1
|
Kovářová J, Moos M, Barrett MP, Horn D, Zíková A. The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis. PLoS Negl Trop Dis 2024; 18:e0012007. [PMID: 38394337 PMCID: PMC10917290 DOI: 10.1371/journal.pntd.0012007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
Collapse
Affiliation(s)
- Julie Kovářová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
3
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
Affiliation(s)
- Marta Teixeira Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA; Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ana Paula Pereira da Silva
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Naira Ligia Lima Giarola
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Galina
- Laboratorio de Bioenergética e Fisiologia Mitocondrial, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Medica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Regulation of Fructose 1,6-Bisphosphatase in Procyclic Form Trypanosoma brucei. Pathogens 2021; 10:pathogens10050617. [PMID: 34069826 PMCID: PMC8157246 DOI: 10.3390/pathogens10050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Glycolysis is well described in Trypanosoma brucei, while the importance of gluconeogenesis and one of the key enzymes in that pathway, fructose 1,6-bisphosphatase, is less understood. Using a sensitive and specific assay for FBPase, we demonstrate that FBPase activity in insect stage, procyclic form (PF), parasite changes with parasite cell line, extracellular glucose levels, and cell density. FBPase activity in log phase PF 2913 cells was highest in high glucose conditions, where gluconeogenesis is expected to be inactive, and was undetectable in low glucose, where gluconeogenesis is predicted to be active. This unexpected relationship between FBPase activity and extracellular glucose levels suggests that FBPase may not be exclusively involved in gluconeogenesis and may play an additional role in parasite metabolism. In stationary phase cells, the relationship between FBPase activity and extracellular glucose levels was reversed. Furthermore, we found that monomorphic PF 2913 cells had significantly higher FBPase levels than pleomorphic PF AnTat1.1 cells where the activity was undetectable except when cells were grown in standard SDM79 media, which is glucose-rich and commonly used to grow PF trypanosomes in vitro. Finally, we observed several conditions where FBPase activity changed while protein levels did not, suggesting that the enzyme may be regulated via post-translational modifications.
Collapse
|
6
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
7
|
The kinetic characteristics of human and trypanosomatid phosphofructokinases for the reverse reaction. Biochem J 2019; 476:179-191. [PMID: 30404924 PMCID: PMC6340114 DOI: 10.1042/bcj20180635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic ATP-dependent phosphofructokinases (PFKs) are often considered unidirectional enzymes catalysing the transfer of a phospho moiety from ATP to fructose 6-phosphate to produce ADP and fructose 1,6-bisphosphate. The reverse reaction is not generally considered to occur under normal conditions and has never been demonstrated for any eukaryotic ATP-dependent PFKs, though it does occur in inorganic pyrophosphate-dependent PFKs and has been experimentally shown for bacterial ATP-dependent PFKs. The evidence is provided via two orthogonal assays that all three human PFK isoforms can catalyse the reverse reaction in vitro, allowing determination of kinetic properties. Additionally, the reverse reaction was shown possible for PFKs from three clinically important trypanosomatids; these enzymes are contained within glycosomes in vivo. This compartmentalisation may facilitate reversal, given the potential for trypanosomatids to have an altered ATP/ADP ratio in glycosomes compared with the cytosol. The kinetic properties of each trypanosomatid PFK were determined, including the response to natural and artificial modulators of enzyme activity. The possible physiological relevance of the reverse reaction in trypanosomatid and human PFKs is discussed.
Collapse
|
8
|
Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response. mBio 2018; 9:mBio.02430-18. [PMID: 30563898 PMCID: PMC6299225 DOI: 10.1128/mbio.02430-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Trypanosoma brucei and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on T. brucei biology. The data presented here demonstrate that cells depleted of T. brucei PRMT1 (TbPRMT1), a major type I protein arginine methyltransferase, exhibit decreased virulence in an animal model. To understand the basis of this phenotype, quantitative global proteomics was employed to measure protein steady-state levels in cells lacking TbPRMT1. The approach revealed striking changes in proteins involved in energy metabolism. Most prominent were a decrease in glycolytic enzyme abundance and an increase in proline degradation pathway components, changes that resemble the metabolic remodeling that occurs during T. brucei life cycle progression. The work describes several RNA binding proteins whose association with mRNA was altered in TbPRMT1-depleted cells, and a large number of TbPRMT1-interacting proteins, thereby highlighting potential TbPRMT1 substrates. Many proteins involved in the T. brucei starvation stress response were found to interact with TbPRMT1, prompting analysis of the response of TbPRMT1-depleted cells to nutrient deprivation. Indeed, depletion of TbPRMT1 strongly hinders the ability of T. brucei to form cytoplasmic mRNA granules under starvation conditions. Finally, this work shows that TbPRMT1 itself binds nucleic acids in vitro and in vivo, a feature completely novel to protein arginine methyltransferases.IMPORTANCE Trypanosoma brucei infection causes human African trypanosomiasis, also known as sleeping sickness, a disease with a nearly 100% fatality rate when untreated. Current drugs are expensive, toxic, and highly impractical to administer, prompting the community to explore various unique aspects of T. brucei biology in search of better treatments. In this study, we identified the protein arginine methyltransferase (PRMT), TbPRMT1, as a factor that modulates numerous aspects of T. brucei biology. These include glycolysis and life cycle progression signaling, both of which are being intensely researched toward identification of potential drug targets. Our data will aid research in those fields. Furthermore, we demonstrate for the first time a direct association of a PRMT with nucleic acids, a finding we believe could translate to other organisms, including humans, thereby impacting research in fields as distant as human cancer biology and immune response modulation.
Collapse
|
9
|
Uzcátegui NL, Figarella K, Segnini A, Marsiccobetre S, Lang F, Beitz E, Rodríguez-Acosta A, Bertl A. Trypanosoma brucei aquaglyceroporins mediate the transport of metabolic end-products: Methylglyoxal, D-lactate, L-lactate and acetate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2252-2261. [DOI: 10.1016/j.bbamem.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
10
|
Di Maggio J, Blanco AM, Bandoni JA, Díaz Ricci JC, Diaz MS. Design of stable metabolic networks. Eng Life Sci 2017; 17:908-915. [DOI: 10.1002/elsc.201700065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jimena Di Maggio
- Planta Piloto de IngenieríaQuímica (PLAPIQUI); Universidad Nacional del Sur-CONICET; Bahía Blanca Argentina
| | - Aníbal M. Blanco
- Planta Piloto de IngenieríaQuímica (PLAPIQUI); Universidad Nacional del Sur-CONICET; Bahía Blanca Argentina
| | - J. Alberto Bandoni
- Planta Piloto de IngenieríaQuímica (PLAPIQUI); Universidad Nacional del Sur-CONICET; Bahía Blanca Argentina
| | - Juan Carlos Díaz Ricci
- Instituto Superior de InvestigacionesBiológicas-INSIBIO (UNT-CONICET); San Miguel de Tucumán Argentina
| | - M. Soledad Diaz
- Planta Piloto de IngenieríaQuímica (PLAPIQUI); Universidad Nacional del Sur-CONICET; Bahía Blanca Argentina
| |
Collapse
|
11
|
Gabaldón T, Ginger ML, Michels PAM. Peroxisomes in parasitic protists. Mol Biochem Parasitol 2016; 209:35-45. [PMID: 26896770 DOI: 10.1016/j.molbiopara.2016.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
Abstract
Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H2O2-dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H2O2-dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Michael L Ginger
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; Department of Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, UK; Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, UK; Laboratorio de Enzimología de Parásitos, Departamento de Biología, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
12
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
13
|
Haanstra JR, Bakker BM, Michels PA. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol 2014; 198:18-28. [DOI: 10.1016/j.molbiopara.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022]
|
14
|
Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology 2012; 140:1-20. [PMID: 22914253 DOI: 10.1017/s0031182012001278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycosomes are specialized peroxisomes found in all kinetoplastid organisms. The organelles are unique in harbouring most enzymes of the glycolytic pathway. Matrix proteins, synthesized in the cytosol, cofactors and metabolites have to be transported across the membrane. Recent research on Trypanosoma brucei has provided insight into how these translocations across the membrane occur, although many details remain to be elucidated. Proteins are imported by a cascade of reactions performed by specialized proteins, called peroxins, in which a cytosolic receptor with bound matrix protein inserts itself in the membrane to deliver its cargo into the organelle and is subsequently retrieved from the glycosome to perform further rounds of import. Bulky solutes, such as cofactors and acyl-CoAs, seem to be translocated by specific transporter molecules, whereas smaller solutes such as glycolytic intermediates probably cross the membrane through pore-forming channels. The presence of such channels is in apparent contradiction with previous results that suggested a low permeability of the glycosomal membrane. We propose 3 possible, not mutually exclusive, solutions for this paradox. Glycosomal glycolytic enzymes have been validated as drug targets against trypanosomatid-borne diseases. We discuss the possible implications of the new data for the design of drugs to be delivered into glycosomes.
Collapse
|
15
|
Lavorato SN, Andrade SF, Silva THA, Alves RJ, Oliveira RB. Phosphofructokinase: structural and functional aspects and design of selective inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20122d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gualdrón-López M, Brennand A, Hannaert V, Quiñones W, Cáceres AJ, Bringaud F, Concepción JL, Michels PAM. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 2011; 42:1-20. [PMID: 22142562 DOI: 10.1016/j.ijpara.2011.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
A characteristic, well-studied feature of the pathogenic protists belonging to the family Trypanosomatidae is the compartmentalisation of the major part of the glycolytic pathway in peroxisome-like organelles, hence designated glycosomes. Such organelles containing glycolytic enzymes appear to be present in all members of the Kinetoplastea studied, and have recently also been detected in a representative of the Diplonemida, but they are absent from the Euglenida. Glycosomes therefore probably originated in a free-living, common ancestor of the Kinetoplastea and Diplonemida. The initial sequestering of glycolytic enzymes inside peroxisomes may have been the result of a minor mistargeting of proteins, as generally observed in eukaryotic cells, followed by preservation and its further expansion due to the selective advantage of this specific form of metabolic compartmentalisation. This selective advantage may have been a largely increased metabolic flexibility, allowing the organisms to adapt more readily and efficiently to different environmental conditions. Further evolution of glycosomes involved, in different taxonomic lineages, the acquisition of additional enzymes and pathways - often participating in core metabolic processes - as well as the loss of others. The acquisitions may have been promoted by the sharing of cofactors and crucial metabolites between different pathways, thus coupling different redox processes and catabolic and anabolic pathways within the organelle. A notable loss from the Trypanosomatidae concerned a major part of the typical peroxisomal H(2)O(2)-linked metabolism. We propose that the compartmentalisation of major parts of the enzyme repertoire involved in energy, carbohydrate and lipid metabolism has contributed to the multiple development of parasitism, and its elaboration to complicated life cycles involving consecutive different hosts, in the protists of the Kinetoplastea clade.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, Postal Box B1.74.01, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G. Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 2010; 3:116. [PMID: 21126352 PMCID: PMC3003647 DOI: 10.1186/1756-3305-3-116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review how distinct cell death pathways in Trypanosoma, Leishmania, Plasmodium or Toxoplasma may contribute to regulation of parasite cell densities in vectors and mammalian hosts, to differentiation of parasites, to stress responses, and to modulation of the host immunity. The examples provided indicate crucial roles of PCD in parasite biology. The existence of PCD pathways in these organisms and the identification as being critical for parasite biology and parasite-host interactions could serve as a basis for developing new anti-parasitic drugs that take advantage of these pathways.
Collapse
Affiliation(s)
- Carsten Gk Lüder
- Institute for Medical Microbiology, Georg-August-University, Kreuzbergring 57, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
18
|
Janelle J, Koffi M, Jamonneau V, Patrel D, Cuny G, Ravel S. Monitoring the pleomorphism of Trypanosoma brucei gambiense isolates in mouse: impact on its transmissibility to Glossina palpalis gambiensis. INFECTION GENETICS AND EVOLUTION 2009; 9:1260-4. [PMID: 19720159 DOI: 10.1016/j.meegid.2009.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 11/19/2022]
Abstract
Substantial differences have been observed between the cyclical transmission of three Trypanosoma brucei gambiense field isolates in Glossina palpalis gambiensis (Ravel et al., 2006). Differences in the pleomorphism of these isolates in rodent used to provide the infective feed to Glossina, could explain such results, since stumpy forms are preadapted for differentiation to procyclic forms when taken up in a tsetse bloodmeal. To assess this possibility, mice were immunosuppressed and inoculated intraperitoneally with the three isolates (six mice for each trypanosome isolate); then parasitaemia and pleomorphism were determined daily for each mouse. The three T. b. gambiense isolates induced different infection patterns in mouse. The parasitaemia peak was rapidly reached for all the isolates and maintained until mice death for two isolates, while the third isolate rapidly showed a falling phase followed by a second parasitaemia plateau. The proportion of the stumpy forms varied from 15% to 70% over the duration of the experiment and according to the isolate. One isolate, which displayed the highest proportion of stumpy forms and reached the stumpy peak at the onset of the falling phase of parasitaemia, was used to study the relationship between the proportion of stumpy forms and transmissibility to tsetse fly. The results indicated that the transmissibility of trypanosomes was not correlated to the proportion of non-dividing stumpy forms.
Collapse
Affiliation(s)
- J Janelle
- CIRAD, UMR Trypanosomes, Montpellier F-34398, France
| | | | | | | | | | | |
Collapse
|
19
|
Cáceres AJ, Quiñones W, Gualdrón M, Cordeiro A, Avilán L, Michels PAM, Concepción JL. Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Mol Biochem Parasitol 2007; 156:235-45. [PMID: 17904661 DOI: 10.1016/j.molbiopara.2007.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Glucokinase genes, found in the genome databases of Trypanosoma cruzi and Leishmania major, were cloned and sequenced. Their expression in Escherichia coli resulted in the synthesis of soluble and active enzymes, TcGlcK and LmjGlcK, with a molecular mass of 43 kDa and 46 kDa, respectively. The enzymes were purified, and values of their kinetic parameters determined. The K(m) values for glucose were 1.0 mM for TcGlcK and 3.3 mM for LmjGlcK. For ATP, the K(m) values were 0.36 mM (TcGlcK) and 0.35 mM (LmjGlcK). A lower K(m) value for glucose (2.55 mM) was found when the (His)(6)-tag was removed from the recombinant LmjGlcK, whereas the TcGlcK retained the same value. The V(max)'s of the T. cruzi and L. major GlcKs were 36.3 and 30.9 U/mg of protein, respectively. No inhibition was exerted by glucose-6-phosphate. Similarly, no inhibition by inorganic pyrophosphate was found in contrast to previous observations made for the T. cruzi and L. mexicana hexokinases. Both trypanosomatid enzymes were only able to phosphorylate glucose indicating that they are true glucokinases. Gel-filtration chromatography showed that the GlcK of both trypanosomatids may occur as a monomer or dimer, dependent on the protein concentration. Both GlcK sequences have a type-1 peroxisome-targeting signal. Indeed, they were shown to be present inside glycosomes using three different methods. These glucokinases present highest, albeit still a moderate 24% sequence identity with their counterpart from Trichomonas vaginalis, which has been classified into group A of the hexokinase family. This group comprises mainly eubacterial and cyanobacterial glucokinases. Indeed, multiple sequence comparisons, as well as kinetic properties, strongly support the notion that these trypanosomatid enzymes belong to group A of the hexokinases, in which they, according to a phylogenetic analysis, form a separate cluster.
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | | | | | |
Collapse
|
20
|
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PAM. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 2005; 272:3542-60. [PMID: 16008555 DOI: 10.1111/j.1742-4658.2005.04774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.
Collapse
Affiliation(s)
- Nathalie Chevalier
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, Bakker BM, Michels PAM. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 2005; 280:28306-15. [PMID: 15955817 DOI: 10.1074/jbc.m502403200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mathematical model of glycolysis in bloodstream form Trypanosoma brucei was developed previously on the basis of all available enzyme kinetic data (Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. (1997) J. Biol. Chem. 272, 3207-3215). The model predicted correctly the fluxes and cellular metabolite concentrations as measured in non-growing trypanosomes and the major contribution to the flux control exerted by the plasma membrane glucose transporter. Surprisingly, a large overcapacity was predicted for hexokinase (HXK), phosphofructokinase (PFK), and pyruvate kinase (PYK). Here, we present our further analysis of the control of glycolytic flux in bloodstream form T. brucei. First, the model was optimized and extended with recent information about the kinetics of enzymes and their activities as measured in lysates of in vitro cultured growing trypanosomes. Second, the concentrations of five glycolytic enzymes (HXK, PFK, phosphoglycerate mutase, enolase, and PYK) in trypanosomes were changed by RNA interference. The effects of the knockdown of these enzymes on the growth, activities, and levels of various enzymes and glycolytic flux were studied and compared with model predictions. Data thus obtained support the conclusion from the in silico analysis that HXK, PFK, and PYK are in excess, albeit less than predicted. Interestingly, depletion of PFK and enolase had an effect on the activity (but not, or to a lesser extent, expression) of some other glycolytic enzymes. Enzymes located both in the glycosomes (the peroxisome-like organelles harboring the first seven enzymes of the glycolytic pathway of trypanosomes) and in the cytosol were affected. These data suggest the existence of novel regulatory mechanisms operating in trypanosome glycolysis.
Collapse
Affiliation(s)
- Marie-Astrid Albert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Hannaert V, Bringaud F, Opperdoes FR, Michels PAM. Evolution of energy metabolism and its compartmentation in Kinetoplastida. KINETOPLASTID BIOLOGY AND DISEASE 2003; 2:11. [PMID: 14613499 PMCID: PMC317351 DOI: 10.1186/1475-9292-2-11] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 10/28/2003] [Indexed: 04/27/2023]
Abstract
Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties.In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups.Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and hydrogenosomes of extant eukaryotes. Furthermore, indications are presented that Kinetoplastida may have acquired other enzymes of energy and carbohydrate metabolism by various lateral gene transfer events different from those that involved the algal- and alpha-proteobacterial-like endosymbionts responsible for the respective formation of the glycosomes and mitochondria.
Collapse
Affiliation(s)
- Véronique Hannaert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Frédéric Bringaud
- Laboratoire de Parasitologie Moléculaire, Université Victor Segalen, Bordeaux II, UMR-CNRS 5016, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Fred R Opperdoes
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Paul AM Michels
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| |
Collapse
|
24
|
Choe J, Guerra D, Michels PAM, Hol WGJ. Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. J Mol Biol 2003; 329:335-49. [PMID: 12758080 DOI: 10.1016/s0022-2836(03)00421-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain pathogenic trypanosomatids are highly dependent on glycolysis for ATP production, and hence their glycolytic enzymes, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. The ternary complex structure of Leishmania mexicana GPDH (LmGPDH) with dihydroxyacetone phosphate (DHAP) and NAD(+) was determined to 1.9A resolution as a further step towards understanding this enzyme's mode of action. When compared with the apo and binary complex structures, the ternary complex structure shows an 11 degrees hinge-bending motion of the C-terminal domain with respect to the N-terminal domain. In addition, residues in the C-terminal domain involved in catalysis or substrates binding show significant movements and a previously invisible five-residue loop region becomes well ordered and participates in NAD(+) binding. Unexpectedly, DHAP and NAD(+) appear to form a covalent bond, producing an adduct in the active site of LmGPDH. Modeling a ternary complex glycerol 3-phosphate (G3P) and NAD(+) with LmGPDH identified ten active site residues that are highly conserved among all GPDHs. Two lysine residues, Lys125 and Lys210, that are presumed to be critical in catalysis, were mutated resulting in greatly reduced catalytic activity. Comparison with other structurally related enzymes found by the program DALI suggested Lys210 as a key catalytic residue, which is located on a structurally conserved alpha-helix. From the results of site-directed mutagenesis, molecular modeling and comparison with related dehydrogenases, a catalytic mechanism of LmGPDH and a possible evolutionary scenario of this group of dehydrogenases are proposed.
Collapse
Affiliation(s)
- Jungwoo Choe
- Department of Biochemistry, Biomolecular Structure and Design program, University of Washington, Seattle 98195-7742, USA
| | | | | | | |
Collapse
|
25
|
Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 2001; 4:50-65. [PMID: 11512153 DOI: 10.1054/drup.2000.0177] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycolysis is perceived as a promising target for new drugs against parasitic trypanosomatid protozoa because this pathway plays an essential role in their ATP supply. Trypanosomatid glycolysis is unique in that it is compartmentalized, and many of its enzymes display unique structural and kinetic features. Structure- and catalytic mechanism-based approaches are applied to design compounds that inhibit the glycolytic enzymes of the parasites without affecting the corresponding proteins of the human host. For some trypanosomatid enzymes, potent and selective inhibitors have already been developed that affect only the growth of cultured trypanosomatids, and not mammalian cells.
Collapse
Affiliation(s)
- C L Verlinde
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Michels PA, Hannaert V, Bringaud F. Metabolic aspects of glycosomes in trypanosomatidae - new data and views. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:482-9. [PMID: 11063859 DOI: 10.1016/s0169-4758(00)01810-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The energy metabolism of Trypanosomatidae has been the subject of many reviews during the past decade. In recent years, however, new data have led to a more complete picture of trypanosomatid metabolism and a reappraisal of the role of some characteristic organelles in the energy supply of these parasites. For years, the glycosome was thought to be a peroxisome-like organelle that had evolved to allow the parasites to carry out glycolysis at a high rate using a relatively small amount of enzyme. However, the results of recent studies of trypanosomatid glycolysis and the detection of various other pathways and enzymes in the organelle necessitate a modification of this view. Here, Paul Michels, Véronique Hannaert and Frédéric Bringaud review the new data and discuss the possible implications for our view on the role of the glycosome.
Collapse
Affiliation(s)
- P A Michels
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium.
| | | | | |
Collapse
|
27
|
Králová I, Rigden DJ, Opperdoes FR, Michels PA. Glycerol kinase of Trypanosoma brucei. Cloning, molecular characterization and mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2323-33. [PMID: 10759857 DOI: 10.1046/j.1432-1327.2000.01238.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei contains two tandemly arranged genes for glycerol kinase. The downstream gene was analysed in detail. It contains an ORF for a polypeptide of 512 amino acids. The polypeptide has a calculated molecular mass of 56 363 Da and a pI of 8.6. Comparison of the T. brucei glycerol kinase amino-acid sequence with the glycerol kinase sequences available in databases revealed positional identities of 39.0-50.4%. The T. brucei glycerol kinase gene was overexpressed in Escherichia coli cells and the recombinant protein obtained was purified and characterized biochemically. Its kinetic properties with regard to both the forward and reverse reaction were measured. The values corresponded to those determined previously for the natural glycerol kinase purified from the parasite, and confirmed that the apparent Km values of the trypanosome enzyme for its substrates are relatively high compared with those of other glycerol kinases. Alignment of the amino-acid sequences of T. brucei glycerol kinase and other eukaryotic and prokaryotic glycerol kinases, as well as inspection of the available three-dimensional structure of E. coli glycerol kinase showed that most residues of the magnesium-, glycerol- and ADP-binding sites are well conserved in T. brucei glycerol kinase. However, a number of remarkable substitutions was identified, which could be responsible for the low affinity for the substrates. Most striking is amino-acid Ala137 in T. brucei glycerol kinase; in all other organisms a serine is present at the corresponding position. We mutated Ala137 of T. brucei glycerol kinase into a serine and this mutant glycerol kinase was over-expressed and purified. The affinity of the mutant enzyme for its substrates glycerol and glycerol 3-phosphate appeared to be 3. 1-fold to 3.6-fold higher than in the wild-type enzyme. Part of the glycerol kinase gene comprising this residue 137 was amplified in eight different kinetoplastid species and sequenced. Interestingly, an alanine occurs not only in T. brucei, but also in other trypanosomatids which can convert glucose into equimolar amounts of glycerol and pyruvate: T. gambiense, T. equiperdum and T. evansi. In trypanosomatids with no or only a limited capacity to produce glycerol, a hydroxy group-containing residue is found as in all other organisms: T. vivax and T. congolense possess a serine while Phytomonas sp., Leishmania brasiliensis and L. mexicana have a threonine.
Collapse
Affiliation(s)
- I Králová
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
28
|
Bakker BM, Mensonides FI, Teusink B, van Hoek P, Michels PA, Westerhoff HV. Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A 2000; 97:2087-92. [PMID: 10681445 PMCID: PMC15758 DOI: 10.1073/pnas.030539197] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike in other organisms, in trypanosomes and other Kinetoplastida the larger part of glycolysis takes place in a specialized organelle, called the glycosome. At present it is impossible to remove the glycosome without changing much of the rest of the cell. It would seem impossible, therefore, to assess the metabolic consequences of this compartmentation. Therefore, we here develop a computer experimentation approach, which we call computational cell biology. A validated molecular kinetic computer replica was built of glycolysis in the parasite Trypanosoma brucei. Removing the glycosome membrane in that replica had little effect on the steady-state flux, which argues against the prevalent speculation that glycosomes serve to increase flux by concentrating the enzymes. Removal of the membrane did cause (i) the sugar phosphates to rise to unphysiologically high levels, which must have pathological effects, and (ii) a failure to recover from glucose deprivation. We explain these effects on the basis of the biochemical organization of the glycosome. We conclude (i) that the glycosome protects trypanosomes from the negative side effects of the "turbo" structure of glycolysis and (ii) that computer experimentation based on solid molecular data is a powerful tool to address questions that are not, or not yet, accessible to experimentation.
Collapse
Affiliation(s)
- B M Bakker
- Molecular Cell Physiology, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Bakker BM, Westerhoff HV, Opperdoes FR, Michels PA. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol Biochem Parasitol 2000; 106:1-10. [PMID: 10743606 DOI: 10.1016/s0166-6851(99)00197-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Glycolysis is the only ATP-generating process in bloodstream form trypanosomes and is therefore a promising drug target. Inhibitors which decrease significantly the glycolytic flux will kill the parasites. Both computer simulation and experimental studies of glycolysis in bloodstream form Trypanosoma brucei indicated that the control of the glycolytic flux is shared by several steps in the pathway. The results of these analyses provide quantitative information about the prospects of decreasing the flux by inhibition of any individual enzyme. The plasma membrane glucose transporter appears the most promising target from this perspective, followed by aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and glycerol-3-phosphate dehydrogenase. Non-competitive or irreversible inhibitors would be most effective, but it is argued that potent competitive inhibitors can be suitable, provided that the concentration of the competing substrate cannot increase unrestrictedly. Such is the case for inhibitors that compete with coenzymes or with blood glucose.
Collapse
Affiliation(s)
- B M Bakker
- Kluyver Institute of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | |
Collapse
|
30
|
Bakker BM, Walsh MC, ter Kuile BH, Mensonides FI, Michels PA, Opperdoes FR, Westerhoff HV. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc Natl Acad Sci U S A 1999; 96:10098-103. [PMID: 10468568 PMCID: PMC17848 DOI: 10.1073/pnas.96.18.10098] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rate of glucose transport across the plasma membrane of the bloodstream form of Trypanosoma brucei was modulated by titration of the hexose transporter with the inhibitor phloretin, and the effect on the glycolytic flux was measured. A rapid glucose uptake assay was developed to measure the transport activity independently of the glycolytic flux. Phloretin proved a competitive inhibitor. When the effect of the intracellular glucose concentration on the inhibition was taken into account, the flux control coefficient of the glucose transporter was between 0.3 and 0.5 at 5 mM glucose. Because the flux control coefficients of all steps in a metabolic pathway sum to 1, this result proves that glucose transport is not the rate-limiting step of trypanosome glycolysis. Under physiological conditions, transport shares the control with other steps. At glucose concentrations much lower than physiological, the glucose carrier assumed all control, in close agreement with model predictions.
Collapse
Affiliation(s)
- B M Bakker
- Molecular Cell Physiology, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV. What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 1999; 274:14551-9. [PMID: 10329645 DOI: 10.1074/jbc.274.21.14551] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the glucose transporter on the one hand and aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-phosphate dehydrogenase (GDH) on the other hand. The other kinases, which are often thought to control glycolysis, exerted little control; so did the utilization of ATP. We identified potential targets for anti-trypanosomal drugs by calculating which steps need the least inhibition to achieve a certain inhibition of the glycolytic flux in these parasites. The glucose transporter appeared to be the most promising target, followed by ALD, GDH, GAPDH, and PGK. By contrast, in erythrocytes more than 95% deficiencies of PGK, GAPDH, or ALD did not cause any clinical symptoms (Schuster, R. and Holzhütter, H.-G. (1995) Eur. J. Biochem. 229, 403-418). Therefore, the selectivity of drugs inhibiting these enzymes may be much higher than expected from their molecular effects alone. Quite unexpectedly, trypanosomes seem to possess a substantial overcapacity of hexokinase, phosphofructokinase, and pyruvate kinase, making these "irreversible" enzymes mediocre drug targets.
Collapse
Affiliation(s)
- B M Bakker
- Molecular Cell Physiology, BioCentrum Amsterdam, Vrije Universiteit De Boelelaan 1087, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Matthews KR. Developments in the differentiation of Trypanosoma brucei. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:76-80. [PMID: 10234191 DOI: 10.1016/s0169-4758(98)01381-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
During the course of their life cycle, African trypanosomes encounter many differing environments and respond to these by dramatic changes in cell shape, metabolism and patterns of gene expression. Many of these life cycle transitions can now be carried out in vitro, allowing their underlying controls to be studied. Here, Keith Matthews presents an overview of recent advances in the understanding of the regulation of these complex differentiation events.
Collapse
Affiliation(s)
- K R Matthews
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK M13 9PT.
| |
Collapse
|
33
|
Tielens AG, Van Hellemond JJ. Differences in Energy Metabolism Between Trypanosomatidae. ACTA ACUST UNITED AC 1998; 14:265-72. [PMID: 17040781 DOI: 10.1016/s0169-4758(98)01263-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although various members of the family Trypanosomatidae generate energy in a similar way, fundamental differences also exist and are not always recognized. In this review, Louis Tielens and Jaap Van Hellemond discuss the known differences in carbohydrate metabolism among trypanosomatids, and especially compare Leishmania with trypanosomatids such as Trypanosoma brucei and Phytomonas spp. Special attention will be paid to differences in end-products of carbohydrate degradation, to differences in anaerobic capacities between the various trypanosomatids and to the components of their respiratory chains, including the presence or absence of a plant-like alternative oxidase. Furthermore, evidence will be discussed which indicates that the succinate produced by trypanosomatids is formed mainly via an oxidative pathway and not via reduction of fumarate, a process known to occur in parasitic helminths.
Collapse
Affiliation(s)
- A G Tielens
- Laboratory of Veterinary Biochemistry and Institute of Biomembranes, Utrecht University, PO Box 80176, 3508 TD Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Teusink B, Walsh MC, van Dam K, Westerhoff HV. The danger of metabolic pathways with turbo design. Trends Biochem Sci 1998; 23:162-9. [PMID: 9612078 DOI: 10.1016/s0968-0004(98)01205-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many catabolic pathways begin with an ATP-requiring activation step, after which further metabolism yields a surplus of ATP. Such a 'turbo' principle is useful but also contains an inherent risk. This is illustrated by a detailed kinetic analysis of a paradoxical Saccharomyces cerevisiae mutant; the mutant fails to grow on glucose because of overactive initial enzymes of glycolysis, but is defective only in an enzyme (trehalose 6-phosphate synthase) that appears to have little relevance to glycolysis. The ubiquity of pathways that possess an initial activation step, suggests that there might be many more genes that, when deleted, cause rather paradoxical regulation phenotypes (i.e. growth defects caused by enhanced utilization of growth substrate).
Collapse
Affiliation(s)
- B Teusink
- E. C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
Eisenthal R, Cornish-Bowden A. Prospects for antiparasitic drugs. The case of Trypanosoma brucei, the causative agent of African sleeping sickness. J Biol Chem 1998; 273:5500-5. [PMID: 9488673 DOI: 10.1074/jbc.273.10.5500] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolysis in the bloodstream form of Trypanosoma brucei provides a convenient context for studying the prospects for using enzyme inhibitors as antiparasitic drugs. As the recently developed model of this system (Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. (1997) J. Biol. Chem. 272, 3207-3215) contains 20 enzyme-catalyzed reactions or transport steps, there are apparently numerous potential targets for drugs. However, as most flux control resides in the glucose-transport step, this is the only step for which inhibition can be expected to produce large effects on flux, and in the computer model such effects prove to be surprisingly small (although larger than those obtained by inhibiting any other step). It follows that there is little prospect of killing trypanosomes by depressing their glycolysis to a level incapable of sustaining life. The alternative is to use inhibition to increase the concentration of a metabolite sufficiently to interfere with the viability of the organism. For this purpose, only uncompetitive inhibition of pyruvate export proves effective in the model; in all other cases studied, the effects on metabolite concentrations are little more than trivial. This observation can be explained by the fact that nearly all of the metabolite concentrations in the system are held within relatively narrow ranges by stoichiometric constraints.
Collapse
Affiliation(s)
- R Eisenthal
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom.
| | | |
Collapse
|
36
|
Michels PA, Chevalier N, Opperdoes FR, Rider MH, Rigden DJ. The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei must have evolved from an ancestral pyrophosphate-dependent enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:698-704. [PMID: 9461292 DOI: 10.1111/j.1432-1033.1997.00698.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei contains an ATP-dependent phosphofructokinase (PFK), located in its glycosomes, which are peroxisome-like organelles sequestering the majority of its glycolytic enzymes. In this paper, we report the cloning and sequencing of the single-copy gene encoding this enzyme. Its amino-acid sequence is more similar to pyrophosphate (PPi)-dependent PFKs than to other ATP-dependent PFKs. A phylogenetic analysis suggests that the enzyme must have been derived from a PPi-dependent ancestral PFK, which changed its phospho-donor specificity during evolution. The enzyme is no longer capable of using PPi as phospho substrate, nor can it catalyze the reverse reaction as PPi-PFKs generally can. Moreover, the presence of a high pyrophosphatase activity in the cell renders it unlikely that PPi can function as free-energy source in present-day trypanosomes. It remains to be determined which mutations were responsible for the change in phospho-substrate specificity of the trypanosomatid PFK. As a result of its particular evolutionary history, the T. brucei PFK shows many structural differences, even at the active site, when compared with other ATP-dependent PFKs. These differences offer great potential for the structure-based design of trypanocidal drugs.
Collapse
Affiliation(s)
- P A Michels
- International Institute of Cellular and Molecular Pathology and Laboratory of Biochemistry, Catholic University of Louvain, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Protozoa of the order kinetoplastida have colonized many habitats, and several species are important parasites of humans. Adaptation to different environments requires an associated adaptation at a cell's interface with its environment, i.e. the plasma membrane. Sugar transport by the kinetoplastida as a phylogenetically related group of organisms offers an exceptional model in which to study the ways by which the carrier proteins involved in this process may evolve to meet differing environmental challenges. Seven genes encoding proteins involved in glucose transport have been cloned from several kinetoplastid species. The transporters all belong to the glucose transporter superfamily exemplified by the mammalian erythrocyte transporter GLUT1. Some species, such as the African trypanosome Trypanosoma brucei, which undergo a life cycle where the parasites are exposed to very different glucose concentrations in the mammalian bloodstream and tsetse-fly midgut, have evolved two different transporters to deal with this fluctuation. Other species, such as the South American trypanosome Trypanosoma cruzi, multiply predominantly in conditions of relative glucose deprivation (intracellularly in the mammalian host, or within the reduviid bug midgut) and have a single, relatively high-affinity type, transporter. All of the kinetoplastid transporters can also transport d-fructose, and are relatively insensitive to the classical inhibitors of GLUT1 transport cytochalasin B and phloretin.
Collapse
Affiliation(s)
- E Tetaud
- Laboratoire de Parasitologie Moléculaire, UPRESA CNRS 5016, Université de Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
38
|
Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV. Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 1997; 272:3207-15. [PMID: 9013556 DOI: 10.1074/jbc.272.6.3207] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In trypanosomes the first part of glycolysis takes place in specialized microbodies, the glycosomes. Most glycolytic enzymes of Trypanosoma brucei have been purified and characterized kinetically. In this paper a mathematical model of glycolysis in the bloodstream form of this organism is developed on the basis of all available kinetic data. The fluxes and the cytosolic metabolite concentrations as predicted by the model were in accordance with available data as measured in non-growing trypanosomes, both under aerobic and under anaerobic conditions. The model also reproduced the inhibition of anaerobic glycolysis by glycerol, although the amount of glycerol needed to inhibit glycolysis completely was lower than experimentally determined. At low extracellular glucose concentrations the intracellular glucose concentration remained very low, and only at 5 mM of extracellular glucose, free glucose started to accumulate intracellularly, in close agreement with experimental observations. This biphasic relation could be related to the large difference between the affinities of the glucose transporter and hexokinase for intracellular glucose. The calculated intraglycosomal metabolite concentrations demonstrated that enzymes that have been shown to be near-equilibrium in the cytosol must work far from equilibrium in the glycosome in order to maintain the high glycolytic flux in the latter.
Collapse
Affiliation(s)
- B M Bakker
- Microbial Physiology, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV Amsterdam, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Abstract
Differences between host and parasite energy metabolism are eagerly sought after as potential targets for antiparasite chemotherapy. In Kinetoplastia, the first seven steps of glycolysis are compartmented inside glycosomes, organelles that are related to the peroxisomes of higher eukaryotes. This arrangement is unique in the living world. In this review, Christine Clayton and Paul Michels discuss the implications of this unusual metabolic compartmentation for the regulation of trypanosome energy metabolism, and describe how an adequate supply of energy is maintained in different species and life cycle stages.
Collapse
Affiliation(s)
- C E Clayton
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|