1
|
Zhou Z, Mang D, Smagghe G, Liu Y, Mu Y, Yang L, Wang X, Chen X. A Farnesyl Pyrophosphate Synthase Gene Is Expressed in Fat Body Regulates Cantharidin Synthesis in Male Epicauta impressicornis Blister Beetle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12935-12945. [PMID: 38822796 DOI: 10.1021/acs.jafc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Dingze Mang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Guy Smagghe
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Yangyang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China
| | - Yinlin Mu
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Lin Yang
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Xuewen Wang
- Health Science Center, University of North Texas, Fort Worth, Texas 76107, United States
| | - Xiangsheng Chen
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Male Accessory Glands of Blister Beetles and Cantharidin Release: A Comparative Ultrastructural Analysis. INSECTS 2022; 13:insects13020132. [PMID: 35206706 PMCID: PMC8875262 DOI: 10.3390/insects13020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Meloidae, also called blister beetles, are known to actively produce cantharidin, a toxic terpene with a defensive function that is released externally by reflex bleeding, and that is also stored in large quantities in the male accessory glands. These glands are involved in the transfer of terpene from males to females, which receive cantharidin via spermatophores as a nuptial gift to be used for their own protection and that of the eggs. However, it is still debated whether the male accessory glands can actively produce the terpene or if they only mediate its transfer, since neither the cantharidin-producing organ nor the metabolic pathway are known to date. The focus of the work is to analyze comparatively the accessory glands of males in representative Meloidae species to provide morphological evidences that can contribute to this debate. The results highlight the complexity of the accessory gland system, consisting of three different types of glands that are highly variable between species with the exception of one, which remains conserved even in independent phyletic lines. This gland is a good candidate for hypothesizing a direct role in cantharidin production and/or concentration. Abstract Members of the family Meloidae are known to produce cantharidin, a highly toxic monoterpene found in their hemolymph and exuded as droplets capable of deterring many predators. As a nuptial gift, males transfer large amounts of cantharidin to females via a spermatophore, which is formed by specific accessory glands containing high concentrations of this terpene. Using light, electron and ion beam microscopy, the ultrastructural features of the three pairs of male accessory glands as well as the glandular part of the vasa deferentia were comparatively investigated in seven species of blister beetles belonging to five different tribes and two subfamilies. All gland pairs examined share common features such as mesodermal derivation, the presence of muscle sheath, a developed rough endoplasmic reticulum, abundant mitochondria, secretory vesicles, and microvillated apical membranes. Within the same species, glands exhibit distinctive features, suggesting that each pair is responsible for the formation of a specific substance. The vasa deferentia, while showing many similarities within the family, often exhibit features unique to each of the individual species investigated, whereas the accessory glands of the first and second pairs display the highest degree of ultrastructural variability. A comparison across the species shows an interesting constancy limited to ultrastructural features in the third pair of accessory glands. The similarities and differences among the species are discussed in the light of the available literature and in relation to the potential role that blister beetles’ male accessory glands could play in the storage and management of cantharidin.
Collapse
|
3
|
Muzzi M, Di Giulio A, Mancini E, Fratini E, Cervelli M, Gasperi T, Mariottini P, Persichini T, Bologna MA. The male reproductive accessory glands of the blister beetle Meloe proscarabaeus Linnaeus, 1758 (Coleoptera: Meloidae): Anatomy and ultrastructure of the cantharidin-storing organs. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100980. [PMID: 32829176 DOI: 10.1016/j.asd.2020.100980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Blister beetles owe their name to their ability to release cantharidin, a blistering terpene, the highest concentration of which is retained in male accessory glands. The anatomy and ultrastructure of the three pairs of male reproductive accessory glands and the glandular region of the two vasa deferentia of Meloe proscarabaeus were investigated using light, electron and ion beam microscopy. All of the mesodermal glands here analysed share a common structural organization with an outer muscular layer and an inner glandular epithelium facing a broad lumen in which the secretory products are released. Developed rough endoplasmic reticulum, Golgi systems, abundant mitochondria, numerous secretory vesicles and a microvillated apical membrane are commonly found in the cells of different glandular epithelia, suggesting that all accessory gland pairs as well as the vasa deferentia are involved in an active synthesis. Nevertheless, each pair of glands appears specialized in the production of a specific set of substances, as suggested by the peculiarities in cellular ultrastructure and by the different aspect of the secretions stored in their glandular lumen. The above cited features of male accessory glands of M. proscarabaeus are compared with those of other beetles and some hints on their potential role in producing and/or concentrating cantharidin are provided.
Collapse
Affiliation(s)
- Maurizio Muzzi
- Department of Science, University Roma Tre, Rome, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica (LIME), University Roma Tre, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, University Roma Tre, Rome, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica (LIME), University Roma Tre, Rome, Italy.
| | - Emiliano Mancini
- Department of Biology and Biotechnology "C. Darwin", "Sapienza" University of Rome, Rome, Italy
| | | | | | - Tecla Gasperi
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | |
Collapse
|
4
|
Camarano S, González A, Rossini C. Biparental endowment of endogenous defensive alkaloids in Epilachna paenulata. J Chem Ecol 2008; 35:1-7. [PMID: 19052820 DOI: 10.1007/s10886-008-9570-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/17/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Coccinellid beetles contain a variety of defensive alkaloids that render them unpalatable to predators. Epilachna paenulata (Coleoptera: Coccinellidae) is a South American ladybird beetle that feeds on plants of the Cucurbitaceae family. The defensive chemistry of E. paenulata has been characterized as a mixture of systemic piperidine, homotropane, and pyrrolidine alkaloids. Whole body extracts of adult beetles contain four major alkaloids: 2-(2'-oxopropyl)-6-methylpiperidine (1); 1-(6-methyl-2,3,4,5-tetrahydro-pyridin-2-yl)-propan-2-one (2); 1-methyl-9-azabicyclo[3.3.1]nonan-3-one (3); and 1-(2''-hydroxyethyl)-2-(12'-aminotridecyl)-pyrrolidine (4). Comparative studies of the defensive chemistry of eggs, larvae, pupae, and adults showed differences in alkaloid composition and concentration among life stages. While adults contained mainly the homotropane 1-methyl-9-azabicyclo[3.3.1]nonan-3-one (3), eggs showed the highest concentration of the piperidine 2-(2'-oxopropyl)-6-methylpiperidine (1). We studied the origin of this alkaloid in the eggs by feeding newly emerged, virgin adult beetles with [2-(13)C]-labeled acetate, and by performing crosses between (13)C-fed and unlabeled males and females. GC-MS analysis of alkaloids from (13)C-fed males and females showed high incorporation of (13)C into the alkaloids, as evidenced from a 20-30% increase of isotopic peaks in diagnostic fragment ions, confirming the expected endogenous origin of these alkaloids. In addition, analyses of eggs from different crosses showed that labeled alkaloids from both parents are incorporated into eggs, indicating that E. paenulata males transfer alkaloids to the females at mating. Biparental endowment of chemical defenses into eggs has been shown previously in insects that acquire defensive compounds from dietary sources. To our knowledge, this is the first report of biparental egg endowment of endogenous defenses.
Collapse
Affiliation(s)
- Soledad Camarano
- Departamento de Química Orgánica, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
5
|
Peter MG, Snatzke G, Snatzke F, Nagarajan KN, Schmid H. Über die absolute Konfiguration der Cantharsäure und des Palasonins. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19740570106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
|
7
|
Dettner K. Inter- and Intraspecific Transfer of Toxic Insect Compound Cantharidin. ECOLOGICAL STUDIES 1997. [DOI: 10.1007/978-3-642-60725-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Shirk PD, Bhaskaran G, Röller H. The transfer of juvenile hormone from male to female during mating in the Cecropia silkmoth. ACTA ACUST UNITED AC 1980. [DOI: 10.1007/bf01970138] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
Peter MG, Waespe HR, Woggon WD, Schmid H. [Incorporation experiments with (3H and 14C) doubly labelled farnesols into cantharidin (author's transl)]. Helv Chim Acta 1977; 60:1262-72. [PMID: 893117 DOI: 10.1002/hlca.19770600416] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Transfer of cantharidin (1) during copulation from the adult male to the femaleLytta vesicatoria (‘Spanish flies’). ACTA ACUST UNITED AC 1976. [DOI: 10.1007/bf01937729] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
|
13
|
Schlatter C, Waldner E, Schmid H. [On the biosynthesis of cantharidin. I]. EXPERIENTIA 1968; 24:994-5. [PMID: 4179943 DOI: 10.1007/bf02138701] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|