaP exposure at the given concentrations results in a toxic effect. While apoptotic cells were barely detectable in control epithelial cells, there was a marked elevation in apoptosis in the BaP-exposed cells. In conclusion, a comprehensive study on uptake and quantification of BaP in epithelial cells from pig bladder is reported for the first time. The study may be helpful in understanding the pattern of BaP uptake and distribution in bladder and its possible implication in bladder cancer development.
Collapse
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012; 12:1731-55. [DOI: 10.1002/pmic.201100466] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Mario Pink
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Simone Schmitz-Spanke
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
16
|
Reynaud S, Worms IAM, Veyrenc S, Portier J, Maitre A, Miaud C, Raveton M. Toxicokinetic of benzo[a]pyrene and fipronil in female green frogs (Pelophylax kl. esculentus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 161:206-214. [PMID: 22230087 DOI: 10.1016/j.envpol.2011.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 08/03/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
A general consensus that an increased logK(ow) led to an increase in xenobiotic uptake and bioaccumulation is accepted. In this study we compared the toxicokinetics of two chemically different xenobiotics, i.e. benzo[a]pyrene and fipronil in female green frogs. Surprisingly, the uptake rates and the bioconcentration factors (BCF) of the two contaminants were not predicted by their logK(ow). The uptake rates obtained were of the same order of magnitude for the two contaminants and the BCFs measured for fipronil were about 3-fold higher than those obtained for benzo[a]pyrene. Fipronil appeared to be more recalcitrant than benzo[a]pyrene to detoxification processes leading to the accumulation of sulfone-fipronil especially in the ovaries. This phenomenon may explain reproductive influence of this contaminant described in other studies. Detoxification processes, including metabolism and the excretion of pollutants, are of importance when considering their persistence in aquatic organisms and trying to quantify their risks.
Collapse
Affiliation(s)
- Stéphane Reynaud
- Laboratoire d'Ecologie Alpine (LECA, UMR 5553 CNRS-Université), Equipe « Pollution Environnement Ecotoxicologie Ecoremediation » Domaine Universitaire de Saint-Martin d'Hères. 2233, rue de la piscine Bât D Biologie, BP 53, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ramesh A, Archibong AE, Niaz MS. Ovarian susceptibility to benzo[a]pyrene: tissue burden of metabolites and DNA adducts in F-344 rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1611-1625. [PMID: 20967675 PMCID: PMC3077542 DOI: 10.1080/15287394.2010.514225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to environmental toxicants has been implicated as one of the causative factors for infertility in mammals. The objective of this study was to determine the amount of ingested benzo[a]pyrene (BaP), an environmental toxicant that reaches the reproductive tissues (internal dose) subsequent to a single acute exposure. Toward this end, the concentrations of BaP reactive metabolites and BaP-DNA adducts were measured throughout the course of BaP's residence in the body. Ten-week-old female Fischer-344 rats weighing approximately 220 g were administered 5 mg BaP/kg body weight orally. 1, 7, 14, 2,1 and 28 d post BaP exposure, BaP parent compound and metabolites from plasma, ovaries, and liver tissues were extracted using liquid-liquid extraction. The extracts were analyzed by reverse-phase highperformance liquid chromatography (HPLC). DNA was isolated and analyzed for BaP-induced DNA adducts by (32)P-postlabeling method. The BaP total metabolite concentrations in plasma, ovaries, and liver showed a gradual decrease from d 1 to 28 post BaP administration. The BaP-DNA adducts concentrations in ovaries and liver tissues from the treatment group demonstrated a trend similar to that observed for metabolites. Ovaries showed greater concentrations of DNA adducts compared to liver. However, with an increase in time post cessation of exposure, the adduct concentrations in liver tissue started declining rapidly, from d 1 to 28. For ovaries, the adduct concentrations demonstrated a significant decline from d 1 to 7 and a gradual fall thereafter. A concordance between BaP reactive metabolite levels and adduct concentrations indicates that the bioavailability of reactive metabolites determines the binding with DNA and consequently the formation and persistence of adducts in an acute exposure regimen.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | |
Collapse
|
18
|
Walker SA, Ramesh A. RELATIONSHIP BETWEEN DIETARY FAT TYPE AND METABOLIC FATE OF FLUORANTHENE IN F-344 RATS. Polycycl Aromat Compd 2009. [DOI: 10.1080/10406630903127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Falahatpisheh H, Nanez A, Montoya-Durango D, Qian Y, Tiffany-Castiglioni E, Ramos KS. Activation profiles of HSPA5 during the glomerular mesangial cell stress response to chemical injury. Cell Stress Chaperones 2007; 12:209-18. [PMID: 17915553 PMCID: PMC1971237 DOI: 10.1379/csc-259.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Environmental injury has been associated with endoplasmic reticulum (ER) stress, a response characterized by activation of the unfolded protein response, proteasomal degradation of proteins, and induction of HSPA5, also known as GRP78 or BiP. Although HSPA5 has been implicated in the stress response to environmental injury in several cell types, its role in the glomerular ER stress response is unknown. In this study, we evaluated HSPA5 activation profiles in rat glomerular mesangial cells (rGMCs) challenged with heavy metals (HgCl2 or Pb2+ acetate) or polycyclic aromatic hydrocarbons (PAHs, ie, benzo(a)pyrene [BaP]). Challenge of rGMCs with 1 or 10 microM HgCl2 or Pb2+ acetate increased HSPA5 mRNA and protein levels. The induction response was sensitive to transcriptional and translational inhibition by actinomycin D (AD) and cyclohexamide, respectively. HSPA5 mRNA was induced by 3 microM BaP in an AD-sensitive manner, but this response was unaffected by the presence of heavy metals. A promoter construct containing sequences that mediate thapsigargin (TH) inducibility of the HSPA5 promoter was refractory to both heavy metals and BaP. The HSPA5 induction response in rGMCs is conserved because it was reproduced with fidelity in immunolocalization experiments of HSPA5 protein in M15 and HEK293 cells in embryonic lines of murine and human origin, respectively. Collectively, these findings identify HSPA5 in the stress response of rGMCs and implicate regulatory mechanisms that are distinct from those involved in TH inducibility.
Collapse
Affiliation(s)
- Hadi Falahatpisheh
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 2005; 23:301-33. [PMID: 15513831 DOI: 10.1080/10915810490517063] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. These chemicals commonly enter the human body through inhalation of cigarette smoke or consumption of contaminated food. Of these two pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs have been published, factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received much less attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. The utilitarian value of structure and metabolism in predicting PAH toxicity and carcinogenesis is also emphasized. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet, and contaminated soil is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs from a multimedia exposure perspective.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Pharmacology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Ramesh A, Inyang F, Hood DB, Archibong AE, Knuckles ME, Nyanda AM. Metabolism, bioavailability, and toxicokinetics of benzo(alpha)pyrene in F-344 rats following oral administration. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2001; 53:275-90. [PMID: 11665852 DOI: 10.1078/0940-2993-00192] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to evaluate the bioavailability of Benzo(a)pyrene [B(a)p], subsequent to oral exposure. Eight-week-old F-344 rats were dosed orally with 100 mg/kg body weight B(a)p and sacrificed at 0, 0.5, 1.0, 2.0, 4.0. 8.0, 24, 48 and 72 hours post exposure. Blood, liver, reproductive tissues, urine and fecal samples were collected at necropsy and were analyzed for parent B(a)p and metabolites by HPLC with fluorescence detection. Peak levels of B(a)p in plasma occurred 8 hours after exposure (67%) followed by a gradual decrease. Liver retained 10% of the administered B(a)p up to 24 hours following, which the levels dropped during the remaining time periods studied. Twenty-four hours after administration, 45% of the dose was excreted in feces and urine. Metabolite levels in plasma peaked at 24 hours (10%) and decreased to 1% at 72 hours. In the liver, metabolite levels were higher at 8 hours (10%) but were only 3% at 72 hours. Benzo(a)pyrene levels increased after 24 hours in the reproductive organs and constituted 10% of the administered dose at 72 hours. Blood showed high levels of 7,8-diol than 9,10 and 4,5-diols which were high in liver and reproductive organs. Compared to diols, the hydroxy metabolites were detected at high levels in urine and fecal samples. Among the aqueous phase metabolites, glucuronides were at higher levels compared to glutathiones and sulfates. The slow release of unmetabolized B(a)p from reproductive organs and the presence of reactive metabolites in these organs is a matter of concern as they could interfere with gonadal steroid synthesis and release and its regulatory role in gamete production, maturation and function of male animals in a continuous exposure paradigm.
Collapse
Affiliation(s)
- A Ramesh
- Department of Pharmacology , Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Bral CM, Ramos KS. Identification of benzo[a]pyrene-inducible cis-acting elements within c-Ha-ras transcriptional regulatory sequences. Mol Pharmacol 1997; 52:974-82. [PMID: 9415707 DOI: 10.1124/mol.52.6.974] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies in this laboratory have demonstrated that transcriptional deregulation of c-Ha-ras expression is associated with the induction and maintenance of proliferative vascular smooth muscle cell (SMC) phenotypes by benzo[a]pyrene (BaP). We examined previously undescribed cis-acting elements within the proximal 5' regulatory region of c-Ha-ras (-550 to +220) for their ability to influence BaP-induced transcription in murine SMCs. BaP-inducible DNA binding activity was demonstrated at a site located -30 relative to the major start site cluster at +1 that exhibits extensive homology to a consensus aryl hydrocarbon response element (AHRE), as well as a site located at -543 that contains a consensus electrophile response element (EpRE). In vitro cross-linking studies revealed the specific interaction of 104- and 96-kDa proteins with the putative AHRE and of an 80-kDa protein with the EpRE. The use of monoclonal antibodies to the aryl hydrocarbon receptor transcription factor in competition electrophoretic mobility shift assays indicated this protein is specifically induced by BaP to interact at the AHRE within the c-Ha-ras 5' regulatory region. Transient transfection with an Ha-ras promoter construct containing the putative AHRE but lacking the EpRE linked to the chloramphenicol acetyl transferase reporter gene, followed by challenge with BaP (0.3, 3.0, and 30 microM), revealed transcriptional activation that was not statistically significant. However, insertion of an oligonucleotide composed of the EpRE immediately upstream of basal sequences at -330 was associated with strong activation of transcription by BaP. These data indicate that c-Ha-ras gene expression is modulated by BaP via a complex mechanism that likely involves interactions among multiple regulatory elements. We conclude that c-Ha-ras expression is regulated by BaP at the transcriptional level, a response that may constitute an epigenetic basis of atherogenesis.
Collapse
MESH Headings
- Animals
- Benzo(a)pyrene/toxicity
- Binding Sites
- Blotting, Northern
- Carcinogens/toxicity
- Cell Division/physiology
- Cells, Cultured
- DNA/analysis
- DNA/genetics
- Enhancer Elements, Genetic/drug effects
- Enhancer Elements, Genetic/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, ras/drug effects
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- C M Bral
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A & M University, College Station 77843, USA
| | | |
Collapse
|
23
|
Mumtaz MM, George JD, Gold KW, Cibulas W, DeRosa CT. ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol Ind Health 1996; 12:742-971. [PMID: 9050165 DOI: 10.1177/074823379601200601] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. There are more than 100 PAHs. PAHs generally occur as complex mixtures (for example, as part of products such as soot), not as single compounds. PAHs are found throughout the environment in the air, water, and soil. As part of its mandate, the Agency for Toxic Substances and Disease Registry (ATSDR) prepares toxicological profiles on hazardous chemicals, including PAHs (ATSDR, 1995), found at facilities on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) and which pose the most significant potential threat to human health, as determined by ATSDR and the Environmental Protection Agency (EPA). These profiles include information on health effects of chemicals from different routes and durations of exposure, their potential for exposure, regulations and advisories, and the adequacy of the existing database. Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are usually to complex mixtures of PAHs with other chemicals. The biological consequences of human exposure to mixtures of PAHs depend on the toxicity, carcinogenic and noncarcinogenic, of the individual components of the mixture, the types of interactions among them, and confounding factors that are not thoroughly understood. Also identified are components of exposure and health effects research needed on PAHs that will allow estimation of realistic human health risks posed by exposures to PAHs. The exposure assessment component of research should focus on (1) development of reliable analytical methods for the determination of bioavailable PAHs following ingestion, (2) estimation of bioavailable PAHs from environmental media, particularly the determination of particle-bound PAHs, (3) data on ambient levels of PAHs metabolites in tissues/fluids of control populations, and (4) the need for a critical evaluation of current levels of PAHs found in environmental media including data from hazardous waste sites. The health effects component should focus on obtaining information on (1) the health effects of mixtures of PAHs particularly their noncarcinogenic effects in humans, and (2) their toxicokinetics. This report provides excerpts from the toxicological profile of PAHs (ATSDR, 1995) that contains more detailed information.
Collapse
Affiliation(s)
- M M Mumtaz
- Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Absorption from the gastrointestinal tract and subsequent vascular transport of [3H]-2,4'-dichlorobiphenyl (Aroclor 1232; DCB) was investigated in an ovine model system. Rapid uptake of DCB and transport as a component of blood plasma without prior occurrence in thoracic duct lymph indicates that DCB was absorbed directly via the gastric mucosa with water soluble compounds. [3H]-DCB did not circulate associated with plasma lipid fractions in vivo, and did not bind to or sequester within plasma lipids in vitro. HPLC analysis of plasma fractions treated in vitro showed DCB to elute within a molecular weight range consistent with unbound product. Further, [3H]-DCB-derived label was associated with low molecular weight plasma components in vivo. Essentially the same elution profile was seen for [3H]-DCB-derived label found in urine. Metabolism of DCB as a function of time resulted in the apparent formation of a biotransformed product(s) that circulated with a plasma fraction(s) at the low end of the albumin molecular size range. These data suggest that DCB was not absorbed and transported in a manner typical of polychlorinated biphenyls with a higher chlorine content; rather, that it was absorbed, transported within the vascular system, and excreted in a pattern typical of a water soluble compound.
Collapse
Affiliation(s)
- D L Busbee
- Department of Anatomy and Public Health, College of Veterinary Medicine, Texas A & M University, College Station 77843
| | | |
Collapse
|
25
|
Potchinsky MB, Bloom SE. Selective aflatoxin B1-induced sister chromatid exchanges and cytotoxicity in differentiating B and T lymphocytes in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:87-94. [PMID: 8419159 DOI: 10.1002/em.2850210112] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The purpose of this study was to assess the genotoxic and cytotoxic effects of the fungal metabolite aflatoxin B1 (AfB1) on the developing immune system of the chick embryo, a model in vivo system. Of particular interest was the assessment of AfB1-mediated selective toxicity toward developing B lymphocytes as compared to T lymphocytes. In vivo bromodeoxyuridine (BrdU) labelling of DNA was used to detect the induction of sister chromatid exchanges (SCE) in lymphocytes and to assess the progression of these cells through successive cell cycles. Cytotoxicity was also assessed by studying the entrance and maintenance of cells in mitosis (mitotic index). Graded doses of AfB1 (1.09-17.4 micrograms/g embryo) were applied to chick embryos at 18 days of incubation (DI). Embryos also received two doses of BrdU at 3 mg/200 microliters (3 hr apart) to provide continuous labelling of B and T lymphocyte replicating DNA. B and T lymphocytes were harvested 20 hr post-AfB1/BrdU exposure from the bursa and thymus, respectively, and were processed for cytogenetic analyses. AfB1 induced dose-related increases in SCE in B lymphocytes; this induction was 6- to 8-fold that of controls at the higher doses tested. AfB1-mediated induction of SCE in T cells was just 2-fold that of controls at the highest dose tested. AfB1 reduced the progression of B cells and to a lesser extent T cells through successive rounds of replication. Furthermore, AfB1 dramatically reduced the mitotic index of B cells but not of T cells. These data indicate both selective genotoxicity and cytotoxicity of AfB1 toward B cells in the late stage embryo.
Collapse
Affiliation(s)
- M B Potchinsky
- Department of Avian and Aquatic Animal Medicine, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|