1
|
Vasek MJ, Mueller SM, Fass SB, Deajon-Jackson JD, Liu Y, Crosby HW, Koester SK, Yi J, Li Q, Dougherty JD. Local translation in microglial processes is required for efficient phagocytosis. Nat Neurosci 2023; 26:1185-1195. [PMID: 37277487 PMCID: PMC10580685 DOI: 10.1038/s41593-023-01353-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Neurons, astrocytes and oligodendrocytes locally regulate protein translation within distal processes. Here, we tested whether there is regulated local translation within peripheral microglial processes (PeMPs) from mouse brain. We show that PeMPs contain ribosomes that engage in de novo protein synthesis, and these are associated with transcripts involved in pathogen defense, motility and phagocytosis. Using a live slice preparation, we further show that acute translation blockade impairs the formation of PeMP phagocytic cups, the localization of lysosomal proteins within them, and phagocytosis of apoptotic cells and pathogen-like particles. Finally, PeMPs severed from their somata exhibit and require de novo local protein synthesis to effectively surround pathogen-like particles. Collectively, these data argue for regulated local translation in PeMPs and indicate a need for new translation to support dynamic microglial functions.
Collapse
Affiliation(s)
- Michael J Vasek
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shayna M Mueller
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stuart B Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jelani D Deajon-Jackson
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Haley W Crosby
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sarah K Koester
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jiwon Yi
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Qingyun Li
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
4
|
Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 2007; 125:121-30. [PMID: 18037185 DOI: 10.1016/j.jconrel.2007.10.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/11/2007] [Accepted: 10/14/2007] [Indexed: 02/06/2023]
Abstract
The success of targeting systems to alveolar macrophages critically depends on internalization into these cells for pharmacological intervention. Direct respiratory delivery via inhalation of mannose modified liposomal carriers to alveolar macrophages is of great interest. To evaluate the targeting efficiency to alveolar macrophages by intratracheal administration of mannosylated liposomes (Man-liposomes), Man-liposomes with various ratio of mannosylated cholesterol derivatives, cholesten-5-yloxy-N-(4-((1-imino-2-D-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) as mannose receptor ligand were investigated with regard to their in vitro uptake in primary cultured alveolar macrophages and in vivo intratracheal administration in rats. The in vitro uptake of Man-liposomes took place in a concentration-dependent manner. The internalization of Man-liposomes with 7.5% (Man-7.5-liposomes) and 5.0% (Man-5.0-liposomes) Man-C4-Chol was considerably higher than that of Man-liposomes with 2.5% of Man-C4-Chol (Man-2.5-liposomes) and Bare-liposomes and significantly inhibited by an excess of mannan, suggesting mannose receptor-mediated endocytosis. After intratracheal administration of Man-7.5 and Man-5.0-liposomes in rats, a significantly high internalization and selective targeting to alveolar macrophages was observed. The enhanced cellular uptake in alveolar macrophages related to the mannose density of Man-liposomes was also confirmed both in vitro and in vivo confocal microscopy studies. These results demonstrate the efficient targeting to alveolar macrophages by the intratracheally administered Man-liposomes via mannose receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Wassana Wijagkanalan
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release 2006; 114:193-201. [PMID: 16876282 DOI: 10.1016/j.jconrel.2006.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/15/2022]
Abstract
Carbohydrate grafted emulsions are one of the most promising cell-specific targeting systems for lipophilic drugs. We have previously reported that mannosylated (Man-) emulsions composed of soybean oil, EggPC and cholesten-5-yloxy-N-(4-((1-imino-2-d-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) with a ratio of 70:25:5 were significantly delivered to liver non-parenchymal cells (NPC) via mannose receptor-mediated mechanism after intravenous administration in mice. Since the efficient targeting through a receptor-mediated mechanism is largely controlled by ligand-receptor interaction, the effect of mannose density on Man-emulsions was studied with regard to both the disposition in vivo in mice and the uptake in vitro, using elicited macrophages which express a number of mannose receptors. After intravenous injection, Man-emulsions with 5.0% (Man-5.0-emulsions) and 7.5% (Man-7.5-emulsions) of Man-C4-Chol were rapidly eliminated from the blood circulation and preferentially accumulated in the liver-NPC compared with Man-emulsions with 2.5% of Man-C4-Chol (Man-2.5-emulsions) and bare emulsions (Bare-emulsions). The in vitro study showed increased internalization of Man-5.0- and Man-7.5-emulsions and significant inhibition of uptake in the presence of mannan. The enhanced uptake of Man-emulsions was related to the increasing of Man-C4-Chol content that corresponded to confocal microscopy study. These results suggest that the mannose density of Man-emulsions plays an important role in both cellular recognition and internalization via a mannose receptor-mediated mechanism.
Collapse
Affiliation(s)
- Wassana Yeeprae
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
6
|
Darbha S, Marchase RB. Regulation of intracellular calcium is closely linked to glucose metabolism in J774 macrophages. Cell Calcium 1996; 20:361-71. [PMID: 8939356 DOI: 10.1016/s0143-4160(96)90042-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of 2-deoxy-D-glucose (2dGlc) and glucose deprivation were investigated in the J774 murine macrophage-like cell line. 2dGlc addition or glucose deprivation for 4 min led to an inhibition in the transient increase in cytoplasmic free Ca2+ ([Ca2+]i) that otherwise occurs in response to three different agonists: IgG, ATP and platelet activating factor. This inhibition was preceded by a partial release of Ca2+ from intracellular, thapsigargin-sensitive stores. In contrast, the transition from 5 to 30 mM glucose caused a decrease in [Ca2+]i and a corresponding increase in thapsigargin-sensitive sequestered Ca2+. The effects of an alternate glycolytic inhibitor, NaF, and a mitochondrial inhibitor, rotenone, were also tested. These inhibitors caused neither a release of Ca2+ from intracellular stores nor an inhibition in any of the agonist responses. The capacitative influx of extracellular Ca2+ following depletion of intracellular stores was also found to be selectively inhibited by the prior addition of 2dGlc or with glucose deprivation. In addition, when an elevated plateau of [Ca2+]i was established by the irreversible depletion of intracellular Ca2+ stores, the addition of 2dGlc caused a decrease in the on-going capacitative entry of Ca2+.
Collapse
Affiliation(s)
- S Darbha
- Department of Cell Biology, University of Alabama at Birmingham 35294-0005, USA
| | | |
Collapse
|
7
|
D'Onofrio C, Paradisi F. The influence of bacterial exotoxins and endotoxins on the phagocytic activity of human macrophages in culture. Infection 1983; 11:137-43. [PMID: 6350191 DOI: 10.1007/bf01641292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of bacterial exotoxins and endotoxins on phagocytosis was tested on human macrophages in monolayer cultures by determining the rate of zymosan particle ingestion at different toxin concentrations and incubation times. The exotoxins tested were staphylococcal alpha-toxin and diphtheria-toxin. The endotoxins used were lipopolysaccharides from Salmonella typhi, Salmonella typhimurium, Shigella flexneri and Serratia marcescens. Phagocytosis was significantly impaired after prolonged incubation with diphtheria toxin whereas alpha-toxin was ineffective. Endotoxin-treated macrophages showed a wide range of phagocytic activity. Enhancement of phagocytosis was observed with a low concentration of endotoxin (1 microgram/ml) from S. typhi, S. typhimurium and S. flexneri. Higher concentrations (2.5 and 5 micrograms/ml) depressed phagocytosis to varying extents, except for S. typhi lipopolysaccharide, which did not induce a significant decrease in phagocytosis in comparison to the controls.
Collapse
|
9
|
Cifarelli A, Pepe G, Paradisi F, Piccolo D. The influence of some metabolic inhibitors on phagocytic activity of mouse macrophages in vitro. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1979; 174:197-204. [PMID: 424658 DOI: 10.1007/bf01851332] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The action of different metabolic inhibitors on phagocytosis by macrophages from mouse peritoneal exudate cultured in vitro was studied. The following metabolic inhibitors were tested: sodium iodoacetate, sodium fluoride, sodium fluoroacetate, sodium malonate, 2-4-dinitrophenol, sodium azide, ouabain and cycloheximide, all at the concentration of 10(-3) M. Iodoacetate caused a strong inhibitory effect on phagocytosis; this observation confirms that glycolysis is the main source of energy for the phagocytic process. On the contrary, fluoride, although it is an effective inhibitor of glycolysis, did not exert any effect. This difference may be explained by the fact that sodium fluoride blocks anaerobic glycolysis only in vitro at an unphysiological temperature (0 degrees C). Fluoroacetate and malonate, two compounds which interfere with the Krebs cycle, did not inhibit phagocytosis, but it is known that the Krebs cycle activity is poorly developed in the macrophagic cells. Sodium azide and 2-4-dinitrophenol, two inhibitors of oxidative phosphorylation, showed an effect on phagocytosis only after 3 h of contact with the cell cultures. Ouabain blocks Na+ and K+ transport across the plasma membrane and, probably, it inhibited phagocytosis by interfering with the movements of the cell membrane. Finally, the mode of action of cycloheximide on phagocytosis is uncertain. This compound inhibits the protein synthesis and, perhaps, it can act by preventing the renewal of the cell membrane.
Collapse
|